Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List...

57
Symmetry, Geometry, and Topological Phases Taylor L. Hughes University of Illinois at Urbana Champaign NHMFL Winter School Lecture

Transcript of Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List...

Page 1: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Symmetry,  Geometry,  and  Topological  Phases  

Taylor  L.  Hughes  University  of  Illinois  at  Urbana  Champaign  

NHMFL  Winter  School  Lecture  

Page 2: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Outline Part  1:  Topological  phases  and  response  protected  by  discrete  transla6on,  inversion,  and  rota6on  symmetries    Part  2:  Bound  states  on  geometric  defects  in  point-­‐group  protected  topological  phases   Part  3:  Response  of  a  6me-­‐reversal  breaking,  free-­‐fermion  topological  phase  to  geometric  deforma6ons    

Page 3: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Part  1:Topological  Phases  and  Response  Protected  by  Discrete  

Spa6al  Symmetries  

Page 4: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Historical Reference List

Precursor  of  Spa6al-­‐Symmetry  Protected  Topological  Phases:  •  Zak,  J.  "Berry’s  phase  for  energy  bands  in  solids."  Physical  review  le.ers  62,  2747  (1989).  -­‐Wannier  center  loca6ons  are  quan6zed  in  inversion  symmetric  crystals,  i.e.,  polariza6on  is  quan6zed.  

Modern  Incep6on  of  Field:      

•  Fu,  L.,  Kane,  C.  L.,  &  Mele,  E.  J.  (2007).  Topological  insulators  in  three  dimensions.  Physical  review  le.ers,  98(10),  106803.  

•  Moore,  J.  E.,  and  Leon  Balents.  "Topological  invariants  of  6me-­‐reversal-­‐invariant  band  structures."  Physical  Review  B  75.12  (2007):  121306.  

-­‐Introduc6on  of  weak  topological  insulators  protected  by  6me-­‐reversal  and  transla6on  symmetry.    •  Fu,  Liang,  and  Charles  L.  Kane.  "Topological  insulators  with  inversion  symmetry."  Physical  Review  B  76,  045302  

(2007).  -­‐TIs  with  6me-­‐reversal  and  inversion  symmetry  are  classified  in  2D  and  3D.  First  discrete  eigenvalue  formula.    •  Teo,  Jeffrey  CY,  Liang  Fu,  and  C.  L.  Kane.  "Surface  states  and  topological  invariants  in  three-­‐dimensional  topological  

insulators:  Applica6on  to  Bi_  {1−  x}  Sb_  {x}."  Physical  Review  B,  78,  045426  (2008).  -­‐Introduc6on  of  mirror  Chern  number  in  3D  materials.  Call  for  a  complete  topological  band  theory  including  all  point-­‐group  symmetries.  

Page 5: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Historical Reference List Resul6ng  Classifica6on:      •  Fu,  Liang.  "Topological  crystalline  insulators."  Physical  Review  Le.ers  106.10  (2011):  106802.  •  Hughes,  Taylor  L.,  Emil  Prodan,  and  B.  Andrei  Bernevig.  "Inversion-­‐symmetric  topological  insulators."  Physical  

Review  B  83.24  (2011):  245132.  •  Turner,  Ari  M.,  et  al.  "Quan6zed  response  and  topology  of  magne6c  insulators  with  inversion  symmetry."  Physical  

Review  B  85.16  (2012):  165120.  •  Fang,  Chen,  Maihew  J.  Gilbert,  and  B.  Andrei  Bernevig.  "Bulk  topological  invariants  in  noninterac6ng  point  group  

symmetric  insulators."  Physical  Review  B  86.11  (2012):  115112.  •  Jadaun,  Priyamvada,  et  al.  "Topological  classifica6on  of  crystalline  insulators  with  space  group  symmetry."  Physical  

Review  B  88.8  (2013):  085110.  •  Slager,  Robert-­‐Jan,  et  al.  "The  space  group  classifica6on  of  topological  band-­‐insulators."  Nature  Physics  9.2  (2012):  

98-­‐102.  •  Teo,  Jeffrey  CY,  and  Taylor  L.  Hughes.  "Existence  of  Majorana-­‐Fermion  Bound  States  on  Disclina6ons  and  the  

Classifica6on  of  Topological  Crystalline  Superconductors  in  Two  Dimensions."  Physical  review  le.ers  111.4  (2013):  047006.  

•  Chiu,  Ching-­‐Kai,  Hong  Yao,  and  Shinsei  Ryu.  "Classifica6on  of  topological  insulators  and  superconductors  in  the  presence  of  reflec6on  symmetry.”  Phys.  Rev.  B  88,  075142  (2013).  

•  Zhang,  Fan,  C.  L.  Kane,  and  E.  J.  Mele.  "Topological  Mirror  Superconduc6vity.”  Phys.  Rev.  Le..  111,  056403  (2013).    

•  Hsieh,  Timothy  H.,  et  al.  "Topological  crystalline  insulators  in  the  SnTe  material  class."  Nat.  Comm.  3,  982  (2012).  •  Tanaka,  Y.,  et  al.  "Experimental  realiza6on  of  a  topological  crystalline  insulator  in  SnTe."  Nat.  Phys.  8,  800  (2012).  •  Dziawa,  P.,  et  al.  "Topological  crystalline  insulator  states  in  Pb1−  xSnxSe."  Nat.  Mat.  11,  1023  (2012).  •  Xu,  Su-­‐Yang,  et  al.  "Observa6on  of  a  topological  crystalline  insulator  phase  and  topological  phase  transi6on  in  Pb1−  

xSnxTe."  Nat.  Com.  3,  1192  (2012).    

Material  Predic6on  and  Experimental  Confirma6ons  

Page 6: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Periodic Table of Free Fermion Topological Phases Dim/Symmetry  

(0+1)d  

(1+1)d  

(2+1)d  

(3+1)d  

(4+1)d  

(5+1)d  

(6+1)d  

(7+1)d  

C,Ť  

Z2  

Z  

0  

0  

0  

Z  

0  

Z2  

C  (D)  

Z2  

Z2  

Z  

0  

0  

0  

Z  

0  

C,T  

0  

Z2  

Z2  

Z  

0  

0  

0  

Z  

T  

Z  

0  

Z2  

Z2  

Z  

0  

0  

0  

T,Č  

0  

Z  

0  

Z2  

Z2  

Z  

0  

0  

Č  

0  

0  

Z  

0  

Z2  

Z2  

Z  

0  

Č,Ť  

0  

0  

0  

Z  

0  

Z2  

Z2  

Z  

Ť Z  

0  

0  

0  

Z  

0  

Z2  

Z2  

0  

Z  

0  

Z  

0  

Z  

0  

Z  

0  

χ  

0  

Z  

0  

Z  

0  

Z  

0  

Z  

Schnyder,Ryu,Furusaki,Ludwig: PRB (2008) Kitaev: Adv. in Theoretical Phys. 2009 Qi, Hughes, Zhang: PRB(2008)

Does  not  include  unitary  symmetries.  Important  to  consider  spa6al  symmetries  such  as    transla6on,    reflec6on,  (discrete)  rota6on.    

The  non-­‐zero  entries  represent  “strong”  topological  invariants  of  the  bulk  that  dis6nguish    gapped  phases  from  a  trivial  atomic  limit.    

Page 7: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Example: Su-Schrieffer-Heeger model in 1D Class  D  insulator  in  1+1-­‐d  with  (fine-­‐tuned)  par6cle-­‐hole  symmetry.  Strong  invariant:  Z2.  

Θ=0  

Θ=π  

Construct:  

Calculate:  

Given:  

Page 8: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Electromagnetic Response in 1D Θ=0  

Θ=π  

Connec6on  between  topological  invariant  and  EM  response–    the  charge  polariza6on.  

At  half  filling  there  are  bound  charges  on  the  ends  when  θ=π  which  illustrate  the  bulk  charge  polariza6on.  Example  of  a  connec6on  between  a  ‘strong’  topological  invariant  and  an  observable.  

+e/2  -­‐e/2  

Page 9: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Weak Invariants due to Translation Symmetry

Dim/Symmetry  

(0+1)d  

(1+1)d  

(2+1)d  

(3+1)d  

…  

C  

Z2  

Z2  

Z  

0  

…  

C  &  TranslaTon  

Z2  

Z2+Z2  

Z+2Z2+Z2  

0+3Z+3Z2+Z2  

…  

Preserving  transla6on  invariance  introduces  a  new  series  of  invariants  generically  called  “weak”  topological  invariants.  

While  strong  invariants  are  isotropic,  the  weak  invariants  are  anisotropic.  

Invariants  

G0  

G+G0  

G+Ga+G0  

0+Ga+Gab+G0  

…  

Strong+Weak+Secondary  Weak+Global  ElectromagneTc  

K-­‐theory  classifica6on  on  torus  instead  of  sphere  

Page 10: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Example: Weak Invariants from SSH

Class  D  in  2d:  Z+2Z2  

Gy  

Gx  

Page 11: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Weak vs. Strong in 2D

Class  D  in  2d:  Z+2Z2  

Gx  First  Chern  Number:  C1  If  only  the  weak  invariant  is  non-­‐zero,  breaking  transla6on  symmetry  (even  just    on  the  edge)  allows  us  to  gap  the  system!    

Page 12: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Electromagnetic Response Actions

1D  

2D  (weak)  

2D  (strong)  

L  

Valence  

Conduc6on  

R  

+  -­‐  

Page 13: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Quantization of Z2 Electromagnetic Response

Z2  Quan6za6on  of  P1:  •  Under  C  symmetry  P1  transforms  to  –P1  (odd).                This  constrains  P1=-­‐P1.    •  For  crystals  P1  is  periodic  i.e.  P1=  P1+  ne  •  P1  =  0  or  e/2  

This  type  of  quan6zed  response  appears  in  all  even  space6me  dimensions  

(odd  under  T,  T2=-­‐1)  

(odd  under  C,  C2=-­‐1)  

(odd  under  T,  T2=+1)  

Interes6ngly,  every  ac6on  has  an  E-­‐field,  thus  also  odd  under  inversion!  

Page 14: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Inversion Protected Topological Phases Each  of  the  topological  phases  with  a  generalized  polariza6on  response  can  be  stabilized  by  inversion  symmetry  instead  of  C  or  T.  Thus,  can  arise  in  non-­‐fine  tuned/non-­‐superconduc6ng  systems  (  C  )  and  in  magne6c  systems  (T).  We  will  only  consider  a  6ny  subset  of  the  rich  inversion  protected  classifica6on.    

Big    calcula6onal  advantage  is  that  topological  invariants  in  models  can  be  determined  from  discrete  data  in  the  Brillouin  zone  without  any  integra6on.    

Example:  

If  we  know  the  inversion  eigenvalues  of  the  occupied  bands  we  can  determine    polariza6on.  

Page 15: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Inversion Eigenvalue Example

Θ=0  

Θ=π  

Page 16: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Higher Dimensional Cases with Inversion

2D:  +  

+  

+  

-­‐  

3D:  ++  

++  

++  

-­‐  -­‐  

++  

++  

++  

With  T  and  P  we  can  use  the  Fu-­‐Kane  formula:    

Inversion(C2)  determines  Chern  number  mod  2  (Hughes  et  al.,  Turner  et  al.)  Cn  rota6on  determines  Chern  number  mod  n  (Fang  et  al.)  

Eigenvalues  come  in  Kramers’  pairs  with  T  &  P.  But  if  we  break  T,  how  do  we  choose  half  the  occupied  states?  

kz=0  

kz=π  ++  

Chern  Number  

Magneto-­‐electric  polariza6on  

Page 17: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Higher Dimensional Cases with Inversion

3D:  +  

+  

+  

-­‐  

+  

+  

+  

+  

kz=0  

kz=π  

To  make  the  formula  well  defined  when  we  only  have  P    there  must  be  constraints  so  that  we  can  define  half  the  occupied  bands  when  there  is  no  Kramers’  degeneracy:    •  Topological  constraint:  Product  of  ALL  inversion  

eigenvalues  must  be  posi6ve  (otherwise  gapless).  If  product  is  nega6ve  there  exists  a  topologically  protected  metal  (Weyl  semi-­‐metal  in  some  cases)  

•  All  first  Chern  numbers  vanish  (or  are  even)  

Chern  number  has  to  go  from  odd  to  even  as  kz  goes  from  0  to  π.  This  cannot  happen  in  an  insulator.    

Page 18: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Part  2:  Bound  States  on  Topological  Defects  in  Spa6al  Symmetry  Protected  

Phases  

Page 19: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Historical Reference List Precursors:  •  Jackiw,  R.,  and  C.  Rebbi.  "Solitons  with  fermion  number  1/2."  Phys.  Rev.  D  13.12  (1976):  3398-­‐3409.  •  Su,  W.  P.,  J.  R.  Schrieffer,  and  A.  J.  Heeger.  "Solitons  in  polyacetylene."  Physical  Review  Le.ers  42.25  (1979):  1698-­‐1701.  

•  Lee,  Dung-­‐Hai,  Guang-­‐Ming  Zhang,  and  Tao  Xiang.  "Edge  solitons  of  topological  insulators  and  frac6onalized  quasipar6cles  in  two  dimensions."  Physical  review  le.ers  99.19  (2007):  196805.  

•  Ran,  Ying,  Ashvin  Vishwanath,  and  Dung-­‐Hai  Lee.  "Spin-­‐Charge  Separated  Solitons  in  a  Topological  Band  Insulator."  Physical  review  le.ers  101.8  (2008):  086801.  

•  Qi,  Xiao-­‐Liang,  and  Shou-­‐Cheng  Zhang.  "Spin-­‐Charge  Separa6on  in  the  Quantum  Spin  Hall  State."  Physical  Review  Le.ers  101.8  (2008):  086802.  

•  Ran,  Ying,  Yi  Zhang,  and  Ashvin  Vishwanath.  "One-­‐dimensional  topologically  protected  modes  in  topological  insulators  with  la�ce  disloca6ons."  Nature  Physics  5.4  (2009):  298-­‐303.  

•  Juričić,  Vladimir,  et  al.  "Universal  Probes  of  Two-­‐Dimensional  Topological  Insulators:  Disloca6on  and  π  Flux."  Physical  Review  Le.ers  108.10  (2012):  106403.  

•  Hughes,  Taylor,  Hong  Yao,  and  Xiao-­‐Liang  Qi.  "Majorana  Fermions  Bound  to  Disloca6ons  in  2d  Weak  Topological  Superconductors."  Bulle>n  of  the  American  Physical  Society  55  (2010).  

•  Teo,  Jeffrey  CY,  and  Taylor  L.  Hughes.  "Existence  of  Majorana-­‐Fermion  Bound  States  on  Disclina6ons  and  the  Classifica6on  of  Topological  Crystalline  Superconductors  in  Two  Dimensions."  Physical  review  le.ers  111.4  (2013):  047006.  

•  Benalcazar,  Wladimir  A.,  Jeffrey  CY  Teo,  and  Taylor  L.  Hughes.  "Classifica6on  of  Two  Dimensional  Topological  Crystalline  Superconductors  and  Majorana  Bound  States  at  Disclina6ons."  arXiv  preprint  arXiv:1311.0496  (2013).  

Modern  Developments:  

Page 20: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

2+1-d Topological Insulator (QAHE) Take  massive  Dirac  Hamiltonian  in  2+1-­‐d  (Haldane  1988).  Also  known  as  Chern  Insulator.  

edge

m<0 m>0  

Bulk  described  by  massive  Dirac  fermions,  boundary  described    by  massless  chiral  fermions  in  one  lower  dimension,  Clifford  algebra  dimension  cut  in  half.  QHE  without  Landau  levels.  

Bulk  Vacuum  

Page 21: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Boundstate Production Mechanisms

For  free  fermion  models  the  Dirac  domain  wall/vortex  is  the  generic  mechanism  for  topological  boundstates.  However,  this  does  not  apply  for  more  complicated  interac6ng  systems.    

Another  mechanism  which  can  be  used  even  with  interac6ons  are  considering  “gauge  fluxes”  of  a  global  symmetry.    

Symmetry   Flux  

U(1)  Global  Charge  Conserva6on   Magne6c  flux  

Transla6on  Symmetry   Disloca6on  

Rota6on  Symmetry   Disclina6on  

Anyonic  Symmetry   Twist  Defect  

In  the  case  of  free  fermions  the  mechanisms  coincide  

Page 22: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Bound States on a flux in the QAHE/Chern Insulator

E  

ky  x  

y  

Gapless  fermion  spectrum  on  cut  

Lee,  Zhang,  Xiang  PRL  (2007)  

Topological  Phase  Protected  by  Global  U(1)  symmetry:  global  charge  conserva6on  

Page 23: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Crystal Dislocations: Translation/Torsion Flux

Let’s  take  a  path  in  the  la�ce  3  steps  right  3  steps  up    3  steps  le�  3  steps  down  This  path  is  closed  in  the    reference  state.    

The  amount  of  transla6on  is  the    Burgers  vector  and  it  is  a  vector  of  topological  charges.  It  doesn’t  change  if  you  con6nuously  deform  the    disloca6on.  

Page 24: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

12 cnπ

= ⋅G BBurger’s  vector  characterizing    disloca6on  

Ran,  Zhang,    Vishwanath,  2009  

Topological  insulators/superconductors  (class  D)    with  weak  indices      (G1,  G2,  G3)=Gc  

Teo,  Kane,  2010,  Ran2010  Asahi,  Nagaosa,  2012  Juricic,  et  al.,  2012   TLH,  Yao,  Qi,  2013  

Dislocation Bound States in Translation Protected Topological States

Gc    

Page 25: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Bound States on Dislocations

E  

ky  x  

y  

Ran,  Zhang,  Vishwanath  Nat.  Phys.  (2009).      

Gapless  fermion  spectrum  on  cut  

Page 26: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Bound States with Secondary Weak Invariants In  class  D  in  3d  we  have  an  an6symmetric  tensor  Gab  

Requires  transla6on  symmetry  along  disloca6on.    A  weak  invariant  for  the  disloca6on  itself!  

Bound  state  on  linked  disloca6ons  does  not  require  symmetry  along  disloca6on.  Possible  appearance  in  Raghu,  Kapitulnik,  Kivelson  state  of  Sr2RuO4  where  Gab≠0.  TLH,  Yao,  Qi,  2013  

τ  

Page 27: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Classifica6on:  

Teo  ,  TLH;  PRL  2013  

Eveness  /  oddness  of  number  of  transla6ons.    Equal  to  number  of  dis6nct  rota6on  centers.    

even  

even  

odd  

odd  

Disclinations in the Square Lattice

Frank  Angle  x  Transla6on  Parity  

Page 28: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Overall  odd  disloca6on   Overall  even  disloca6on  

How  does    Majorana  mode  decide  where  to  go?  

Teo  ,  TLH;  PRL  2013  

B  

Dislocation = Disclination Dipole

Page 29: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

•  BdG  Hamiltonian  in  class  D  (PHS)  

•  C4  rota6on  symmetry  (square  la�ce)  

Classification of C4 Invariant 2D Superconductors

Teo  ,  TLH;  arXiv:1208.6303  

Page 30: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

•  Topological  invariants  (all  T-­‐breaking)    (i)  First  Chern  Number  

     

 

Classification of C4 Symmetric Superconductors

Teo  ,  TLH;  PRL  2013  

 (ii)  Rota6on  invariants    

 

Page 31: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Hamiltonian Generators

Teo  ,  TLH;  PRL  2013  

•  4  group  generators  /  model  Hamiltonians  for  

       (i)  Modified  chiral  p+ip  superconductor  on  square  la�ce                (ii)  La�ce  models  of  Majorana  fermions  

   

 

(b)  Sr2RuO4  

?  Raghu,  Kapitulnik,  Kivelson,  2010  

(c)  

Page 32: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Majorana Zero Modes at Disclinations

•  Simple  Majorana  Models:

Hb =   Hc =  

Teo  ,  TLH;  PRL  2013  

Page 33: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Chern  invariant  

Z2 Index for MBS on Disclinations

T = 1, Ω = +π/2

T = 0, Ω = - π/2 Weak  invariant  

Frank  angle   Rota6on  invariant  from  occupied  bands  

Teo  ,  TLH;  PRL  2013  

Page 34: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Transla6on  piece   Rota6on  piece  Number  of  Majorana    fermion  on  an  edge  

Number  of  Majorana    fermion  at  a  corner  

Teo  ,  TLH;  PRL  2013  

Z2 Index for MBS on Disclinations

Page 35: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Part  3:Topological  Response  of  2+1-­‐D  T-­‐breaking  Chern  Insulator  to  Geometric  Perturba6ons  

Page 36: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Historical Reference List Precursors:  •  AVRON,  JE,  R.  SEILER,  and  PG  ZOGRAF.  "VISCOSITY  OF  QUANTUM  HALL  FLUIDS."  Physical  review  le.ers  75,  697  (1995)  •  Lévay,  Péter.  "Berry’s  phase,  chaos,  and  the  deforma6ons  of  Riemann  surfaces."  Physical  Review  E  56,  6173  (1997).  •  Avron,  J.  E.  "Odd  viscosity."  Journal  of  sta>s>cal  physics  92,  543  (1998).  

Modern  Developments  •  Read,  N.  "Non-­‐Abelian  adiaba6c  sta6s6cs  and  Hall  viscosity  in  quantum  Hall  states  and  p_  {x}+  ip_  {y}  paired  

superfluids."  Physical  Review  B  79,  045308  (2009).  •  Haldane,  F.  D.  M.  “Hall  viscosity  and  intrinsic  metric  of  incompressible  frac6onal  Hall  fluids.”  arXiv:0906.1854.  •  Tokatly,  I.  V.,  and  Giovanni  Vignale.  "Lorentz  shear  modulus  of  frac6onal  quantum  Hall  states."  Journal  of  Physics:  

Condensed  Ma.er  21.27  (2009):  275603.  •  Hughes,  Taylor  L.,  Robert  G.  Leigh,  and  Eduardo  Fradkin.  "Torsional  response  and  dissipa6onless  viscosity  in  

topological  insulators."  Physical  Review  Le.ers  107,  075502  (2011).  •  Read,  N.,  and  E.  H.  Rezayi.  "Hall  viscosity,  orbital  spin,  and  geometry:  paired  superfluids  and  quantum  Hall  

systems."  Physical  Review  B  84  085316  (2011).  •  Barkeshli,  Maissam,  Suk  Bum  Chung,  and  Xiao-­‐Liang  Qi.  "Dissipa6onless  phonon  Hall  viscosity."  Phys  Rev  B  85  

(2012):  245107.  •  Bradlyn,  Barry,  Moshe  Goldstein,  and  N.  Read.  "Kubo  formulas  for  viscosity:  Hall  viscosity,  Ward  iden66es,  and  the  

rela6on  with  conduc6vity."  Physical  Review  B  86,  245309  (2012).  •  Hoyos,  C.,  and  D.  T.  Son.  "Hall  viscosity  and  electromagne6c  response."  Physical  review  le.ers  108,  066805  (2012).  •  Ryu,  Shinsei,  Joel  E.  Moore,  and  Andreas  WW  Ludwig.  "Electromagne6c  and  gravita6onal  responses  and  anomalies  

in  topological  insulators  and  superconductors."  Physical  Review  B  85,  045104  (2012).  •  M  Stone,  "Gravita6onal  anomalies  and  thermal  Hall  effect  in  topological  insulators."  Phys  Rev  B  85,  184503  (2012).  •  Hughes,  Taylor  L.,  Robert  G.  Leigh,  and  Onkar  Parrikar.  "Torsional  Anomalies,  Hall  Viscosity,  and  Bulk-­‐boundary  

Correspondence  in  Topological  States.”  Phys.  Rev.  D  88,  025040  (2013).  •  Abanov,  Alexander  G.  "On  the  effec6ve  hydrodynamics  of  the  frac6onal  quantum  Hall  effect."  J  Phys  A,  46,  292001  

(2013).  •  Wiegmann,  P.  "Anomalous  Hydrodynamics  of  Frac6onal  Quantum  Hall  States.”    arXiv:1305.6893.  

Page 37: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Geometry Coupling in Solids via Frame Field Conven6onally,  electrons  moving  in  a  solid  couple  to  “geometry”  through  the  local    displacement  field  which  encodes  distances  between  unit  cells  via  the  strain/metric  tensor.          If  the  unit  cells  are  featureless  and  isotropic  then  it  is  just  the  distance  between  cells  that    determines  the  hopping  matrix  elements  which  feed  back  into  the  electronic  structure.        

However,  the  orienta6on  of  the  local  degrees  of  freedom  (orbitals/spin)  within  the  unit  cell  can  also  be  important  for  the  resul6ng  electronic  structure  and  require  the  introduc6on  of  a  frame  field.  

The  strain/metric  tensor  represents  an  equivalence  class  of  frames  which  can  differ  by  LOCAL  rota6ons.  Thus,  the  frame  contains  more  informa6on  (“square  root  of  metric”).  

Page 38: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Appearance of Frame Field in Solids  Toy  problem:  Take  two  atoms  with  px,  py,  and  pz-­‐orbitals.  Does  the  energy  depend  on    how  the  orbitals  are  locally  oriented  on  each  site?    

Rota6on  Angle  of  Le�  Atom    

Energy  SOC=0   SOC≠0  

J=3/2  

J=1/2  

J=3/2  

J=1/2  

When  should  we  worry  about  using  a  frame?  

Page 39: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Appearance of Frame Fields in Solids

The  place  to  look  for  the  effects  of  torsion  is  in  materials  which  have  strong  spin-­‐orbit  coupling.  This  means  that  you  want  the    mo6on/momentum  coupled  to  spin  degrees  of  freedom:  

Dirac  model/Topological    Insulator  

Lu�nger  model  for  common  III-­‐V  semi-­‐conductors  (spin  3/2)  

However,  simple  Schrodinger  electrons  won’t  even  feel  the  effects:  

Page 40: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

U(1) analogy for frame fields: Gauge field of translations

Gauge  poten6al  and  Wilson  loop  for  electro-­‐magne6c  field:  

Gauge  poten6al  and  Wilson  loop  for  disloca6ons:  

e  1  e  2  

Magne6c  Flux  of  frame  field  is  a  disloca6on  

Page 41: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Electromagnetic Response (QHE)

Electromagne6c  linear  response:  

E  j  

Page 42: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Calculating Geometric Response

Tij Tkl

Stress  Tensor  response:  

We  will  be  considering  2+1-­‐d  massive  fermions  (Chern  Insulator/QAHE)  coupled  to  external  geometric  perturba6ons.  We  can  just  integrate  out  the  fermions:  

We  find:  

TLH,  Leigh,  Parrikar  (2012)  

Page 43: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

•  Keeping  T-­‐even  and  T-­‐odd  pieces  we  find  an  interes6ng  structure:    

Chiral Gravity Response Theory

2

⇣H = �m2

2⇡

�H = �e2

h

H = � 1

48⇡1

N=

|m|12⇡

N= ⇤

3

0

� 1

3⇡|m|3

⇣H = 0

�H = 0

H = 0

1

N= 0

N= ⇤

3

0

✏µ⌫@µJa⌫ ⇠ ✏µ⌫T a

µ⌫ (1)

pi ! pi + eAi (2)

pi ! pieia (3)

eia = �ia + hia (4)

pi ! pa + pihia (5)

exp

ie

~

IAydy

�= exp

2⇡i

�(t)

0

�(6)

p(y + Ly) = exp

2⇡i

�(t)

0

� p(y) (7)

eikyLy p(y) = exp

2⇡i

�(t)

0

� p(y) (8)

ky =

2⇡

Ly

✓q +

�(t)

0

◆(9)

exp

ipy~

Ieyydy

�= exp [ikyb

y(t)] (10)

2

⇣H = �m2

2⇡

�H = �e2

h

H = � 1

48⇡1

N=

|m|12⇡

N= ⇤

3

0

� 1

3⇡|m|3

⇣H = 0

�H = 0

H = 0

1

N= 0

N= ⇤

3

0

✏µ⌫@µJa⌫ ⇠ ✏µ⌫T a

µ⌫ (1)

pi ! pi + eAi (2)

pi ! pieia (3)

eia = �ia + hia (4)

pi ! pa + pihia (5)

exp

ie

~

IAydy

�= exp

2⇡i

�(t)

0

�(6)

p(y + Ly) = exp

2⇡i

�(t)

0

� p(y) (7)

eikyLy p(y) = exp

2⇡i

�(t)

0

� p(y) (8)

ky =

2⇡

Ly

✓q +

�(t)

0

◆(9)

exp

ipy~

Ieyydy

�= exp [ikyb

y(t)] (10)

2

⇣H = �m2

2⇡

�H = �e2

h

H = � 1

48⇡1

N=

|m|12⇡

N= ⇤

3

0

� 1

3⇡|m|3

Aa= !a

+

1

`ea (1)

⇣H = 0

�H = 0

H = 0

1

N= 0

N= ⇤

3

0

✏µ⌫@µJa⌫ ⇠ ✏µ⌫T a

µ⌫ (2)

pi ! pi + eAi (3)

pi ! pieia (4)

eia = �ia + hia (5)

pi ! pa + pihia (6)

exp

ie

~

IAydy

�= exp

2⇡i

�(t)

0

�(7)

p(y + Ly) = exp

2⇡i

�(t)

0

� p(y) (8)

eikyLy p(y) = exp

2⇡i

�(t)

0

� p(y) (9)

ky =

2⇡

Ly

✓q +

�(t)

0

◆(10)

Trivial  Phase  Topological  Phase  Can  rewrite  in  a  Chern-­‐Simons  term  using  a  single  SL(2,R)  connec6on  (Wiien  1989,2007)  

2

⇣H = �m2

2⇡

�H = �e2

h

H = � 1

48⇡1

N=

|m|12⇡

N= ⇤

3

0

� 1

3⇡|m|3

` =1

2m(1)

Aa= !a

+

1

`ea (2)

⇣H = 0

�H = 0

H = 0

1

N= 0

N= ⇤

3

0

✏µ⌫@µJa⌫ ⇠ ✏µ⌫T a

µ⌫ (3)

pi ! pi + eAi (4)

pi ! pieia (5)

eia = �ia + hia (6)

pi ! pa + pihia (7)

exp

ie

~

IAydy

�= exp

2⇡i

�(t)

0

�(8)

p(y + Ly) = exp

2⇡i

�(t)

0

� p(y) (9)

eikyLy p(y) = exp

2⇡i

�(t)

0

� p(y) (10)

ky =

2⇡

Ly

✓q +

�(t)

0

◆(11)

Coefficients  in  topological  phase  sa6sfy  Brown-­‐Henneaux  formula  with  

Page 44: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

•  Keeping  T-­‐even  and  T-­‐odd  pieces  we  find  an  interes6ng  structure:    

Chiral Gravity Response Theory

2

⇣H = �m2

2⇡

�H = �e2

h

H = � 1

48⇡1

N=

|m|12⇡

N= ⇤

3

0

� 1

3⇡|m|3

⇣H = 0

�H = 0

H = 0

1

N= 0

N= ⇤

3

0

✏µ⌫@µJa⌫ ⇠ ✏µ⌫T a

µ⌫ (1)

pi ! pi + eAi (2)

pi ! pieia (3)

eia = �ia + hia (4)

pi ! pa + pihia (5)

exp

ie

~

IAydy

�= exp

2⇡i

�(t)

0

�(6)

p(y + Ly) = exp

2⇡i

�(t)

0

� p(y) (7)

eikyLy p(y) = exp

2⇡i

�(t)

0

� p(y) (8)

ky =

2⇡

Ly

✓q +

�(t)

0

◆(9)

exp

ipy~

Ieyydy

�= exp [ikyb

y(t)] (10)

We  also  find  a  subleading  correc6on  to  the  viscosity    which  is  quan6zed  in  units  of  C1/48π

Topological  Phase  

2

⇣H = �✓m2

2⇡� (g � 1)

6A

◆= �S (1)

⇣H = �m2

2⇡

�H = �e2

h

H = � 1

48⇡1

N=

|m|12⇡

N= ⇤

3

0

� 1

3⇡|m|3

` =1

2m(2)

Aa= !a

+

1

`ea (3)

⇣H = 0

�H = 0

H = 0

1

N= 0

N= ⇤

3

0

✏µ⌫@µJa⌫ ⇠ ✏µ⌫T a

µ⌫ (4)

pi ! pi + eAi (5)

pi ! pieia (6)

eia = �ia + hia (7)

pi ! pa + pihia (8)

exp

ie

~

IAydy

�= exp

2⇡i

�(t)

0

�(9)

On  a  constant  curvature  Riemann  manifold    

TLH,  Leigh,  Parrikar  (2012)  

Page 45: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Topological Viscosity •  We  will  only  look  at  the  torsion  term  and  to  simplify  the  descrip6on  

we  focus  on  a  flat  background  where  we  pick  a  gauge  where  the  spin-­‐connec6on  vanishes:  

We  can  compare  this  to  the  quantum  Hall  response:  

Note  that  the  coefficient  of  the  first  term  must  have  units    of  1/[Length]^2  when  compared  to  the  dimensionless,  quan6zed    Hall  conductance.  If  we  reinsert  the  physical  units  into  the  frame  field  response  we  find:    

Hughes,  Leigh,  Fradkin  (2011)  

Page 46: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Topological Viscosity Response Equations

•  We  can  calculate  the  stress-­‐energy  tensor  and  find:  

Torsion  Magne6c  Field:  

The  torsion  magne6c  field  is  simply  6ed  to  the  disloca6on  density.  (Also  curvature  magne6c  field  6ed  to  disclina6ons)  

Page 47: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Magnetic Torsion Response

This  torsion  response  implies  that  momentum  density  in  the  a-­‐th  direc6on  is  bound  to  a  frame  field  flux  i.e.  a  disloca6on  

Momentum  density  on  disloca6on  is  (momentum/length)*length  of  edge  state  pushed  into  bulk.  That  is  viscosity*Burgers’  vector.    

Page 48: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Magnetic Torsion Response

1   -­‐1  

2  -­‐1  

Page 49: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Electric Charge Response

Before  we  tackle  the  electric  torsion  response    let  us  first  consider  the  electric  field  response  in  the  QHE:  Generate  E-­‐field  via  the  Faraday  effect  

Page 50: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

p

E

|m|

-|m|

(a)

p

E(b)

x y

Spectral  Flow  of  the  Edge  States  

Electric Charge Response

Page 51: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Electric Torsion Response

Thread  a  torsion  flux  through  the  cylinder  i.e.    thread  a  disloca6on.    

Page 52: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

QH Viscosity Bulk Boundary Correspondence

A  new  1+1-­‐d  anomaly  in  the  stress  current  (Diffeomorphism  anomaly)  

Comparison  with  chiral  current:  

How  do  we  understand  spectral  flow?  

TLH,  Leigh,  Parrikar  

Page 53: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

QH Viscosity Bulk Boundary Correspondence

Can  get  some  clues  from  twisted  boundary  condi6ons:  

(perform  gauge  transforma6on)  (perform  gauge  transforma6on)  

Page 54: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

QH Viscosity Bulk Boundary Correspondence

Spectral  Flow:  

(Hall  conductance  due  to  shi�)  

(Viscosity  due  to  scaling?)  

Can  think  about  it  like  fixed  velocity  but  changing  length  of  edge,  OR  fixed  length  but  edge  veloci6es  changing  

Page 55: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Spectral Stretching/Rotation  

pp

E E

|m|

-|m|

(a) (b)

The  cut-­‐off  breaks  Lorentz  invariance  explicitly  at  high  energy.  Similar  to  how  la�ce  Chern  insulator  has  broken  6me-­‐reversal  (or  parity  in  original  language)  at  high  energy.        Momentum  transport  during  velocity  changing  process/diffeomorphism  exactly  matches  bulk  viscosity  transport  from  the  torsion  Chern-­‐Simons.      

Page 56: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

R LE

R LE

|m|

-|m|

|m|

-|m|

R LE

|m|

-|m|

(p=0)

(a) (b) (c)

(unmodified)   (Electromagne6c)   (Torsion)  

Spectral Flow Comparison

Page 57: Symmetry, geometry, and topological phases · 2018-02-08 · Historical Reference List Precursor!of!Spaal>Symmetry!Protected!Topological!Phases:! • Zak,!J.!"Berry’s!phase!for!energy!bands!in!solids."!Physical)review)le.ers

Summary  

We  discussed  types  of  topological  phases  protected  by  discrete  spa6al  symmetries  and  their  corresponding  responses  and  tendency  to  bind  low-­‐energy  states  to  defects.    We  also  discussed  the  appearance  of  a  chiral  gravity  response  theory  in  the  2+1-­‐d  Chern  insulator  and  the  corresponding  viscosity  response  including  a  new  type  of  edge  anomaly.