Tank Sample 최종

34
TITEL : PROJECT NO. : 130008 PROJECT NAME : SUNNY Project CLIENT : Solvay Silica Korea Co., Ltd. LOCATION : Gunsan, Korea This DOCUMENT is property of Posco Engineering Co., Ltd.. Therefore, it shall not be released to any third party without permission of an authorized personnel of the Posco Engineering Co., Ltd.. 0 Project Management G.W.Lee J.B.Lee Sep 28, 2014 Aug 28, 2014 Aug 28, 2014 REV. NO. Date Description PREP'N REVIEW APPROVAL REV. NO. PREPARATIO PREPARATION REVIEW APPROVAL DEP'T 0 Aug 28, 2014 ISSUED FOR APPROVAL Y.S.YANG H.K.BYUN K.M.LEEM CALCULATION SHEETS FOR TANK CALCULATION SHEETS FOR DOC. NO. : TANK Page : Cover

description

TANKK

Transcript of Tank Sample 최종

  • TITEL :

    PROJECT NO. : 130008

    PROJECT NAME : SUNNY Project

    CLIENT : Solvay Silica Korea Co., Ltd.

    LOCATION : Gunsan, Korea

    This DOCUMENT is property of Posco Engineering Co., Ltd.. Therefore, it shall not be released to any third party without permission of

    an authorized personnel of the Posco Engineering Co., Ltd..

    0Project

    Management

    G.W.Lee J.B.Lee

    Sep 28, 2014 Aug 28, 2014 Aug 28, 2014

    REV. NO. Date Description PREP'N REVIEW APPROVAL

    REV. NO.PREPARATIO

    PREPARATION REVIEW APPROVALDEP'T

    0 Aug 28, 2014 ISSUED FOR APPROVAL Y.S.YANG H.K.BYUN K.M.LEEM

    CALCULATION SHEETS FOR

    TANK

    CALCULATION SHEETS FOR DOC. NO. :

    TANK Page : Cover

  • :::

    1. GENERAL CRITERIA

    1.1 GENERAL

    1.2 CODE, STANDARD AND REFERENCE DOCUMENT

    1.3 MATERIAL SPECIFICATION

    1.4 DESIGN CONSTANT

    1.5 DESIGN LOAD

    1.6 TYPICAL LOAD COMBINATION

    2. DESIGN DATA

    2.1 DESIGN DIMENSION

    2.2 PILE INFORMATION

    3. DESIGN LOAD

    3.1 VENDOR LOAD DATA

    3.2 DEAD LOAD

    3.3 EMPTY LOAD

    3.4 OPERATING LOAD

    3.5 TEST LOAD

    3.6 WIND LOAD

    3.7 SEISMIC LOAD

    3.8 DESIGN LOAD SUMMARY

    4. LOAD COMBINATION

    4.1 LEGEND

    4.2 LOAD COMBINATION FOR STABILITY & SERVICEABILITY CHECK

    4.3 LOAD COMBINATION FOR REINFORCE CONCRETE DESIGN

    5. STABILITY CHECK

    5.1 CALCULATION OF TOTAL WORKING LOAD FOR STABILITY CHECK

    5.2 PILE STABILITY CHECK

    6. MEMBER DESIGN OF RING WALL

    6.1 CALCULATION OF MEMBER FORCE

    6.2 MEMBER CHECK OF RING WALL

    7. MEMBER DESIGN OF FOOTING

    7.1 CALCULATION OF TOTAL WORKING LOAD FOR MEMBER DESIGN

    7.2 CALCULATION OF MEMBER FORCE

    7.3 MEMBER CHECK OF FOOTING

    8. REBAR SKETCH

    APPENDIX-1 : WIND LOAD BY ASCE 7-10

    APPENDIX-2 : WIND LOAD BY KBC 2009

    APPENDIX-3 : SEISMIC LOAD BY UBC 97

    APPENDIX-4 : SEISMIC LOAD BY KBC 2009

    TABLE OF CONTENTS

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

  • :::

    1. GENERAL CRITERIA

    1.1 GENERAL

    - Project Name : SUNNY Project

    - Location : Gunsan, Korea

    - Unit System : SI-Unit System

    1.2 CODE, STANDARD AND REFERENCE DOCUMENT

    - KBC 2009

    General concrete design and Specification

    - ASCE 7-10

    - ACI 318-08

    Building Code Requirements for Reinforced Concrete (American Concrete Institute)

    - UBC 97

    Uniform Building Code, Structural Engineering Design Provision

    1.3 MATERIAL SPECIFICATION

    1) Concrete ( Refer to 11C060-GG-001)

    - Unit Weight

    For Reinforced Concrete : = kN/m

    - Min. Compressive Strength at 28 days

    For Suspended Slabs Structural columns

    and concrete exposed to salt or acids : = MPa

    For Foundation Slabs on ground not exposed to

    Acid Attack or SaltAttack : = MPa

    2) Reinforcement Steel Bar (ASTM A615 Grade 60)

    - Minimum Yield Strength : = MPa

    - Modulus of Elasticity : = MPa

    3) Soil

    - Unit Weight

    For Soil above Ground Water : = kN/m

    For Soil below Ground Water : = kN/m

    - Design Ground Water Level

    As per Soil Investigation Report to be closed after site preparation

    : 0

    Project No. 130008

    TANKRev. No. 0Page

    Minimum Design Loads for Buildings and Other Structures (American Society of Civil Engineers)

    c 24.0

    f'c 24.0

    s 19.0

    s 9.0

    f'c 24.0

    fy 420

    Es 200000

    CALCULATION SHEETS FORDOC. NO.

  • :::

    : 0

    Project No. 130008

    TANKRev. No. 0Page

    CALCULATION SHEETS FORDOC. NO.

    1.4 DESIGN CONSTANT

    1) Coefficient of Friction ( Refer to 11C060-Gs-002)

    - Steel to Steel : =

    - Steel to Concrete : =

    - Steel to Roller : =

    - Concrete to Soil : =

    - Teflon to Teflon : =

    2) Factor of Safety (for Shallow Foundation) (No Data. ASSUME)

    - For Sliding : =

    - For Overturning : =

    - For Buoyancy : =

    1.5 DESIGN LOAD

    1) Equipment Load

    2) Wind Load

    - Applied In Accordance with ASCE 7-10

    - The detail calculation of wind load refer to 'Appendix-1'.

    - Applied In Accordance with KBC 2009

    - The detail calculation of wind load refer to 'Appendix-2'.

    3) Earthquake Load

    - Applied In Accordance with UBC-97

    - The detail calculation of earthquake load refer to 'Appendix-3'.

    - Applied In Accordance with KBC 2009

    - The detail calculation of earthquake load refer to 'Appendix-4'.

    0.30

    SF 1.2

    0.40

    0.00

    SF 2.0

    SF 1.5

    0.10

    0.40

  • :::

    : 0

    Project No. 130008

    TANKRev. No. 0Page

    CALCULATION SHEETS FORDOC. NO.

    1.6 TYPICAL LOAD COMBINATION

    1) Legend

    2) Allowable Stress Design Method (for Foundation Stability and Serviceability Check)

    Note, f : Increase Factor of Allowable Stress

    3) Ultimate Strength Design Method (for Reinforced Concrete Member Design)

    Maintenance 1.2 D + 1.2 DE + 1.6 B

    1.2 D + 1.2 DT + 0.4 WTest

    1.4 D + 1.4 DT

    0.9 D + 0.9 DO + 1.0 E + 0.9 TF

    0.9 D + 0.9 DO + 1.6 W + 0.9 TF

    1.2 D + 1.2 DO + 1.0 L + 1.0 E + 1.2 TF

    1.2 D + 1.2 DO + 1.2 L + 1.6 W + 1.2 TF

    Condition Load combinations

    Erection

    Operating

    1.2 D + 1.2 DO + 1.6 L + 1.2 TF

    Maintenance 1.0 D + 1.0 DE + 1.0 B 1.00

    1.0 D + 1.0 DT + 0.25 W 1.00Test

    1.0 D + 1.0 DT 1.00

    1.0 D + 1.0 DO + 0.75 L + 0.525 E 1.00

    1.4 D + 1.4 DO + 1.4 TF

    1.0 D + 1.0 DE + 0.5 W

    1.0 D + 1.0 DE + 0.7 E

    Water Pressure

    1.00

    1.00

    1.00

    1.0 D + 1.0 DE

    Condition Load combinations f

    DE Erection(Empty) Load of Equipment E Earthquake Load

    TF

    1.0 D + 1.0 DO + 1.0 W

    1.0 D + 1.0 DO + 1.0 TF

    1.4 D + 1.4 DE

    D Dead Load W Wind Load

    DT Test Load of Equipment H Earth Pressure

    DO Operating Load of Equipment Thermal Load

    L Live Load B Bundle Pull Load

    F

    Erection

    1.0 D + 1.0 DO + 0.7 E 1.00

    1.00

    0.9 D + 0.9 DE + 1.0 E

    1.0 D + 1.0 DO + 0.75 L + 0.75 W Operating

    1.0 D + 1.0 DO + 1.0 L

    1.00

    1.00

    1.00

    0.9 D + 0.9 DE + 0.8 W

  • :::

    2. DESIGN DATA

    2.1 DESIGN DIMENSION

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No.

    10.8

    0

    11.6

    0Anchor B.C.D = 11.19

    0.60

    0.40

    P L A N

    Tank I.D = 11.00

    0.40

    12.40

    0Page

    0.40

    [unit : m]

    0.40

    1.30Compacted Sand Fill

    0.200.70

    0.80(ht)

    SECTION

    10.0

    0

    0.50

    0.50

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    2.2 PILE INFORMATION

    1) Pile Arrangement ( Total Piles :

    2) Allowable Pile Capacity

    - For Vertical Direction : = kN/ea (No Data. ASSUME)

    - For Lateral Direction : = kN/ea

    - For Uplift Direction : = kN/ea

    3) Section Modulus of Pile Arrangement

    = Ni x Di / 8 , = Ii / (Di/2)

    :

    :

    :

    Minimum Section Modulus of Total Pile Arrangement : = m

    4) Minimum Pile Spacing Check

    - Minimum Distance of Pile to Pile = m = m O.K

    - Minimum Distance of Pile to Edge = m = m O.K

    P.H.C Pile 500 - 24 ea )

    [unit : m]

    d2i0.75

    d1i

    12.40 Di D2

    Pupa 100.00

    2.00

    Ii Zi

    Circle Array

    Dia., Di

    Q'ty

    Ni

    Space of

    Circles, d1i

    Space of Piles

    in Each Circle, d2i

    Moment of

    Inertia, Ii

    3.00D 1.50

    D1

    0.75

    PILE ARRANGEMENT PLAN

    Pva 1000.00

    Pha 100.00

    42.21

    D2 6.90 8 2.00 2.64 47.61 66.68

    D1 10.90 12 - 2.82 178.22

    Section

    Modulus, Zi

    m ea Di~Di-1 , m m m m

    158.64D3 2.90 4 2.00 2.05 4.21

    0.75 1.50D 0.75

    Zmin. 42.21

    TOTAL 24 - - 230.03 -

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    3. DESIGN LOAD

    3.1 VENDOR LOAD DATA

    3.2 DEAD LOAD

    1) Footing Weight : x x x = kN

    2) Ringwall Weight : x ( - ) / x x = kN

    3) Inner soil weight : x / x x = kN

    4) Outer soil weight : ( x - x / )

    x x = kN

    5) Total Weight : + + + = kN

    3.3 EMPTY LOAD

    - = kg = kN

    3.4 OPERATING LOAD

    - = kg = kN

    3.5 TEST LOAD

    - = kg = kN

    0.70 24.00 236.45

    24.00 1834.20

    11.60 10.80

    1834.20 236.45 3303.01

    4

    0.8284

    DO 829246.0 8134.90

    DT 852585.0 8363.86

    4

    Operating Case

    1154.27 78.09

    DE 27752.0 272.25

    Wind

    Wind Load

    12.40 11.60

    0.20 18.00 78.09

    Seismic

    Empty Case

    0.8284 12.40 0.60

    Load CaseVertical Horizontal Moment

    Remark

    kg kg kg.m

    Operating Weight 829,246

    Test Weight 852,585

    10.80 0.70 18.00 1154.274

    Empty Weight 27,752

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    3.6 WIND LOAD

    1) By Vendor

    - Lateral Force : = kg = kN

    - Moment at Top of Pedestal : = kg = kN.m

    2) By Calculation ASCE 7-10 (Refer to 'Appendix-1')

    - Lateral Force : = kN

    - Moment at Top of Pedestal : = kN.m

    3) By Calculation KBC 2009 (Refer to 'Appendix-2')

    - Lateral Force : = kN

    - Moment at Top of Pedestal : = kN.m

    4) Design Use Value

    *Moment Load at Top of Pedestal

    - Design Wind Load In Empty Condition, WE

    Lateral Force : = kN

    Moment at Top of Pedestal : = kN.m

    Moment at Bottom of Foundation

    = Mw + Hw x ht = + x = kN.m

    kN

    55.93 319.01

    Hw 157.49

    157.49 871.25

    Use value - 157.49 871.25

    Mw 319.01

    Load Case BasisVertical Lateral *Moment

    kN kN.m

    Wind Load

    By Vendor - - -

    By Calculation KBC 2009

    Hw 157.49

    Mw 871.25

    0.00

    0.00

    157.49

    Hw

    Mw

    By Calculation ASCE 7-10 -

    0.00

    0.00

    -

    0.80 997.25

    Mw 871.25

    Hw 55.93

    Mwf 871.25

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    3.7 SEISMIC LOAD

    1) By Vendor

    - In Empty Condition, EE

    Lateral Force : = kg = kN

    Moment at Top of Pedestal : = kg = kN.m

    - In Operating Condition, EO

    Lateral Force : = kg = kN

    Moment at Top of Pedestal : = kg = kN.m

    2) By Calculation UBC 97 (Refer to 'Appendix-3')

    - In Empty Condition, EE

    Lateral Force : = kN

    Moment at Top of Pedestal : = kN.m

    - In Operating Condition, EO

    Lateral Force : = kN

    Moment at Top of Pedestal : = kN.m

    3) By Calculation KBC 2009 (Refer to 'Appendix-4')

    - In Empty Condition, EE

    Lateral Force : = kN

    Moment at Top of Pedestal : = kN.m

    - In Operating Condition, EO

    Lateral Force : = kN

    Moment at Top of Pedestal : = kN.m

    Heo 0.00 0.00

    Meo

    Heo 1622.64

    Meo

    2542.16

    0.00 0.00

    0.00

    Hee 54.30

    Hee

    Mee 0.00

    Meo 12710.79

    Mee 271.52

    8113.21

    0.00 0.00

    Mee 425.39

    Hee 85.08

    Heo

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    4) Design Use Value

    *Moment Load at Top of Pedestal

    - Design Seismic Load In Empty Condition

    Lateral Force : = kN

    Moment at Top of Pedestal : = kN.m

    Moment at Bottom of Foundation

    = Mee + Hee x ht = + x = kN.m

    - Design Seismic Load In Empty Condition

    Lateral Force : = kN

    Moment at Top of Pedestal : = kN.m

    Moment at Bottom of Foundation

    = Meo + Heo x ht = + x = kN.m

    3.8 DESIGN LOAD SUMMARY

    1) Design Load Summary for Foundation

    425.39

    Load

    Case

    Vertical

    Force

    Lateral

    Force

    Moment at

    Bot.of FDNDescription

    V H Mf

    kN kN

    Heo 2542.16

    Meo 12710.79

    Vertical Lateral

    85.08 425.39 0.80

    Hee 85.08

    By Calculation KBC 2009 - 54.30

    Mefo 2542.16 12710.79 0.80 12710.79

    Load Case BasiskN kN

    Mefe

    Mee 425.39

    kN.m

    D 3303.01 Dead Load (Foundation Selfweight)

    271.52

    Use value - 85.08 425.39

    Seismic Load

    in Empty

    Condition

    By Vendor - - -

    By Calculation UBC 97 - 85.08 425.39

    *Moment

    Seismic Load

    in Operating

    Condition

    By Vendor - - -

    By Calculation UBC 97 - 2542.16 12710.79

    By Calculation KBC 2009 - 1622.64 8113.21

    Use value - 2542.16 12710.79

    kN.m

    DT 8363.86 Test Load

    WL 157.49 997.25 Wind Load

    DE 272.25 Empty Load

    DO 8134.90 Operating Load

    Earthquake Load in Empty Condition

    EO 2542.16 12710.79 Earthquake Load in Oper. Condition

    EE 85.08 425.39

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    4. LOAD COMBINATION

    4.1 LEGEND

    4.2 LOAD COMBINATION FOR STABILITY & SERVICEABILITY CHECK

    note, In short-term case, increasing factor of allowable stress = %

    4.3 LOAD COMBINATION FOR REINFORCE CONCRETE DESIGN

    0.9 D + 0.9 DE + 1.3 WL Empty with wind

    Operating with wind

    L/C-U1 1.4 D + 1.4 DO Normal operating

    DT Test Load of Equipment

    EO Operating Seismic

    Load

    CombinationLoad Factor Remark

    DO Operating Load of Equipment

    D Dead Load

    DE Erection(Empty) Load of Equipment

    WL Operating Wind

    EE Erection(Empty) Seismic

    L/C-S4 1.0 D + 1.0 DO + 1.0 WL

    L/C-S2 1.0 D + 1.0 DE + 1.0 WL Empty with wind

    L/C-S1 1.0 D + 1.0 DO Normal operating

    L/C-S6 1.0 D + 1.0 DT Test

    L/C-S5 1.0 D + 1.0 DO + 0.7 EO Operating with Seismic

    0

    Load

    CombinationLoad Factor Remark

    L/C-U2

    L/C-U6 1.2 D + 1.2 DT

    L/C-U5 1.2 D + 1.2 DO + 1.0 EO

    L/C-U4 1.2 D + 1.2 DO + 1.3 WL Operating with wind

    L/C-U3 0.9 D + 0.9 DE + 1.0 EE Empty with Seismic

    L/C-S3 1.0 D + 1.0 DE + 0.7 EE Empty with Seismic

    Operating with Seismic

    Test

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    5. STABILITY CHECK

    5.1 CALCULATION OF TOTAL WORKING LOAD FOR STABILITY CHECK

    Note, Total Working Load

    =

    x Each Load(refer to '3.8 DESIGN LOAD SUMMARY [for Foundation])'}

    -11666.87 Test

    {Factor(refer to '4.2 LOAD COMBINATION FOR STABILITY & SERVICEABILITY CHECK')

    Operating with Seismic

    11437.91

    Lateral

    Force

    -

    1779.51

    157.49

    -

    11437.91

    997.25 Empty with wind

    Empty with Seismic

    kN.m

    -

    Vertical

    load

    V

    kN

    H

    8897.55

    Remark

    Normal operating

    L/C-S2 3575.25

    Operating with wind157.49 997.2511437.91

    kN

    Moment at

    Bot.of FDN

    Mf

    Load

    Combination

    L/C-S3 3575.25 59.55 297.77

    L/C-S5

    L/C-S6

    L/C-S1

    L/C-S4

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    5.2 PILE STABILITY CHECK

    1) For Critical Case of Max. Vertical Reaction :

    - Total Working Load

    = kN

    = kN

    = kN.m

    - Pile Reaction Check

    Vertical Pile Reaction Check

    Pvmax./min. = V / Ntotal Mf/ Zmin.= / /

    kN/ea (Max.)

    kN/ea (Min.)

    Uplift Pile Reaction Check

    Pupmax. = kN/ea Pua = kN/ea O.K

    Lateral Pile Reaction Check

    Phmax. = H / Ntotal = /

    = kN/ea Pha = kN/ea O.K

    2) For All Case

    =

    L/C-S5

    1000.00 kN/ea O.K265.77

    0.00

    V 11437.91

    100.00

    =687.39

    Pva

    Mf 8897.55

    11437.91 24 ea 8897.55 42.21

    H 1779.51

    Lateral Reaction

    Pvmax. Pvmin. Pva Uplift PupaCheck

    Phmax. PhaCheck

    1779.51 24 ea

    74.15 100.00

    L/C

    No.

    Vertical and Uplift Reaction

    - 100.00 O.KL/C-S1 476.58 476.58 1000.00 - 100.00 O.K

    kN/ea kN/ea kN/ea kN/ea kN/ea kN/ea kN/ea

    L/C-S3 156.02 141.91 1000.00 - 100.00 O.K 2.48 100.00

    O.K 6.56 100.00 O.KL/C-S2 172.60 125.34 1000.00 - 100.00

    L/C-S5 687.39 265.77 1000.00 - 100.00 O.K 74.15 100.00

    O.K 6.56 100.00 O.K

    O.K

    L/C-S4 500.21 452.95 1000.00 - 100.00

    O.K - 100.00 O.K

    O.K

    L/C-S6 486.12 486.12 1000.00 - 100.00

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    6. MEMBER DESIGN OF RING WALL

    6.1 CALCULATION OF MEMBER FORCE

    [unit : m] q

    (hp) Fu1

    Fu2

    (tw)

    * Coefficient of earth pressure at rest : = 1 - sin = 1 - =

    1) Max. Tension Force of Rebar :

    - Uniform contents load

    = / ( x / ) = kN/m2

    - Lateral earth pressure

    Fu1 = x x x

    = x x x = kN/m

    Fu2 = x x x x

    = x x x x = kN/m

    = Total lateral force = +

    = + kN/m

    - Hoop tension force

    = x x

    = x x = kN

    - Design moment

    = Fu1 x hp/2 + Fu2 x hp/3

    = x ( / ) + x ( / ) = kN.m/m

    L/C-U1

    0.70 0.70

    1.60

    51.46 11.20 288.20

    47.94

    3.53

    0.70

    51.46

    3.53

    47.94

    f

    Mu

    47.94

    3.53

    4

    Fu

    85.60

    Ko

    0.50

    f1/2

    Fu2

    1.600.50

    Fu1

    Ko

    Tu 1/2 Fu Dia.

    0.50

    3 17.60

    hp

    30 0.50

    t hp2

    0.50 18.00

    Fu

    2

    0.70

    Tu = 1/2 x Fu x Dia.

    0.40

    Tank I.D = 11.00

    Ringwall Dia. = 11.20

    Ko sin

    0.70

    85.60

    Wu

    Wu 8134.90 11.00

    Tu Tu

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    2) For All Case

    6.2 MEMBER CHECK OF RING WALL

    1) Rebar check

    x 6

    x x 2

    x 2 x

    x

    Asreq. = x b x d = x x = mm

    Astemp. = x b x h / 2 [1800mm] = x x / = mm

    Asmin.1 = 1.4/fy x b x d = / x x = mm

    Asmin.2 = 0.25 x fck/fy x b x d = x / x x = mm

    Asreq. x 4/3 = x = mm

    USE : ( = mm ) Asselect = mm O.K

    2) Shear check

    = x 1/6 x fck x b x d

    = x x x x

    = kN = kN O.K

    3) Hoop tension rebar check

    Asreq. = Tu / ( x fy) = / ( x ) = mm

    Asmin.wall = x tw x hp = x x = mm

    USE : - ( = mm ) Asselect = mm O.K

    Load

    Combination

    L/C-U1

    L/C-U2

    L/C-U3 1.60 3.53 5.13 28.74 1.38

    85.60 47.94 3.53 51.46 288.20L/C-U4

    2 x 4ea D16 As 1589 > 828

    420 828

    199.02 > Vu 52.81

    0.0025 0.0025 400 700 700

    295756 0.85

    400As

    Remark

    1.38

    Vc

    0.75 1/6 24 1000 325.0

    Tension

    0.85

    Shear

    157 4/3 209

    D16 993 >

    2.86

    51.46 288.20 17.60

    88.01 49.29 3.53 52.81 295.76 18.07

    17.60

    kN.m/m

    3.53 51.46 288.20

    Fu1 Fu2

    kN/m kN/m

    Fu Tu

    kN/m2

    2.86 1.60 3.53 5.13 28.74

    Wu

    kNkN/m

    85.60 47.94

    85.60 47.94

    Vu Mu Tud

    Mu

    kN

    24 420 1000

    3.53

    17.60

    mm mm

    75 325.0

    Mpa

    bd 0.85 1000 325

    @200

    fck fy b h cover

    =2 x Rn

    L/C-U6

    =

    1 -

    N/mm2

    52.81

    mm mm

    =0.85fck

    1 - 1 - =

    10 0.2013

    18.07 295.760.75 400

    0.00048 1000 325.0 157

    0.0020 0.002 1000 400 4002

    0.00048fy 0.85fc' 420 0.85 24

    0.20130.85 241 -

    =Mu

    =18.07

    0.25 24 420 1000 325.0 948

    1.4 420 1000 325.0 1083

    Mpa

    Rnreq.

    kN kN.m

    L/C-U5

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    7. MEMBER DESIGN OF FOOTING

    7.1 CALCULATION OF TOTAL WORKING LOAD FOR MEMBER DESIGN

    Note, Total Working Load

    =

    x Each Load(refer to '3.8 DESIGN LOAD SUMMARY [for Foundation])'}

    7.2 CALCULATION OF MEMBER FORCE

    * Area of footing : = x 2 = m

    * Minimum modulus of footing : = x 3 = m

    * Max. distance of pile to pile : = m

    1) For Critical Case of Max. Factored Reaction :

    - Total Working Load

    = kN

    = kN.m

    - Factored uniform load per unit area of slab

    = Vu / Af + Mfu / Zfmin.= / + / = kN/m (Max.)

    - Design shear force

    = Wu x Ln / 2 = x / 2 = kN /m

    - Design moment

    = Wu x Ln / 11 = x 2 / = kN.m /m

    = Wu x Ln / 10 = x 2 / = kN.m /m

    - Factored pile reaction

    Pvumax. = Vu / N Mfu / Zmin.= / + / = kN/ea

    {Factor(refer to '4.3 LOAD COMBINATION FOR REINFORCE CONCRETE DESIGN')

    L/C-U05

    Vu 13725.49

    Normal operating

    Empty with wind

    Empty with Seismic

    Operating with wind

    Operating with Seismic13725.49 2542.16 12710.79

    Test

    RemarkV H Mf

    14000.24

    L/C-U4

    L/C-U5

    Mu(-) 168.64 2.90 10 141.83

    13725.49 24 12710.79 42.21 873.05

    Wu

    Muf 12710.79

    Zfmin. 0.1095 12.40

    13725.49 127.37 12710.79 208.78 168.64

    Vu 168.64 2.90 244.53

    Mu(+) 168.64 2.90 11 128.93

    L/C-U2

    kN.m

    16013.07

    208.78

    Ln 2.90

    L/C-U6

    Af 0.8284 12.40 127.37

    - -

    1296.42

    3217.73 85.08 425.39

    13725.49 204.74 1296.42

    3217.73 204.74

    L/C-U3

    -

    Load

    Combination

    Vertical

    load

    Lateral

    Force

    Moment at

    Bot.of FDN

    L/C-U1

    kNkN

    -

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    2) For all cases

    7.3 MEMBER CHECK OF FOOTING

    1) Rebar check

    x 6

    x x 2

    x 2 x

    x

    Asreq. = x b x d = x x = mm

    Astemp. = x b x h / 2 [1800mm] = x x / = mm

    Asmin.1 = 1.4/fy x b x d = / x x = mm

    Asmin.2 = 0.25 x fck/fy x b x d = x / x x = mm

    Asreq. x 4/3 = x = mm

    USE : ( = mm ) Asselect = mm O.K

    2) Shear check

    = x 1/6 x fck x b x d

    = x x x x

    = kN = kN O.K

    1.4 420 1000 450.0 1500

    0.25 24 420 1000 450.0 1312

    901

    Vc

    0.75 1/6 24 1000 450.0

    275.57 > Vu 244.53

    4/3 1202

    D19 @200 As 1433 > 1202

    = 0.00200fy 0.85fc' 420 0.85 24

    =0.85 24

    0.00200 1000 450.0 901

    0.0020 0.002 1000 600 2 600

    Rnreq. =Mu

    =141.83 10

    = 0.824 N/mm2

    bd 0.85 1000 450

    1 - 1 -0.824

    =0.85fck

    1 - 1 -2 x Rn

    Mpa Mpa Tension Shear mm mm mm mm kN kN.m kN

    24 420 0.85 0.75 1000 600 150 450.0 244.53 141.83 873.05

    L/C-U6 109.91 159.37 84.03 92.44 583.34

    fck fy b h cover d Vu Mu Pvu

    L/C-U4 113.97 165.25 87.13 95.85 602.61

    L/C-U5 168.64 244.53 128.93 141.83 873.05

    L/C-U1 125.72 182.29 96.12 105.73 667.21

    L/C-U2 31.47 45.63 24.06 26.47 164.79

    L/C-U3 27.30 39.58 20.87 22.96 144.15

    Load

    Combination

    Design Member force

    Factored uniform load

    Wu

    Design shear

    Vu

    Design mement Pile reaction

    Pvumax.Mu(+) Mu(-)

    kN/m kN /m kN.m /m kN.m /m kN/ea

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    3) Pile Punching Shear Check

    - Max. Factored Pile Reaction

    = kN

    - Punching Shear Check

    = x 0.17 x (1 + 2/) x x f'c x bo x d

    = x x ( 1 + 2 / ) x x x x

    = kN

    = x 0.083 x (s x d / bo + 2) x x f'c x bo x d

    = x x ( x / + 2 )

    x x x x

    = kN

    = x 0.33 x x f'c x bo x d

    = x x x x x

    = kN

    Note, : Ratio of long side to short side of the loading area, = 1.0

    : Modification factor of lightweight concrete

    for Normalweight concrete, = 1.0

    = for interior column , for edge column , for corner column

    = x (dp + d/2 x 2) = mm

    Min.[Vc1 & Vc2 & Vc3] = kN = kN O.K> Vpu 873.05

    1628.42

    s 40 30

    0.75 0.17

    20

    bo 2985

    1628.42

    2516.65

    Vc2

    0.75 0.083 40 450.0 2985

    1.00 24 2985 450.0

    3289.33

    Vc3

    0.75 0.33 1.00 24 2985 450.0

    Vpu 873.05

    1.00 1.00 24 2985

    Vc1

    450.0

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    8. REBAR SKETCH

    D16 @200

    D19 @200

    2 x 4ea - D16

    2 x 4ea - D16

    D16 @200 D19 @200

    Ringwall rebar Footing rebar

    REBAR PLAN

    REBAR SECTION

  • :::

    APPENDIX-1 : WIND LOAD BY ASCE 7-10

    A1.1 BASIC DESIGN INFORMATION

    1) Design Code : ASCE 7-10

    2) Information by Project Specification

    - Occupancy Category :

    - Exposure Category :

    - Basic Wind Speed : = m/sec

    3) Information of Equipment

    - Diameter/Width : = m

    - Total Height : = m ( T.O.G = m )

    - Section Shape :

    A1.2 CALCULATION OF WIND LOAD

    1) Design Wind Force

    - = qz x G x Cf x Af , See the below 29.5-1

    2) Velocity Pressure Evaluated at height 'z'

    - = 0.613 x Kz x Kzt x Kd x V See the below 29.3-1

    Note, : Velocity Pressure Exposure Coefficient, See the belowe table 29.3-1

    : Topographic Factor = See the below 26.8.2

    : Wind Directionality Factor (For Chimneys, Tanks, and Similar Str.)

    = for Section of Round See the belowe table 26.6-1

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    0.95

    F

    Kd

    Kd

    Kz

    qz

    C

    11.00

    0.50

    III

    1.00

    V 40.00

    Kzt

    D

    10.00

    Round

    h

  • :::

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    3) Gust Effect Factor See the below 26.9

    - = for Rigid Structure (Natural Frequency 1 Hz)

    where, Natural Frequency (Approx. Method, ASCE 7-10 / 12.8.2.1)

    = 1 / (Ct x hx) = 1 / ( x h ) = Hz

    - For Flexible Structure (Natural Frequency < 1 Hz)

    + x x ( 2 x 2 + 2 x 2 )

    + x x

    =

    Note, : Intensity of Turbulence at Height 'z'

    = c x (10 / z)1/6 = x ( / ) =

    : Turbulence Intensity Factor = (for Exposure C)

    : The Equivalent Height of the Str. as 0.6he, but Not Less than zmin.

    = x = m = m (for Exposure C)

    : Peak Factor for Background Response, Wind Response =

    : Peak Factor for Resonant Response

    = {2 ln(3600n1)} + 0.577 / {2 ln(3600n1)}

    = { 2 x x ) } + / { 2 x x ) }

    =

    : Building Natural Frequency

    = = 1 / (Ct x hx)

    = 1 / ( x ) = Hz

    : Background Response Factor

    = [1 / {1 + 0.63 x ((B + he)/LZ)0.63

    }]

    = ( 1 / [ 1 + x { ( + ) / } ] )

    =

    : Horizontal Dimension of Building = m

    : Integral Length Scale of Turbulence at the Equivalent Height

    = I x (z / 10)

    = x ( / ) = m

    = m , = (for Exposure C)

    LZ

    LZ

    152

    G 0.85

    c

    0.89

    x

    IZ

    1 / T

    1.70 0.22

    1/6 0.22IZ

    0.925

    Q

    B

    n1

    n1

    0.63 11.00

    10 1/5

    137.6010.00

    qQ , qV

    =

    3.40

    10.00

    0.63

    3.64

    4.57

    137.60

    =G 0.925 x1 + 1.7 IZ (qQ x Q + qR x R)

    1 + 1.7 qV x IZ

    11.00

    z

    0.20

    z

    1.00 1.70

    0.20 6.00

    3.40 0.92

    3.40

    zmin.

    qR

    3600

    4.49

    0.22

    10

    0.13351.00

    Q

    0.60 10.00

    4.49

    6.00

    qR

    0.75

    3.64

    0.0488

    ln (ln ( 3600 0.577

    1 / T 0.0488

    3.64

    152.40l

    6.00

    0.92

    0.75 3.64

    1/5

  • :::

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    : Resonant Response Factor

    = {1/ x Rn x Rh x Rb x (0.53 + 0.47 RL)}

    = { 1 / x x x x ( + x ) }

    =

    : Damping Ratio, Percent of Critical =

    = 7.47 x N1 / {(1 + 10.3 N1)5/3

    } =

    = x / ( 1 + x )

    = n1 x LZ / VZ = x / =

    : Mean Hourly Wind Speed at Height 'z'

    = b x (z / 10)a x V

    = x ( / ) x

    = m/s

    = (for Exposure C) , = (for Exposure C)

    = 1/ - 1/(2) x (1 - e-2

    ) = , ,

    for Rh = 4.6 n1 x h / VZ =

    for Rb = 4.6 n1 x B / VZ =

    for RL = 15.4 n1 x L / VZ =

    4) Force Coefficients

    - = for Section of Round, h/D = 0.91

    ASCE 7-10 / Figure 29.5-1 Force Coefficient, Cf

    0.8

    h/D

    0.9

    0.53

    R

    0.122

    20.86

    6.00

    10.3 5/3

    1

    0.47

    0.01

    All

    0.7

    1.3 1.4

    10 1/6

    0.038

    2.0

    Cross-Section

    Square (Wind Normal to Face)

    Round (Dqz > 5.3)

    0.1220.133

    6.97

    7.67

    25.68

    24.03

    40.00

    Rough

    Rn

    R

    Cf 0.70

    Type of Surface257

    3.64

    0.0201

    b 0.65 1/6

    N1

    0.65

    24.03

    a

    0.038

    VZ

    Rh, Rb, RL

    0.01

    VZ

    20.867.47

    137.60 20.86

    0.0201

    0.133

    0.1335

  • :::

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    5) Calculation of Wind Force & Moment at Equipment Base Level

    - Lateral Force : = kN

    - Moment at Top of Pedestal : = kN.m

    kN/m

    319.0155.93

    87.02

    Hw

    Mw

    Total Wind Force & Moment

    319.01

    55.93

    9.80

    8.35

    58.90

    74.85

    10.50

    6.85

    -

    0.85

    G

    8.88

    0.84

    0.70

    0.98

    6.10

    4.60

    Expos.C

    0.85

    0.90

    7.60 9.10

    6.10

    7.60

    8.23

    8.96

    16.50 8.60

    -

    qz

    0.97 15.40

    0.91 16.50

    From To

    Kz

    0.88

    m m

    0.94

    16.50

    1.049.10

    5.35 44.05

    M

    0.50 4.60 0.79 54.19

    kN.mmkNm

    Cf Af FArm

    Length

    2.5545.10 21.25

    Height from

    G.L., z

  • :::

    APPENDIX-2 : WIND LOAD BY KBC 2009

    A2.1 BASIC DESIGN INFORMATION

    1) Design Code : KBC 2009

    2) Information by Project Specification

    - Exposure Category :

    - Basic Wind Speed : = m/sec

    3) Information of Equipment

    - Diameter/Width : = m

    - Total Height : = m ( T.O.G = m )

    - Section Shape :

    A2.2 CALCULATION OF WIND LOAD

    1) Design Wind Force

    - = Pf A (N) = (qz x Gf x Cf) x A

    Note, : design wind pressure (N/m)

    = qz x Gf x Cf

    : projected area to wind direction(m)

    2) Velocity Pressure Evaluated at height 'z'

    - = x x Vz

    Note, : Air density = kg/m

    : Design velocity evaluated at height z from ground (m/s)

    3) Design velocity evaluated at height z from ground (m/s)

    - = Vo x Kzr x Kzt x Iw

    Note, : basic wind speed= m/sec

    : factor for height distribution ...refer to the following table

    : factor for shape topography =

    : Importance factor =

    PageTANK

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008Rev. No. 0

    1.00

    WF

    Pf

    Pf

    A

    qz

    0.50

    D 11.00

    h 10.00

    1.22

    Vz

    Vz

    Vo 40.00

    Round

    C

    V 40.00

    Kzr

    Kzt

    Iw 1.00

  • :::PageTANK

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008Rev. No. 0

    4) Gust Effect Factor

    - Gf = 1 + 4 x f x Bf =

    Note, :

    + x

    +

    =

    --0.05

    :

    { + x ( / ) x ( / ) k }

    =

    : Equipment height (m) =

    : Equipment width (m) =

    : (m)

    = ( H B)

    = ( H < B)

    =

    IH

    f =3 3

    f

    0.322

    x IH

    0.20Zg

    Bf ( )

    Bf = 1 -1

    1

    IH = 0.1 xH

    =

    1/3

    0.722

    H 10.00

    5.1 LH H x B1.3 B H

    B 11.00

    LH

    LH = 100 xH 0.5

    =

    k -0.33

    57.74 m30

    k 0.33k = -0.33

    2.08

  • :::PageTANK

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008Rev. No. 0

    5) Calculation of Velocity Pressure Evaluated at height 'z' (qz)

    1 2 3 4 5 6 7 8 9 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

    6) Calculation of Wind Force & Moment at Equipment Base Level

    - Equipment

    - Max(H,D) / Min (H,D) = / = =

    - Lateral Force : = kN

    - Moment at Top of Pedestal : = kN.m

    Height from ground Vo Kzr Kzt Iw Vz qz

    Z (m) kg/m m/s - - - m/s kN/m

    10.00 1.22 40.00 1.00 1.00 1.00 40.00 0.98

    15.00 1.22 40.00 1.07 1.00 1.00 42.63 1.11

    1.15 1.00 1.00 46.03 1.29

    20.00 1.22 40.00 1.11 1.00 1.00 44.51 1.21

    from to kN/m - - m kN m kN.m

    Arms MomentRemark

    Height, Z (m) qz Gf Cf A Wf

    0.50 10.00 0.98 2.08 0.70 104.50 148.61 5.25 780.19

    8.88 10.25 91.0710.00 10.50 1.11 2.08

    Sub total value at top of foundation 157.49 871.25

    Mw 871.25

    Hw 157.49

    0.70 5.50

    11.00 10.00 1.10 Cf 0.70

    25.00 1.22 40.00

  • :::

    APPENDIX-3 : SEISMIC LOAD BY UBC 97

    A3.1 BASIC DESIGN INFORMATION

    1) Design Code : UBC 97

    2) Information by Project Specification

    - Seismic Zone : Seismic Zone Factor : =

    - Soil Profile Type : (Stiff Soil Profile)

    - Seismic Source Type :

    3) Information of Equipment

    - Total Height : = m

    - Empty Weight : = kN

    - Operating Weight : = kN

    A3.2 CALCULATION OF SEISMIC LOAD

    1) Design Base Shear Force

    - = {(Cv x I) / (R x T)} x W

    - = {(2.5 x Ca x I) / R} x W

    - = (0.11 x Ca x I) x W

    Note, : Seismic Coefficient

    = , = (for Z = 0.15, Soil Type : SD)

    : Importance Factor

    = for All Structures

    : Response Modification Factor

    = ( Table 16-P Structure Type 1 )

    : Elastic Fundamental Period of the Structure

    = Ct x hn3/4 = x = sec

    : Numerical Coefficient

    = for Steel Moment-Resisting Frames

    = for Reinforced Concrete Moment-Resisting Frames

    & Eccentrically Braced Frames

    = for All Other Building

    : Height from Base to Highest Level

    h 10.00

    Ct

    Ct 0.0853

    Ct 0.0731

    Ct 0.0488

    hn

    R

    R 2.20

    T

    T 0.0488 10.00 3/4 0.274

    I 1.25

    Ca, Cv

    Ca 0.22 Cv 0.32

    I

    Vmin.

    V

    Vmax.

    DO 8134.90

    DE 272.25

    2A Z 0.15

    SD

    C

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

  • :::

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANKRev. No. 0Page

    2) Calculation of Seismic Force & Moment at Equipment Base Level

    - = {(Cv x I) / (R x T)} x W

    = { ( x ) / ( x ) } x W = W

    - Calculated Seismic force need not exceed the following :

    - = {(2.5 x Ca x I) / R} x W

    = { ( x x ) / } x W = W

    - Calculated Seismic force shall not be less than the following :

    - = (0.11 x Ca x I) x W

    = ( x x ) x W = W

    Use Design Shear Force : = W

    - In Empty Condition

    Lateral Force : = x DE = x = kN

    Moment at Top of Pedestal

    = Hee x h / 2

    = x x = kN

    - In Operating Condition

    Lateral Force : = x DO = x = kN

    Moment at Top of Pedestal

    = Heo x h / 2

    = x x = kN

    2542.16

    Meo

    2542.16 10.00 1/2 12710.79

    85.08 10.00

    272.25

    Mee

    1/2 425.39

    Heo 0.313 0.313 8134.90

    0.11 0.22 1.25 0.030

    0.663

    Vmax.

    2.50 0.22 1.25 2.20 0.313

    Vmin.

    85.08

    0.32 1.25 2.20

    Ve 0.313

    Hee 0.313 0.313

    0.274

    V

  • :::

    APPENDIX-4 : SEISMIC LOAD BY KBC 2009

    A4.1 BASIC DESIGN INFORMATION

    1) Design Code : KBC 2009

    2) Information by Project Specification

    - Seismic Zone : Seismic Zone Factor : =

    - Soil Profile Type :

    2) Information of Equipment

    - Total Height : = m

    - Empty Weight : = kN

    - Operating Weight : = kN

    A4.2 CALCULATION OF SEISMIC LOAD

    1) Design Base Shear Force

    - = Cs x W

    Note, : effective weight

    : Seismic response coefficient

    Rev. No. 0

    1

    SD

    Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    V

    W

    Cs

    S 0.22

    h 10.00

    DE 272.25

    DO 8134.90

  • :::

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    2) Seismic response coefficient

    - = (SD1 x IE) / (R x T)

    - = SDS x IE / R

    - =

    Note, : design, 5 percent damped, spectral response acceleration

    parameter at short periods

    = S x 2.5 x Fa x 2/3 =

    : design, 5 percent damped, spectral response acceleration

    parameter at 1 second periods

    = S x Fv x 2/3 =

    = Zone factor = ...refer to the following table

    = = ...refer to the following table= 1 = ...refer to the following table: importance factor = ...refer to the following table

    : response modification coefficient = ...refer to the following table

    : the fundamental period of the structure

    = Ct x hn3/4 = Sec

    : numerical coefficient

    = ; for steel moment-resisting frames

    = ; for reinforced concrete moment-resisting frames

    & eccentrically braced frames

    = ; for all other building

    : height from base to highest level= m

    T 0.276

    Ct

    0.085

    10.00

    Cs

    Csmax.

    Csmin. 0.01

    0.287

    S 0.22

    SD1

    hn

    0.073

    0.049

    R

    IE 1.20

    0.499

    SD1

    SDS

    SDS

    Fa 1.36

    Fv 1.96

    3.00

    T

  • :::

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    3) Reference Table

    KBC 2009 / Table 0306.3.2

    KBC 2009 / Table 0306.3.3 , Fa

    Note, Ss (S) 2.5 .

    Use Fa = (for Site Class : SD , Ss = 0.55)

    KBC 2009 / Table 0306.3.4 1 , Fv

    Note, S (S).

    Use Fv = (for Site Class : SD , Ss = 0.22)

    SE 3.5 3.2 2.8

    1.96

    SB 1.0 1.0 1.0

    SC 1.7 1.6 1.5

    SD 2.4 2.0 1.8

    S0.1 S=0.2 S=0.3

    SA 0.8 0.8 0.8

    SE 2.5 1.9 1.3

    1.36

    SB 1.0 1.0 1.0

    SC 1.2 1.2 1.1

    SD 1.6 1.4 1.2

    Ss 50 > 100

    SD 180 ~ 360 15 ~ 50 50 ~ 100

    SA 1500 > - -

    SB 760 ~ 1500 - -

    2

    (, , , , , , , , , ), (, , , , , , , ,, , ),

    0.14

    30m

    (m/s)

    N (blow/300mm)

    Su (kPa)

    (S)

    1 2 0.22

  • :::

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    KBC 2009 / Table 0306.4.1

    KBC 2009 / Table 0306.6.1 , R

    8

    5

    3

    2.5

    , R

    ( ) 8

    ( ) 7

    6

    ()

    - 1000m - 1000m , , , , , - ,

    1.5

    (1)

    - 1000m - 1000m , , , , , - 5000m , , , , , , ( ) - , , , - 5 , , , -

    1.2

    (2), (3) - (), (1), (3) - , -

    1.0

    (IE)

  • :::

    Rev. No. 0Page

    CALCULATION SHEETS FORDOC. NO. : 0

    Project No. 130008

    TANK

    4) Calculation of Seismic Force & Moment at Equipment Base Level

    - = (SD1 x IE) / (R x T)

    = ( x ) / ( x ) = W

    - = SDS x IE / R

    = ( x ) / = W

    - =

    Use Design Shear Force : = W

    - In Empty Condition

    Lateral Force : = x DE = x = kN

    Moment at Top of Pedestal

    = Hee x (h x 1/2)

    = x ( x ) = kN

    - In Operating Condition

    Lateral Force : = x DO = x = kN

    Moment at Top of Pedestal

    = Heo x (h x 1/2)

    = x ( x ) = kN1622.64 10.00 1/2 8113.21

    Heo 0.199 0.199 8134.90 1622.64

    Meo

    272.25 54.30

    Mee

    54.30 10.00

    Csmin. 0.01

    1/2 271.52

    V 0.199

    Hee 0.199 0.199

    Cs

    0.287 1.20 3.00 0.276 0.417

    Csmax.

    0.499 1.20 3.00 0.199