Tatiana Quercia_presentazione

30
AIRPLANE DESIGN PRELIMINARY SIZING OF AN AIRPLANE “Pilots make it work, engineers make it possible”. To a pilot By Tatiana Quercia Aerospace Engineering Sapienza University of Rome 2012

Transcript of Tatiana Quercia_presentazione

AIRPLANE DESIGNPRELIMINARY SIZING OF AN AIRPLANE

“Pilots make it work,engineers make it possible”.

To a pilot

By

Tatiana Quercia

Aerospace EngineeringSapienza University of Rome

2012

1Tatiana Quercia – Airplane Design

MarketSurvey

Mission specification

WeightsEstimation

SensitivityStudies

W/S, W/P & CL,max

EstimationWing shapeEstimation

Conclusions

CONTENTS

Tatiana Quercia – Airplane Design 2

MISSION SPECIFICATION

Payload(passengers)

Cruise speed

(km/h)

Range(km)

Loiter(h)

Service ceiling(m)

4 250 1300 0.5 4000

Tatiana Quercia – Airplane Design 3

MARKET SURVEY

Airplane Seats(passengers

+ pilots)

Cruise speed

(km/h)

Range(km)

Service ceiling

(m)

Maximum Take-off Weight

(kg)Piper PA-32R-301

Saratoga II HP

4+2 307 1590 5029 1633

Cirrus SR203+1 289 1357 5335 1360

Cessna 182 Skylane 3+1 269 1505 5515 1406

Cessna 206 Stationair 4+2 263 1352 4785 1632

Tatiana Quercia – Airplane Design 4

MARKET SURVEY

CATEGORY

SINGLE ENGINE PROPELLER DRIVEN AIRPLANES

WEIGHTS ESTIMATION

Tatiana Quercia – Airplane Design 5

Payload weight (W

PL)

&Crew weight

(Wcrew

)

Missionfuel

Weight(W

F)

EmptyWeight

(WE)

+ + =Take-offWeight(W

TO)

PAYLOAD WEIGHT &

CREW WEIGHT

Tatiana Quercia – Airplane Design 6

WEIGHTS

ESTIMATION

Passengers and crew: 80 kg each

Baggage: 15 kg each

For 4 passengers + 1 pilot:

WPL

=380 kg

Wcrew

=95 kg

MISSION FUEL WEIGHT

WEIGHTS

ESTIMATION

Tatiana Quercia – Airplane Design 7

Fuel-fraction Method

Division of the airplane mission into phases.

Fuel fractions are defined as the ratio of end weight to begin weight for each phase.

Figure 1.1: Mission profile and phases

MISSION FUEL WEIGHT

WEIGHTS

ESTIMATION

Tatiana Quercia – Airplane Design 8

W1/WTO 0.995

W2/W1 0.997

W3/W2 0.998

W4/W3 0.992

W7/W6 0.993

W8/W7 0.993

From Roskam's: From Breguet's Range equation:

R=375(ηp/cp)(L/D)ln(W4/W5)

W5/W4=0.836

R 808 miηp 0.8

cp 0.6 lbs/hp/h

L/D 9

From Breguet's Endurance equation:

E=375(1/V)(ηp/cp)(L/D)ln(W5/W6)

W6/W5=0.984

E 0.5 hV 155 mphηp 0.7

cp 0.6 lbs/hp/h

L/D 11η

p: propeller efficiency

cp: specific fuel consumption

L/D : lift-to-drag ratio

WEIGHTS

ESTIMATION

Tatiana Quercia – Airplane Design 9

EMPTY WEIGHTMISSION FUEL WEIGHT

Mission fuel fraction:

Mff=(W1/WTO)Пk(Wk+1/Wk) k=1,2,...,7

Mff=0.796

With 6% of fuel reserves:

WF/WTO=(1-Mff)*1.06

WF/WTO=0.216

WEIGHTS

ESTIMATION

Tatiana Quercia – Airplane Design 10

EMPTY WEIGHT&

TAKE-OFF WEIGHT

log10WTO=A+B log10WE

Process of iteration

Select a value of WTO

Find a new value of WTO

Find a value of WE

Estime the error or start again

From market survey, as medium value: WTO guess=1508 kg

A=-0.144B=1.1162

WTO

=WPL+W

crew+(W

F/W

TO)WTO+W

E

|WTO-WTOguess| ≤ 0.005

WTO

=2108 kgWE=1178 kg

SENSITIVITY STUDIES

Regression line method

Record of new results after modifying each parameter of +/-5% and +/-10%.Making of a regression line for each parameter.The sensitivity coefficients are the regression line constants.

Sensitivity of WTO to parameters used in weights estimation.

Analytical method

Starting from eq. of WTO

, it results:

∂WTO/∂y=(BWTO 2 ∂C/∂y-BWTO ∂D/∂y)/[C(1-B)WTO-D]

where y can be each parameter of interest.

C=1-1.06*(1-Mff)=0.784D= WPL+Wcrew=475 kg

B=1.1162 as in weights estimation

Tatiana Quercia – Airplane Design 11

9,5 10 10,5 11 11,5 12 12,52085

2090

2095

2100

2105

2110

2115

2120

2125

f(x) = -9.27x + 2210.60

Figure 2.1: Regression line for lift-to-drag (L/D) in conditions of loiter

Lift-to-drag (L/D)

Max

imum

tak

e-of

f w

eigh

t (k

g)

Tatiana Quercia – Airplane Design 12

REGRESSION LINE METHODSENSITIVITY STUDIES

L/D|loiter

WTO (kg)

9,9 211910,45 2114

11 210811,55 210312,1 2099

Ex.

∂WTO/∂(L/D)|loiter=-9.27 kg

ANALYTICAL METHOD&

COMPARISONSENSITIVITY STUDIES

Tatiana Quercia – Airplane Design 13

Sensitivity coefficient Regression line method

Analytical method

Unit

∂WTO/∂WPL 3,53 3,53 -

∂WTO/∂R 3,09 3,07 lbs/mi

∂WTO/∂E 440,8 445,37 lbs/h

∂WTO/∂V 1,42 1,44 lbs/mph

∂WTO/∂cp|loiter 376,67 371,14 hp/h

∂WTO/∂cp|cruise 4150 4138,18 hp/h

∂WTO/∂ηp|cruise -3157,23 -3103,63 lbs

∂WTO/∂ηp|loiter -321,14 -318,12 lbs

∂WTO/∂(L/D)|loiter -20,43 -20,24 lbs

∂WTO/∂(L/D)|cruise -280,64 -275,88 lbs

Tatiana Quercia – Airplane Design 14

WING LOADING, TAKE-OFF POWER LOADING AND MAXIMUM

LIFT COEFFICIENT

FAR 23 REQUIREMENTS

Stallspeed

Take-offdistance Climb Landing

distanceCruisespeed

Sizing to

Assumption:

Take-off and land in any Cuban International Airport

Shortest field lenght: 1295 m; almost all at sea level.

SIZING TO STALL SPEED

Tatiana Quercia – Airplane Design 15

FAR 23 REQUIREMENTS

VS ≤61 kts=103 ft/s

(W/S)TO=1/2ρVS2CL,MAX

ρ (0 ft) 0.07595 lbs/ft3

CL,MAX 1.6 (medium value)

(W/S)TO≤20 psf

SIZING TO TAKE-OFFDISTANCE

Tatiana Quercia – Airplane Design 16

FAR 23 REQUIREMENTS

Figure 3.1: Definition of FAR 23 take-off distance

sTO=1.66 sTOG

sTO=8.134 TOP23+0.0149 TOP232

TOP23:=(W/S)TO(W/P)TO/(σ*(CL,MAX)TO)=130.9 lbs2/ft2hp

sTOG≤242 m=795 ft(As minimum value from market survey)

σ:=ρ/ρ0≈1

5 10 15 20 25 30 35 40 45 50 550

5

10

15

20

25

30

FIGURE 3.2: Effect of Take-off Wing Loading andMaximum Take-off Lift Coefficient

on Take-off Power Loading

1,31,51,61,71,9

Take-off Wing Loading (psf)

Take

-off

Pow

er L

oadi

ng (

lbs/

hp) C

L,MAX,TO

Tatiana Quercia – Airplane Design 17

FAR 23 REQUIREMENTS

SIZING TO TAKE-OFFDISTANCE

The region where take-off distance requirement is satisfied is underneath each curve.

SIZING TO CLIMB

Tatiana Quercia – Airplane Design 18

FAR 23 REQUIREMENTS

FAR 23.65 (AEO) Far 23.77 (AEO)

RC≥300 fpm;

CGR≥1/12 rad

[Configuration: gear up, take-off flaps, maximum continuous power]

CGR≥1/30 rad

[Configuration: gear down, landing flaps, take-off power]

SIZING TO RC SIZING TO CGR

AEO: All Engines Operating; RC: Rate of Climb; CGR: Climb Gradient.

DRAG POLARS DETERMINATION

DRAG POLARSDETERMINATION

Tatiana Quercia – Airplane Design 19

SIZING

TO CLIMB

CD=CD0+CL2/(πAe)

CD0=f/S

log10 f =a+b*log10 Swet

log10 Swet=c+d*log10WTO

Configuration ΔCD0 e

Clean 0 0,82

Take-off flaps 0,015 0,78

Landing flaps 0,060 0,72

Landing gear 0,020 No effect

f: equivalent parasite areaA: aspect ratioe: Oswald efficiency numberSwet: wetted areaS: wing areacf: equivalent skin friction coefficient

Cf 0.0070

a -2.1549

b 1

c 1.0892

d 0.5147

A 7.4

S 16.3 m2

Swet

=948 ft

f=6.64 ft2

CD0

=0.0378

Configuration Drag polar

Low speed, clean CD=0.0378+0.0525 CL2

Take-off, gear up CD=0.0528+0.0551 CL2

Take-off, gear down CD=0.0728+0.0551 CL2

Landing, gear up CD=0.0978+0.0597 CL2

Landing, gear down CD=0.1178+0.0597 CL2

SIZING

TO CLIMB

Tatiana Quercia – Airplane Design 20

SIZING TO RATE OF CLIMB

RC:=dh/dt=33000 RCP

RCP:=ηp/(W/P)-(W/S)1/2/[19(CL3/2/CD)σ1/2]

RCP≥0.0091 hp/lbs

Respective polar: CD=0.0528+0.0551 CL2

(CL3/2/CD)max=1.345(Ae)3/4/CD01/4=10.4

ηp=0.8 as in cruise and σ≈1

SIZING

TO CLIMB

Tatiana Quercia – Airplane Design 21

SIZING TO CLIMB GRADIENT

CGRP=[CGR+(L/D)-1]/CL1/2

CGRP=18.97ηpσ1/2/[(W/P)(W/S)1/2]

FAR 23.65 FAR 23.77

CGR≥0.0833 rad

Respective polar: CD=0.0528+0.0551 CL

2

C

L,CGR max=1.4 (C

L,max-0.2)

(L/D)CGR max

=8.7

CGRP=0.1675

CGR≥0.0333 rad

Respective polar:CD=0.1178+0.0597 CL

2

CL,CGR max=1.8 (CL,max,L-0.2)

(L/D)CGR max=5.8

CGRP=0.1533

15 20 25 30 35 40 45 50 550

5

10

15

20

25

30

Figure 3.3: Effect of FAR 23 climb requirements on the allowable values ofTake-off Power Loading and Take-off Wing Loading

FAR 23.65 (AEO-RC)FAR 23.65 (AEO-CGR)FAR 23.77 (AEO-CGR)

Take-off Wing Loading (W/S) - psf

Take

-off

Pow

er L

oadi

ng (

W/P

) -

lbs/

hp

WTO

=4646 lbs

A=7.4

ηp=0.8

σ≈1

SUMMARY OF CLIMBREQUIREMENTS

SIZING

TO CLIMB

Tatiana Quercia – Airplane Design 22

The region where the requirement is met is underneath each curve.

Most critical requirement: FAR 23.65 (AEO-CGR)

SIZING TO LANDINGDISTANCE

Tatiana Quercia – Airplane Design 23

Figure 3.4: Definition of FAR 23 landing distance

sLG=180 m=590 ft(As minimum value from market survey)

sL=1.938sLG

sL=0.5136VSL2

WL=0.997WTO

(W/S)L=1/2ρV2SLCL,max,L

(W/S)TO

=7.9 CL,max L

FAR 23 REQUIREMENTS

12 13 14 15 16 17 180

1

2

3

4

5

6

7

Figure 3.5: Allowable Wing Loadings to meetthe landing distance requirement

1,61,822,2

Take-off Wing Loading (W/S) - psf

Take

-off

Pow

er L

oadi

ng -

lbs/

hpC

Lmax L

SIZING TO LANDINGDISTANCEF

AR 23 REQUIREMENTS

The region where the landing requirement is met is to the left of each curve.

Tatiana Quercia – Airplane Design 24

SIZING TO LANDINGDISTANCE

FAR 23 REQUIREMENTS

SIZING TO LANDINGDISTANCESIZING TO CRUISE SPEED

Tatiana Quercia – Airplane Design

0 20 40 60 80 100 1200

10

20

30

40

50

60

Figure 3.6: Allowable values of Wing Loading and Power Loading to meet a given Cruise Speed

Wing Loading W/S - psf

Pow

er

Load

ing

W/P

- lb

s/hp

Tatiana Quercia – Airplane Design 25

Ip:={(W/S)/[σ(W/P)]}1/3

For Vcr=250 km/h=155 mph: Ip=0.9

Service ceiling

4000 m

ρ(4000 m) 0.0819 kg/m3

σ 0.6686

(W/S)=0.49(W/P)

Power index

0 10 20 30 40 50 600

5

10

15

20

25

30

35

Figure 3.7: Combination of FAR 23 requirements

FAR 23.65 (AEO-CGR)CLmax L=1.6CLmax L=2.2CL, max,TO=1.3CL, max,TO=1.9cruise speedstall speed

Take-off Wing Loading (W/S) - psf

Take

-off

Pow

er L

oadi

ng (

W/P

) -

lbs/

hp

FAR 23 REQUIREMENTS

Tatiana Quercia – Airplane Design 26

SUMMARY OF FAR 23REQUIREMENTS

Best combination: node between cruise speed requirement (yellow) and maximum landing requirement (light blue)

(W/S)TO=17 psf

(W/P)TO=8.5 lbs/hp

WING SHAPE ESTIMATION

Tatiana Quercia – Airplane Design 27

Schrenk's Method

Distribution on the wing of the aerodynamic load (cCl)

c: chord of the airfoil;Cl: lift coefficient of the airfoil;b: wingspan;y: variable standing for the length of the wing;cCl,a: additional aerodynamic load, it describes the effect of the wing plant only;cCl,a1: for CL=1;cCl,b:base aerodynamic load, it describes the effect of the wing twist;Clα=∂Cl/∂α=2π (α: angle of attack) as for the ideal airfoil;ε1(y) is the rotation due to wing twist;ε0 : rotation for zero lift;α0L: angle of attack at leading edge for zero lift.

cCl=cCl,a+cCl,b

cCl=cCl,a1CL+cCl,b

cCl,a1=(c+cell)/2

cell=4S[1-y2/(b/2)2]1/2/(πb)

cCl,b=1/2cClαε1(y)

ε1=α0L+ε0

α0L=- /∫0

b /2

cε0dy ∫0

b /2

cdy

0 1 2 3 4 5 6 70

0,5

1

1,5

2

2,5

3

Figure 4.2: Aerodynamic load distribution on the wingwith and without twist

no wing twistwing twist= - 2°

wing lenght (y)

Aero

dyna

mic

load

(cC

l)

WING SHAPE ESTIMATION

Tatiana Quercia – Airplane Design 28

Rectangular wing shape

ε=0°

ε=-2°y/(b/2)

A 7.4

S 25 m2

b 13.6 m

c 1.84 m

Tatiana Quercia – Airplane Design 29

CONCLUSIONS

WTO 2108 kg

WE 1178 kg

WF 455 kg

CL,max 1,6

CL,max TO 1,2

CL,max L 2,2

A 7,4(W/S)TO 17 psf

(W/P)TO 8,5 lbs/hp

S 25 m2

PTO 546 hp

Wing shape Rectangular without twist

Critical values in comparison to market survey are marked in bold.