Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

18
Symmetry Breaking, Phases & Complexied Gauge Theory From Quantum Phases to Langlands Duality D. D. Ferrante Brown University Miami, 2010-Dec-14 arXiv:0904.2205 [hep-th]arXiv:0809.2778 [hep-th]arXiv:0710.1256 [hep-th]arXiv:hep-lat/0602013

Transcript of Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

Page 1: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 1/18

Symmetry Breaking, Phases &

Complexified Gauge TheoryFrom Quantum Phases to Langlands Duality

D. D. Ferrante

Brown University

Miami, 2010-Dec-14

⟨arXiv:0904.2205 [hep-th]⟩

⟨arXiv:0809.2778 [hep-th]⟩

⟨arXiv:0710.1256 [hep-th]⟩

⟨arXiv:hep-lat/0602013⟩

Page 2: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 2/18

Outline

1 MotivationsGlobal Approach

2 Quantum Phases

Zeros of the Partition Function

3 Geometric Langlands Duality

4 Take-Home Message

5 Summary and Speculations

Page 3: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 3/18

Motivations

Symmetry Something happens which is notobservable: [Pierre] Curie’s more phenomenologicalapproach led him to emphasize the role of “non-symmetry”, rather than symmetry, so that he wasthe first to appreciate the role of symmetry breaking as

a necessary condition for the existence of phenomena,

�C’est la dissymétrie qui crée le phénomène.( “It is dissymetry that creates the phenomenon.” );Pierre Curie, 1908, Œuvres (Gauthier-Villars, Paris).

Page 4: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 4/18

Modern Global Approach

Use of global methods to attack problems that cannot bereached via standard perturbative methods:

Higgs Bundles, Moduli Spaces; . . .

Dualities, Branes; . . .

 Topological Quantization, Jacobi stability; . . .

Page 5: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 5/18

Quantum Phases

Condensed Matter: quantum states of matter(ground states) at zero temperature [1];

High Energy Theory: inequivalent  vacua [8]:

partition function depends on the coupling constants;

different  ranges of the coupling constants(inequivalent  partition functions for the sameLagrangian) ⇒ distinct  vacua (ground states);

each ground state (vacuum) is a quantum phase!Quantum Phase Transition ⇔ Symmetry Breaking(vacuum selection).

Page 6: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 6/18

Zeros of the Partition Function

Lee-Yang: zeros in R [2];

Fisher: analytic continuation of L-Y ⇒ zeros in C [3];Stokes’ Phenomena: domains of analyticitybounded by Stokes’ lines [4].

✑  Thermodynamicfunctions’ singularities;

✑ Classical Phase

 Transition: zeroscondense onto Stokes’lines, pinching thecoupling axis.

Im Z 

Re Z 

Page 7: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 7/18

Langlands Duality (summary)

Langlands Duality: relates seemingly differenttheories (distinct sets of C-couplings τ ) ⇐ S- &

 T-duality (mirror symmetry) equivalent ⇐ Modularsymmetry;

Objects in one model ⇔ objects in the dual model:same algebra of observables, inequivalent reps;

 Their cohomologies may be interpreted as the space

of vacua in these theories, hence they should beisomorphic.

Geometric Langlands duality: invariance underaction of SL2(Z) on N = 4 SYM with gauge groups Gand LG [9, 10]:

✑ Z  [τ , J] is a modular form invariant under theaction of SL2(Z) on τ : τ � = aτ +b

cτ +d

, where a d− b c = 1.

Page 8: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 8/18

Quantum Phases in Gauge Theory [8]

Integro-Differential Problems:

Differential Formulation Integral FormulationSchwinger-Dyson eqs Feynman Path IntegralBoundary Conditions Measure (all appropriate cycles)

Schwinger-Dyson Eqs: A→−i δ / δ J :

�δSτ [

BCs = Dp-branes (= knots)  −i δ / δ J]

δ A− J

Z  [τ , J] = 0 .

Feynman Path Integral: Z [τ , J=0]=1 ,A={gauge orbits} :

Z  [τ , J] =

 C

ei Sτ [ A] e−i ⟨ J, A⟩

   Fourier-Mukai transform

D A <∞ ;

Page 9: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 9/18

Example: 0-dim ϕ4(scalar-valued D0-branes, quartic potential)

Action: S[ϕ] = �

2

ϕ2 + λ

4

ϕ4 ; g = λ

 � g → 0

weak−−→  �  λ

g →∞

strong

−−→  �  λ

;

Schwinger-Dyson:

ϕ (1+gϕ2)

    � ϕ + λ ϕ3− J = 0

ϕ →−i∂ J−−−−→

g= λ /  �

Parabolic Cylinder Eq.

  g∂3

 J+ ∂ J − J

Z  [ J] = 0;

Path Integral: Z  [g, J] =

 C

eiϕ2 (1+gϕ2) e−i Jϕ dϕ

 C eiϕ2 (1+gϕ2) dϕ

=

U(g,J) ,

V(g,J) ,

W(g,J) .

 Three different solutions (cycles, BCs): perturbative(symmetric), broken-symmetric (non-perturbative) andinstanton (monopole).

Page 10: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 10/18

Example: 0-dim ϕ4(speculation)

0-dim ϕ4 = ultra-local Landau-Ginzburg = ultra-local

scalar QED = scalar D0-branes in a quartic potential;

Different phases: L-G and σ -model over Calabi-Yausurfaces [9];

Lee-Yang zeros of L-G = Fisher zeros of σ -C-Y:

analytic continuation of each other; This is obtained via the 3 distinct cycles: C1, C2, C3 —one cycle is the analytic continuation of the otherone; the third yields a monopole;

Different cycles C ≡ distinct couplings g:weak/strong coupling depend on C;

Stokes lines: domains of analyticity are separated by

discontinuous jumps ⇒ catastrophe phenomena(Morse Theory) classification [8].

Page 11: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 11/18

Example: Scalar D0-branes, Airy Potential

Action: S[ϕ] =ϕ3

3;

Schwinger-Dyson: ϕ2 + J = 0ϕ →−i ∂ J

−−−−→∂2

 J− JZ  [ J] = 0 : Airy eq.;

Path Integral: Z  [ J] =

 C

eiϕ3 / 3 ei Jϕ dϕ 

C

eiϕ3 / 3 dϕ

Ai( J) / Ai(0)

Bi( J) / Bi(0).

 Two solutions: Ai and Bi; differ by a π  / 2 phase;

ϕ3: ill defined over R-cycle (CR), but well definedover C-cycles (CC) — analytic continuation [8, 9].

Page 12: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 12/18

Example: D0-branes, Airy Potential (extensions)

ϕ3 can be real-, matrix- or Lie algebra-valued: theresults do not change ⇐ Airy functions can be

extended to these other fields (Harish-Chandraanalysis; Airy property [7]).

Lie algebra-valued fields with cubic interaction ⇒Chern-Simons,

SCS[ A] = k 4π 

 M 

tr

 A∧ d A + 23 A∧ A∧ A

.

CS Schwinger-Dyson eqs,

δS

δ A=

2π F = 0

F = d A + A∧ A = 0A →−iδ J

−−−−→

Dp-branes = BCs [8, 9]

   −i d(δ J)− δ J ∧ δ J Z  [ J] = 0 .

Page 13: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 13/18

Open Questions: D0-branes, Airy Potential

CS and Quantum Gravity [8, 9]:✑ What geometries correspond to these complex

cycles (saddle-points)?

Knot theory and gauge observables [8]:

W  ρ

γ

( A) = tr ρHolγ( A) = tr ρPexp γ A ;

W  ρ1

γ1· · · W  ρn

γn

=

 CA

W  ρ1γ1

( A) · · · W  ρn

γn( A) ei SCS[ A]D A ;

= L (L ρ1 ··· ρn ) ;

G invariant L 

U(1) winding numberSU(2) Kauffman bracketSU(n) HOMFLY polySO(n) Kauffman poly

(where ρ is a representation of the gauge group; γ is a 1-cycle; P is the path-ordering operator;A is the space of gauge orbits (connections modulo gauge transformations); and L  is aninvariant of the link L.)

✑ How are the representations ρi and invariants L 

affected by the choice of cycles CA?

Page 14: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 14/18

Conclusions and Future Research

Quantum Phase Transitions ⇔Multiple Solutions toSDEs ⇔ Integration Cycle, CC ⇔ Boundary

Conditions (Dp-branes);“Generalized” field configurations (Liealgebra-valued fields, CC, etc) ⇔ “extended”coupling constants;

Lee-Yang Zeros, Fisher Zeros, Stokes Lines ⇔coalescing of quantum phases, lines of analyticitybreakdown, and vacuum selection;

Boundary Conditions ⇔ Local Systems ⇔ HiggsBundle;

Boundary Conditions ⇔ Bundle Topology: Sheaf Cohomology?

Boundary Conditions ⇔ Parameters/couplings ⇔Geometric Langlands Dualities?

Page 15: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 15/18

ReferencesS. Sachdev: Quantum Phase Transitions.

Lee-Yang Zeros: Lee-Yang Theorem, Comm. Math. Phys. 33: 145–164, Rev. Math. Phys., Volume:

11, Issue: 8(1999) pp. 1027–1060.

Fisher Zeros: The Nature of Critical Points.

Stokes’ Phenomenon: Pub. Math. IHÉS, 68 (1988), p. 211–221, Proc. R. Soc. Lond. A, Vol. 422,

No. 1862 (Mar. 8, 1989), pp. 7–21.

Fourier-Mukai: Nagoya Math. J. Volume 81 (1981), 153–175, Heuristics of Fourier-Mukai.

Higgs bundles: Proc. Lond. Math. Soc. 1987 s3-55(1):59–126, Publ. Math. IHÉS, 75 (1992), p.

5–95. What is a Higgs Bundle?.Airy functions extensions: arXiv:0707.3235 [math-ph], arXiv:0901.0190 [math-ph],

Comm. Math. Phys. Vol 147, N 1 (1992), 1–23, Am. J. Math. 79, (1957) 87–120, Séminaire

Bourbaki, 4 (1956-1958), Exposé No. 160, 8 p.

D. D. Ferrante, G. S. Guralnik, et al.: arXiv:hep-lat/0602013; arXiv:0710.1256 [hep-th];

arXiv:0809.2778 [hep-th]; arXiv:0904.2205 [hep-th]; arXiv:0912.5525 [hep-lat].

Analytic Continuation of TFTs, Grothendieck, Dynamical Systems, Langlands Duality & HiggsBundles.

E. Witten, et al.: arXiv:hep-th/9301042, arXiv:hep-th/0604151, arXiv:hep-th/0612073,

arXiv:0706.3359 [hep-th], arXiv:0710.0631 [hep-th], arXiv:0712.0155 [hep-th],

arXiv:0809.0305 [hep-th], arXiv:0812.4512 [math.DG], arXiv:0905.2720 [hep-th],

arXiv:0905.4795 [hep-th], arXiv:1001.2933 [hep-th], arXiv:1009.6032 [hep-th].

E. Frenkel: arXiv:0906.2747 [math.RT], arXiv:hep-th/0512172.

di l d li

Page 16: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 16/18

Appendix: Langlands Duality (introduction)

Fourier-Mukai Transform [5](Schwinger’s source theory):

 A → −iδ J ;

Z  τ [ J] =

 C

ei Sτ [ A] e−i ⟨ J, A⟩D A <∞ ;

where A is the space of connections modulo gauge transformations; C

is a cycle (multidimensional contour in C) that renders the integralfinite; and τ  represents the couplings of the Action.

Gauge Theory:

−i Sτ [ A] =

1

4 g2  M 4 tr F A

∧  � 

F A   pure gauge

+

8π 2  M 4 tr F A

∧F A   

c2(P ) : 2nd Chern class

;

τ =θ

2π 

+4π i

g

2: complex coupling.

A di L l d D lit

Page 17: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 17/18

Appendix: Langlands Duality (S-duality ≡ Langlands duality)

S-duality: N = 4 SYM, simply-laced compactconnected simple Lie group G;

(G,τ ) ←→ (LG, Lτ = −1 / τ )

(G,τ + 1)

G LG

GLn GLn

SLn PGLn

Sp2n SO2n+1

Spin2n SO2n / Z2

E8 E8

Geometric Langlands duality: invariance under

action of SL2(Z

) on N = 4 SYM with gauge groups Gand LG [9, 10]:

✑ Z  τ [ J] is a modular form invariant under the action

of SL2(Z) on τ .

A di L l d D lit

Page 18: Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

8/8/2019 Symmetry Breaking, Phases & Complexified Gauge Theory :: Miami 2010

http://slidepdf.com/reader/full/symmetry-breaking-phases-complexified-gauge-theory-miami-2010 18/18

Appendix: Langlands Duality (category of branes)

Relevant objects: Branes ≡ boundary conditions,

M 4 = Σ×X ⇒

Σ : Riemann surface, ∂Σ = ∅ ;

X  : closed Riemann surface .

Compactification on X : 2-dim TFT σ -model:

✑  Target Space: MH(G) = Hitchin moduli space of Higgs G-bundles on X  (flat connection  ∇ = A + iϕ) [6];

MH(G) = solution space of 

F A − ϕ∧ ϕ = 0 ;

d Aϕ = d A � ϕ = 0 .

✑ S-duality ≡ Mirror Symmetry (T-duality) betweenσ -TFTs with targets MH(G) and MH(LG).