Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and...

55
S1 Supporting Information Stable and Reusable Nanoscale Fe 2 O 3 -catalyzed Aerobic Oxidation Process for Selective Synthesis of Nitriles and Primary Amides Kathiravan Murugesan, Thirusangumurugan Senthamarai, Manzar Sohail, Muhammad Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. *Corresponding author: E-mail: [email protected] Table of Contents: S1 Materials and methods S2 Procedure for the reparation of Fe 2 O 3 -N/C (Fe-Phen/C-800) catalyst S3 General procedure for the preparation of nitriles S4 General procedure for the preparation of amides S5 Procedure for the gram scale reactions S6 Procedure for catalyst recycling S7 TEM measurements and data of Fe 2 O 3 -N/C (Fe-Phen/C-800) catalyst S8 XPS measurements and data of Fe 2 O 3 -N/C (Fe-Phen/C-800) catalyst S9 EPR and Mössbauer spectral measurements of Fe 2 O 3 -N/C (Fe-Phen/C-800) catalyst S10 NMR Data S11 References S12. NMR Spectra Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Transcript of Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and...

Page 1: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S1

Supporting Information

Stable and Reusable Nanoscale Fe2O3-catalyzed Aerobic Oxidation Process for Selective Synthesis of Nitriles and Primary Amides

Kathiravan Murugesan, Thirusangumurugan Senthamarai, Manzar Sohail, Muhammad Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.

*Corresponding author: E-mail: [email protected]

Table of Contents:S1 Materials and methods

S2 Procedure for the reparation of Fe2O3-N/C (Fe-Phen/C-800) catalyst

S3 General procedure for the preparation of nitriles

S4 General procedure for the preparation of amides

S5 Procedure for the gram scale reactions

S6 Procedure for catalyst recycling

S7 TEM measurements and data of Fe2O3-N/C (Fe-Phen/C-800) catalyst

S8 XPS measurements and data of Fe2O3-N/C (Fe-Phen/C-800) catalyst

S9 EPR and Mössbauer spectral measurements of Fe2O3-N/C (Fe-Phen/C-800) catalyst

S10 NMR Data

S11 References

S12. NMR Spectra

Electronic Supplementary Material (ESI) for Green Chemistry.This journal is © The Royal Society of Chemistry 2017

Page 2: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S2

S1. Materials and methodsAldehydes, iron acetate, aqueous ammonia (320145 ACS reagent, 28.0-30.0% NH3 basis, Sigma-

Aldrich), 1,10-phenanthroline and other chemicals were obtained from various chemical

companies. Carbon powder, VULCAN® XC72R with Code XVC72R and CAS No. 1333-86-4 was

obtained from Cabot Corporation Prod. The pyrolysis experiments were carried out in Nytech-Qex

oven.

TEM measurements were performed at 200 kV with an aberration-corrected JEM-

ARM200F (JEOL, Corrector: CEOS). The microscope is equipped with a JED-2300 (JEOL)

energy-dispersive x-ray-spectrometer (EDXS) for chemical analysis. The samples were deposited

without any pre-treatment on a holey carbon supported Cu-grid (mesh 300) and transferred to the

microscope. The High-Angle Annular Dark Field (HAADF) and Annular Bright Field (ABF) images

were recorded with a spot size of approximately 0.1nm, a probe current of 120 pA and a

convergence angle of 30-36°. The collection semi-angles for HAADF and ABF were 70-170 mrad

and 11-22 mrad, respectively.

XPS data was obtained with a VG ESCALAB220iXL (ThermoScientific) with monochromatic

Al Kα (1486.6 eV) radiation. The electron binding energies EB were obtained without charge

compensation. For quantitative analysis the peaks were deconvoluted with Gaussian-Lorentzian

curves, the peak areas were divided by a sensitivity factor obtained from the element specific

Scofield factor and the transmission function of the spectrometer.

EPR spectra in X-band were recorded on a Bruker EMX CW-micro spectrometer equipped

with an ER 4119HS-WI high-sensitivity cavity and a variable temperature control unit using the

following parameters: microwave power = 6.64 mW, modulation frequency = 100 kHz, modulation

amplitude = 1 G.

Mössbauer spectra were obtained at 300 K and 77 K by a Mössbauer spectrometer from

Wissel GmbH equipped with a 57Co source. Isomer shifts are given relative to α-Fe at room

temperature. The spectra were analyzed by least-square fits using Lorentzian line shapes.

GC conversions and yields were determined by GC-FID, HP6890 with FID detector,

column HP530 m x 250 mm x 0.25 μm. NMR data were recorded on a Bruker ARX 300 and Bruker

ARX 400 spectrometers.

S2. Procedure for the reparation of Fe2O3-N/C (Fe-Phen/C-800) catalyst (1 g) [2a]

Apropriate amounts of Fe(OAc)2 and 1,10-phenanthroline corresponds to 3 wt% of Fe in 1:3

molar ratio of Fe to phenathroline were stirred in ethanol for 30 minutes at room temperature.

Then, carbon powder (VULCAN® XC72R, Cabot Corperation Prod. Code XVC72R; CAS No.

1333-86-4) was added and the whole reaction mixture was stirred at 60 °C for 12-15 hours.

The reaction mixture was cooled to room temperature and the ethanol was removed in vacuo.

The solid material obtained was dried at 60 °C for 12 hours, after which it was grinded to a fine

Page 3: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S3

powder. Then, the powdered material was pyrolyzed at 800 °C for 2 hours under an argon

atmosphere and cooled to room temperature.

Elemental analysis of Fe2O3-N/C (pyrolyzed Fe-phen/C at 800 oC) (Wt%): C = 91.1, H = 0.19,

N = 2.69, Fe = 2.95

S3. General procedure for the preparation of nitrilesThe 8 mL oven dried glass vial was charged with magnetic stir bar and 0.5 mmol corresponding

aldehyde and then 2 mL t-amyl alcohol was added. Next, 30 mg Fe2O3-N/C (Fe-Phen/C-800)

catalyst (3 mol% Fe) was added followed the by the addition of 200-300 µL aq. NH3 (28-30% NH3

basis). The glass vial was fitted with septum and screw cap. Then 1 bar O2 containing balloon was

connected to the reaction vial though needle and reaction was allowed to procced for 24 hrs at 40 oC with stirring. After completion of the reaction, the reaction vial was cooled to room

temperature and O2 was discharged. Then, catalyst was filtered off, washed with ethyl acetate.

The solvent from the filtrate containing the reaction product was removed in vacuo and

corresponding nitrile was purified by column chromatography. In case of yields determined by

GC, 100 µL n-hexadecane was added to the reaction vial containing products and diluted with

ethyl acetate. Then, filtered through plug of silica and filtrate contain products was subjected GC

analysis. Conversion and yields were determined by GC-FID (HP6890 with FID detector, column

HP530 m x 250 mm x 0.25 μm) and compared with authentic samples. All products were analyzed

by GC, GC-MS and NMR analysis.

S4. General procedure for the preparation of amides A magnetic stirring bar and the corresponding aldehyde were transferred to 8 mL glass vial and

then the 3 mL H2O was added. Next, 50 mg Fe2O3-N/C (Fe-Phen/C-800) catalyst (5 mol% Fe) was

added followed by the addition of 100 µL aq. NH3 NH3. Then, the vial was fitted with septum, cap

and needle. The reaction vials (8 vials) were placed into a 300 mL autoclave (PARR Instrument

Company) and then autoclave was pressurized with 10 bar of air. The autoclave was placed into

an aluminium block and the temperature of the aluminium block was set to measure 120 oC inside

the autoclave and reactions were allowed to progress under stirred condition for required time at

120 oC. In this set-up the temperature of the aluminium block was set more than 120 oC (130-140 oC) in ordered to attain exactly 120 0C inside the autoclave). After completion of the reactions,

remaining air was discharged and the samples were removed from the autoclave. Then, catalyst

was filtered off, washed with methanol. The solvent from the filtrate containing the reaction product

was removed in vacuo and the corresponding amide was purified by column chromatography. All

products were analyzed by GC-MS and NMR analysis.

S5. Procedure for the gram scale reactionsUnder procedure mentioned in sections S4 with the condition, 2-5 g aldehyde, corresponds to 3

mol% Fe, 200 µL Aq. NH3 for every 0.5 mmol substrate, 40 oC, 10-50 mL t-amyl alcohol, 24-30 h.

Page 4: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S4

After completion of the reaction, the autoclave was cooled to room temperature and remaining air

was discharged. The catalyst from the reaction mixture was filtered off and washed with ethyl

acetate. The solvent from the filtrate containing reaction products was removed in vacuo. The

corresponding nitrile was purified by column chromatography (silica; n-hexane-ethyl acetate

mixture). All products were analyzed by GC-MS and NMR analysis.

S6. Procedure for catalyst recycling The recycling of the catalyst system was carried out for the synthesis of benzonitrile under the

same procedure given in the section S4 under reaction conditions: 1 mmol benzalydehyde, 60

mg Fe2O3-N/C (Fe-Phen/C-800) (3% Fe), 400 µL aq. NH3, 1 bar O2, 4mL t-amyl alcohol, 40 oC,

24 hrs, yields were determined by GC using 100 µL n-hexadecane standard. In each run,

after the reaction the catalyst was separated by centrifugation, washed thoroughly with ethyl

acetate and dried by vacuum. Then, the dried catalyst was used further, without any

purification or re-activation.

S7. TEM measurements and data of Fe2O3-N/C (Fe-Phen/C-800) catalyst

TEM investigation of Fe-Phen/C-800 material (Fig. S1) was characterized by the formationFe2O3

particles of different size. Most of the oxide particles have a size between 20 and 80 nm, but occur

always together with smaller ones of 2-5 nm size. Interestingly, these particles, including the small

ones, are surrounded by a shell of a few graphene layers (best visible in the ABF image; Fig. S;

left). The oxidic nature of the particles has been confirmed by Mössbauer, XPS and EPR results

discussed below.

Page 5: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S5

Fig. S1. TEM images of (A): Fe2O3-N/C (Fe-Phen/C-800)-catalyst: Right=HAADF image showing

the distribution Fe2O3-particles; Middle= image showing Fe2O3-particle surrounded by nitrogen

doped graphene layers; Right: EDXS map : iron = green, oxygen = red, carbon = blue.

(B): Fe(OAc)2/C-800 material, in which there is o formation of nitrogen doped graphene layers.

Fig. S2. EDX analysis of the Fe2O3 particles

Fe C O

Page 6: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S6

S8. XPS mesurments and data of of Fe2O3-N/C (Fe-Phen/C-800) catalyst XPS studies of Fe2O3-N/C (Fe-Phen/C-800) catalyst have been revealed that (Fig. S3)

there are three N1s peaks occur at 398.3 eV, 399.3 eV and 401.0 eV. The first two peaks are

assigned to pyridinic nitrogen and Fe-N centers, respectively 1. A similar shift and even a splitting

of the N1s peak was observed for 2H-tetraphenylporphyrin monolayers in contact with deposited

Fe atoms on top. It was assigned to a so-called distorted FeN4-center, 2 in which the Fe-N

distances are slightly different, thus, giving rise to the peak splitting. It is probable that similar FeNx-

centers are formed with progressing pyrolysis on the surface of the emerging iron oxide particles.

The fact that no splitting of the peak at 399.3 eV is observed may be due to a distribution of Fe-N

distances which just contributes to the line width. The third N1s peak observed can be assigned to

nitrogen in a graphite-like structure. 1 This suggests that N is incorporated into the support lattice.

The XPS for Fe2P electrons, two peaks corresponding to Fe species in the near-surface

region were observed. The first one (major) appeared at 712.4 eV and the second one (minor) at

709.9 eV. The first peak is due to the presence of Fe+3 species (more likely Fe2O3) while the

second one is assigned to Fe+2 species. Fe+2 species are in minor proportion compared to Fe+3.

Literature survey3 reveals that the B.E. value of Fe 2p3/2 higher than 710.2 eV can be assigned to

Fe3+ and the peak at 709.9 eV can be attributed to the presence of Fe+2 species.4 Based on these

results, in Fe-Phen/C-800 catalyst, both Fe+3 (major) and Fe+2 (minor) species are presented on

the surface of the material. However, the bulk composition is somewhat different from the surface

composition. In the bulk, we could see the presence of mainly the Fe+3 species (in the form of

Fe2O3). The presence of Fe2O3 as particles has been confirmed by EPR analysis Mössbauer

spectral analysis as follows.

Fig. S3 A. XP spectra of the N1s electrons for the Fe2O3-N/C (Fe-Phen/C-800) catalyst

Page 7: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S7

Fig. S3B. XP spectra of the Fe2P electrons for the Fe2O3-N/C (Fe-Phen/C-800) catalyst.

S9. EPR and Mössbauer spectral mesurments of Fe2O3-N/C (Fe-Phen/C-800) catalyst

The material Fe2O3-N/C (Fe-Phen/C-800) shows broad anisotropic signals at low temperature

which are characteristic for the presence of ferromagnetic domains/particles of different size and/or

shape (Fig. S4). The magnetic moments of such particles tend to align to the static magnetic field

of the spectrometer at low temperature. However, with rising temperature thermal fluctuations of

the magnetic moments became dominant which lift this alignment and gave rise to isotropic signals

above the so-called blocking temperature Tb. This effect is called super-paramagnetic resonance.5

The smaller the particle dimension, the lower is TB and is may be above 380 K since the anisotropy

of the signal is still persistent (Fig. S4).

Page 8: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S8

Fig. S4. EPR spectra of Fe2O3-N/C (Fe-Phen/C-800) catalyst measured as a function of

temperature By EPR spectroscopy alone it is not possible to identify the phase of the

superparamagnetic particles. Given the thermal pre-treatment in argon atmosphere rather the

formation of zero-valent iron than of ferric oxide particles was expected. Since EPR can hardly

distinguish between ferromagnetic and/or superparamagnetic particles of those phases,

Mössbauer spectra have been recorded in addition (Fig. S5). In the Mössbauer spectra, C1 turns

into a magnetically split sextet with hyperfine field of Bhf = 50.5 T and 50.3 T at 300 K, which

comprises about 50 % and 71 % at 77 K, respectively, of all Fe species. The hyperfine field is

comparable to that of -Fe2O3.6 Besides, sample contains a minor amount of high-spin Fe(II)

reflected by component C3. In all samples, the presence of metallic iron phases or iron carbide can

be excluded. Metallic iron phases would exhibit a magnetic hyperfine field of 33 T at room

temperature and carbidic iron phases would have even less hyperfine fields. Moreover, the

observed isomer shifts do not agree with the expected values for such phases. Based on EPR and

Mössbauer results it can be concluded that thermal pre-treatment and subsequent exposure of the

catalyst to ambient atmosphere at room temperature leads to the formation of super-paramagnetic

Fe2O3 particles, the relative percentage (with respect to the total Fe content) and the size of which

increases with rising pre-treatment temperature. This agrees properly with the TEM results. Given

that thermal pre-treatment has been performed in the absence of oxygen, it is possible that metallic

Fe was formed initially but oxidized quickly upon contact with ambient atmosphere. More likely,

oxygen from the acetate ligands is directly incorporated.

Table S1. Isomer shifts , quadrupole splitting EQ, hyperfine field Bhf and relative intensity Irel as

obtained by the analysis of the Mössbauer spectra plotted in Fig. S5

Catalyst T / K Component / mm s-1 EQ / mm s-1 Irel / % Bhf / T

Fe2O3-N/C 300 C1 0.35 0 71 50.3

C2 0.38 1.00 29

77 C1 0.4 0 56 52.4

C2 0.48 1.00 44

Page 9: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S9

Fig. S5. Mössbauer spectra of Fe2O3-N/C catalyst measured at 300 and 77 K. The solid lines

have been calculated assuming doublets and sextets with lorentzian line shape

Page 10: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S10

0 200 400 600 800 1000 12000

20

40

60

80

100 (A)

Aq. NH4 (micro L)

Yiel

d of

ben

zoni

trile

(%)

0 5 10 15 20 25 30 350102030405060708090100 (B)

Time (h)

Yiel

d of

ben

zoni

trile

(%)

0 5 10 15 20 25 30 35 40 450

20

40

60

80

100 (C)

Catalyst (mg)

Yiel

d of

bne

zoni

trile

(%)

Page 11: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S11

0 1 2 3 40

20

40

60

80

100 (D)

Benzaldehyde (mmol)

Yiel

d of

ben

zoni

trile

0 1 2 3 4 5 60

20

40

60

80

100

(E)

O2 (bar)

Yiel

d of

ben

zoni

trile

(%)

Fig. S6. Kinetics plots of yield of benzonitriles Vs. Aq. NH3 (A), time (B), catalyst (C), concentration

of benzaldehyde (D) and pressure oxygen (E). Reaction conditions: (A) = 0.5 mmol benzaldehyde, 50-1000 µL aq. NH3 (28-30% NH3 basis), 30

mg catalyst (3 mol% Fe), 1 bar O2 (balloon), 2 mL t-amyl alcohol, 40 °C, 24 h. (B)= 0.5 mmol

benzaldehyde, 200 µL aq. NH3 (28-30% NH3 basis), 30 mg catalyst (3 mol% Fe), 1 bar O2

(balloon), 2 mL t-amyl alcohol, 40 °C, 5-30 h. (C)= 0.5 mmol benzaldehyde, 200 µL aq. NH3 (28-

30% NH3 basis), 5-40 mg catalyst (3 mol% Fe), 1 bar O2 (balloon), 2 mL t-amyl alcohol, 40 °C, 24

h. (D)= 0.5-3.0 mmol benzaldehyde, 200 µL aq. NH3 (28-30% NH3 basis), 30 mg catalyst (3 mol%

Fe), 1 bar O2 (balloon), 2 mL t-amyl alcohol, 40 °C, 24 h. (E)= 0.5 mmol benzaldehyde, 200 µL

aq. NH3 (28-30% NH3 basis), 30 mg catalyst (3 mol% Fe), 1-5 bar O2 (balloon), 2 mL t-amyl

alcohol, 40 °C, 24 h.

Page 12: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S12

S10. NMR dataKM11-11

SCN

1H NMR (300 MHz, Chloroform-d) δ 7.78 – 7.62 (m, 2H), 7.53 – 7.26 (m, 2H), 2.52 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 145.22 , 140.78 , 137.55 , 127.92 , 125.35 , 123.52 , 122.66 , 114.57 , 105.59 , 13.75 . Yellow solid.

KM11-17

CNO

O

1H NMR (300 MHz, Chloroform-d) δ 7.17 – 6.96 (m, 2H), 6.93 – 6.70 (m, 1H), 4.33 – 4.11 (m, 4H). 13C NMR (75 MHz, Chloroform-d) δ 147.75 , 143.80 , 125.87 , 121.21 , 118.91 , 118.25 , 104.38 , 64.59 , 64.12 . Off white solid

KM11-21

CN

1H NMR (300 MHz, Chloroform-d) δ 7.38 – 6.96 (m, 5H), 3.19 – 2.89 (m, 1H), 2.61 – 2.31 (m, 2H), 1.37 (d, J = 7.0 Hz, 3H). 13C NMR (75 MHz, Chloroform-d) δ 143.16 , 128.88 , 127.35 , 126.57 , 118.63 , 36.55 , 26.36 , 20.70 . Yellow gum.

KM11-27

N

CN

1H NMR (300 MHz, Chloroform-d) δ 8.62 (d, J = 3.0 Hz, 1H), 8.59 (dd, J = 4.9, 1.6 Hz, 1H), 7.74-7.72 (m, 1H), 7.39 – 7.26 (m, 2H), 5.92 (d, J = 16.7 Hz, 1H). 13C NMR (75 MHz, Chloroform-d) δ 151.89 , 148.99 , 147.02 , 133.53 , 129.30 , 123.89 , 117.35 , 98.82 . Pale yellow solid.

KM11-28

CN

Br

1H NMR (300 MHz, Chloroform-d) δ (d, J = 9 Hz, 2H), 7.29 – 7.19 (m, 3H), 5.80 (d, J = 16.6 Hz, 1H). 13C NMR (75 MHz, Chloroform-d) δ 149.20 , 132.49 , 132.37 , 128.73 , 125.62 , 117.84 , 97.10 . Yellow solid.

KM11-32

N

CN

Cl

1H NMR (300 MHz, Chloroform-d) δ 8.37 (s, 1H), 7.62 (m, 2H), 7.47 (dd, J = 8.2, 7.0 Hz, 1H), 2.64 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 147.29 , 147.01 , 144.95 , 137.31 , 134.02 , 128.46 , 125.92 , 125.14 , 115.31 , 107.40 , 17.63 . Yellow solid.

Page 13: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S13

KM11-54

NN Cl

CNF

FF

1H NMR (300 MHz, Chloroform-d) δ 3.90 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 143.20 (q, J = 212.0 Hz), 135.50 , 119.07 (q, J = 270.7 Hz), 108.90 , 91.42 , 37.87 . Colorless oil.

KM11-57

O

CNOF

F

1H NMR (300 MHz, Chloroform-d) δ 7.28 – 7.13 (m, 3H), 7.04 – 6.89 (m, 3H), 5.18 (s, 2H), 3.76 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 162.07 (d, J = 252.0 Hz), 152.03 , 150.00 , 131.16 (d, J = 9.9 Hz), 126.24 , 125.67 (d, J = 3.5 Hz), 119.17 , 114.82 , 114.43 (d, J = 22.5 Hz), 113.91 , 104.76 , 62.33 (d, J = 4.1 Hz), 56.27 . White solid.

KM11-230

CN

Cl

Cl

1H NMR (300 MHz, Chloroform-d) δ 7.67 – 7.03 (m, 3H). 13C NMR (75 MHz, Chloroform-d) δ 138.43 , 134.00 , 128.21 , 114.31 , 113.35 . White solid.

KM11-58

O

O

CN

NO2

1H NMR (300 MHz, DMSO-d6) δ 7.94 (s, 1H), 7.73 (s, 1H), 6.39 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 152.93 , 152.19 , 145.13 , 115.89 , 113.50 , 106.59 , 105.62 , 102.06 . Yellow solid.

KM11-3

CN

NH2Br

Br

1H NMR (300 MHz, Chloroform-d) δ 7.65 (d, J = 2.2 Hz, 1H), 7.40 (d, J = 2.2 Hz, 1H), 4.84 (br s, 2H). 13C NMR (75 MHz, Chloroform-d) δ 146.21 , 139.38 , 133.60 , 115.61 , 109.74 , 108.20 , 97.90 . White solid.

KM11-4

CN

1H NMR (300 MHz, Chloroform-d) δ 7.55 – 7.00 (m, 6H), 5.78 (d, J = 16.7 Hz, 1H). 13C NMR (75 MHz, Chloroform-d) δ 150.59 , 133.52 , 131.25 , 129.14 , 127.40 , 118.22 , 96.35 . Colorless oil.

Page 14: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S14

KM11-12

CN

FF

F

1H NMR (300 MHz, Chloroform-d) δ 7.45 – 7.01 (m, 2H). 13C NMR (75 MHz, DMSO-d6) δ 151.46 (ddd, J = 236.6, 9.8, 3.5 Hz), 143.44 (dt, J = 243.6, 13.3 Hz), 117.34 (dt, J = 23.1, 8.4 Hz), 115.93 (t, J = 2.8 Hz), 108.0 (td, J = 14.0, 4.9 Hz). Colorless gum.

KM11-34

CN

1H NMR (300 MHz, Chloroform-d) δ 7.46 – 6.89 (m, 5H), 2.85 (t, J = 7.4 Hz, 2H), 2.50 (t, J = 6.0 Hz, 2H). 13C NMR (75 MHz, Chloroform-d) δ 138.12 , 128.89 , 128.31 , 127.25 , 119.23 , 31.57 , 19.36 . Colorless oil.

KM11-53

CNF

FF

FFF

1H NMR (300 MHz, Chloroform-d) δ 8.95 – 8.10 (m, 3H). 13C NMR (75 MHz, Chloroform-d) δ 133.23 (q, J = 34.8 Hz), 132.22 (q, J = 3.8 Hz), 125.75 (q, J = 253.4 Hz) 126.48 (hept, J = 3.3 Hz), 115.89 , 114.87 . Colorless oil.

KM11-79

CN

1H NMR (300 MHz, Chloroform-d) δ 7.44 – 7.15 (m, 10H), 5.05 (s, 1H). 13C NMR (75 MHz, Chloroform-d) δ 135.92 , 129.22 , 128.28 , 127.75 , 119.72 , 42.62 . Pale Yellow solid.

KM11-95

CN

1H NMR (300 MHz, Chloroform-d) δ 7.64 – 7.55 (m, 4H), 7.52 – 7.46 (m, 2H), 7.42 – 7.29 (m, 3H). 13C NMR (75 MHz, Chloroform-d) δ 145.66 , 139.16 , 132.61 , 129.14 , 128.69 , 127.74 , 127.24 , 118.98 , 110.91 . White solid.

Page 15: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S15

KM11-70

CN

1H NMR (300 MHz, Chloroform-d) δ 7.65 – 6.95 (m, 10H), 5.62 (s, 1H). 13C NMR (75 MHz, Chloroform-d) δ 163.15 , 138.94 , 137.10 , 130.50 , 130.09 , 129.61 , 128.72 , 128.61 , 128.53 , 117.98 , 94.95 .

KM11-74 (cis trans isomer mixture)

N

1H NMR (300 MHz, Chloroform-d) δ 5.19 – 4.75 (m, 2H), 2.41 – 2.26 (m, 1H), 2.20 – 2.04 (m, 3H), 1.91 (m, 3H), 1.62 (dt, J = 2.5, 1.3 Hz, 3H), 1.58 – 1.50 (m, 3H). 13C NMR (75 MHz, Chloroform-d) δ 165.13 , 165.02 , 133.32 , 133.20 , 122.21 , 122.16 , 117.28 , 116.98 , 95.80 , 95.22 , 38.57 , 36.28 , 26.13 , 25.65 , 25.62 , 25.60 , 22.90 , 21.03 , 17.72 , 17.66 .KM11-76

O

O

CN

Br

1H NMR (300 MHz, Chloroform-d) δ 7.00 (s, 1H), 6.94 (s, 1H), 6.04 (s, 2H). 13C NMR (75 MHz, Chloroform-d) δ 152.28 , 147.49 , 118.90 , 117.36 , 113.36 , 112.50 , 107.80 , 103.17 . White solid

KM11-77

CN

1H NMR (300 MHz, Chloroform-d) δ 7.53 – 7.37 (m, 6H), 7.33 – 7.16 (m, 3H), 7.09 (d, J = 16.4 Hz, 1H), 6.95 (d, J = 16.4 Hz, 1H). 13C NMR (75 MHz, Chloroform-d) δ 141.83 , 136.30 , 132.52, 132.40 , 128.89 , 128.68 , 126.96 , 126.89 , 126.72 , 119.10 , 110.54 . White solid.

KM11-142

CN

1H NMR (300 MHz, Chloroform-d) δ 7.36 – 7.19 (m, 5H), 7.11 – 7.10 (m, 1H), 2.04 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 144.43 , 133.94 , 129.35 , 129.32 , 128.71 , 121.13 , 109.49 , 16.82 . Pale Yellow gum.

KM11-144

OCN

1H NMR (300 MHz, Chloroform-d) δ 7.48-7.72 (m, 1H), 7.03 (d, J = 20.00 Hz, 1H), 6.41-6.55 (m, 2H), 5.68 (d, J = 20.00 Hz, 1H). 13C NMR (75 MHz, Chloroform-d) δ 149.79 , 145.47 , 136.15 , 118.28 , 115.47 , 112.64 , 93.34 . Brown gum.

Page 16: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S16

KM11-146

CN

1H NMR (300 MHz, Chloroform-d) δ 6.58 (m,1H), 4.74 – 4.70 (m, 1H), 4.64 (m, 1H), 2.32 – 2.19 (m, 3H), 2.14 – 2.03 (m, 2H), 1.86 – 1.77 (m, 1H), 1.69 – 1.65 (m, 3H), 1.52 – 1.39 (m, 1H). 13C NMR (75 MHz, Chloroform-d) δ 147.72 , 144.62 , 119.53 , 112.06 , 109.84 , 39.20 , 30.96 , 26.93 , 26.28 , 20.63 . Yellow oil.

KM11-148

NH2

O

1H NMR (300 MHz, DMSO-d6) δ 7.91 (br s, 1H), 7.8 (d, J = 6.00 Hz, 2H), 7.28 (br s, 1H), 7.2 (d, J = 9.00 Hz, 2H), 2.34 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 168.32 , 141.50 , 131.96 , 129.18 , 127.98 , 21.39 . White solid.

KM11-162

S

O

NH2

1H NMR (300 MHz, DMSO-d6) δ 8.14 (dd, J = 3.0, 1.3 Hz, 1H), 7.78 (br s, 1H), 7.56 (dd, J = 5.0, 2.9 Hz, 1H), 7.49 (dd, J = 5.0, 1.3 Hz, 1H), 7.23 (br s, 1H). 13C NMR (75 MHz, DMSO-d6) δ 164.16 , 138.47 , 129.45 , 127.62 , 126.99 . Offwhite solid.KM11-190

NH2

OO

O

1H NMR (300 MHz, DMSO-d6) δ 7.81 (br s, 1H), 7.48 (dd, J = 8.1, 1.8 Hz, 1H), 7.41 (dd, J = 1.8, 0.4 Hz, 1H), 7.23 (br s, 1H), 6.97 (d, J = 9.0 Hz, 1H), 6.09 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 167.45 , 150.14 , 147.70 , 128.77 , 122.96 , 108.19 , 108.02 , 102.05 . Yellow solid.

KM11-196

NH2

O

Br

1H NMR (300 MHz, DMSO-d6) δ 7.87 (br s, 1H), 7.69 – 7.62 (m, 1H), 7.58 (br s, 1H), 7.46 – 7.39 (m, 2H), 7.35 – 7.31 (m, 1H). 13C NMR (75 MHz, DMSO-d6) δ 169.54 , 139.81 , 133.18 , 131.11 , 129.03 , 127.95 , 119.09 . White solid

Page 17: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S17

KM11-197

O

Cl

NH2

1H NMR (300 MHz, DMSO-d6) δ 7.89 (br s, 1H), 7.60 (br s, 1H), 7.54 – 7.34 (m, 4H). 13C NMR (75 MHz, DMSO-d6) δ 168.67 , 137.60 , 131.02 , 130.14 , 130.07 , 129.14 , 127.47 . White solid

KM11-198

NH2

O

F

F F

F

FF

1H NMR (300 MHz, DMSO-d6) δ 8.17 (br s, 1H), 8.02 (dd, J = 1.8, 0.7 Hz, 2H), 7.91 – 7.80 (m, 1H), 7.83 (br s, 1H). 13C NMR (75 MHz, DMSO-d6) δ 167.98 , 138.32 (q, J = 2.1 Hz), 132.90 (q, J = 32.6 Hz), 129.90 (q, J = 33.4 Hz), 128.19 (q, J = 4.9 Hz), 126.94 (q, J = 3.7 Hz), 125.67 (q, J = 3.8 Hz), 123.39 (q, J = 253.4 Hz), 123.21 (q, J = 254.8 Hz)).Yellow soild

KM11-199

NH2

O

F

1H NMR (300 MHz, DMSO-d6) δ 8.04 – 7.92 (m, 3H), 7.41 (br s, 1H), 7.32 – 7.23 (m, 2H). 13C NMR (75 MHz, DMSO-d6) δ 167.35 , 164.39 (d, J = 248.4 Hz), 131.20 (d, J = 2.9 Hz), 130.57 (d, J = 9.0 Hz), 115.52 (d, J = 21.7 Hz). White solid.

KM11-202

SO

NH2

1H NMR (300 MHz, DMSO-d6) δ 7.99 (br s, 1H), 7.80 – 7.68 (m, 2H), 7.40 (br s, 1H), 7.13 (m, 1H). 13C NMR (75 MHz, DMSO-d6) δ 163.44 , 140.73 , 131.41 , 129.18 , 128.34 . White solid.

KM11-205

SO

NH2

1H NMR (300 MHz, DMSO-d6) δ 7.54 (d, J = 8.0, Hz, 1H), 7.34 (br s, 2H), 6.94 (d, J = 8.0, Hz, 1H), 2.43 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 164.63 , 140.41 , 132.34 , 132.04 , 127.72 , 15.79 . White solid.

Page 18: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S18

KM11-214

NNH2

O

1H NMR (300 MHz, DMSO-d6) δ 8.61 (dt, J = 3.2, 1.9 Hz, 1H), 8.17 (br s, 1H), 8.11 – 8.03 (m, 1H), 8.01 – 7.90 (m, 1H), 7.71 (br s, 1H), 7.56 – 7.53 (m, 1H). 13C NMR (75 MHz, DMSO-d6) δ 166.58 , 150.73 , 148.86 , 138.04 , 126.86 , 122.37 . White solid.

KM11-211

NH2

O

NO2

1H NMR (300 MHz, DMSO-d6) δ 8.17 (br s, 1H), 8.01 (ddd, J = 8.0, 1.3, 0.5 Hz, 1H), 7.82 – 7.73 (m, 1H), 7.73 – 7.60 (m, 3H). 13C NMR (75 MHz, DMSO-d6) δ 167.69 , 147.69 , 133.78 , 133.06 , 131.06 , 129.30 , 124.39 . White solid.

KM11-211

NH2

O

O

FFF

1H NMR (300 MHz, DMSO-d6) δ 13.22 (br s, 1H), 8.07 (d, J = 9.0, Hz, 2H), 7.48 (d, J = 6.0, Hz, 2H), 3.33 (br s, 1H). 13C NMR (75 MHz, DMSO-d6) δ 166.62 , 151.90 , 132.15 , 130.33 , 125.29 (q, J = 238.7 Hz), 121.15 . White solid.

S11. References1. F. Jaouen, et al., ACS Appl. Mater. Interfaces, 2009, 1, 1623-1639.

2. F. Buchner, K. Flechtner, Y. Bai, E. Zillner, I. Kellner, H. Steinrück, H. Marbach, J. M.

Gottfried, J. Phys. Chem. C, 2008, 112, 15458-15465.

3. (a) M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, M. Gautier-Soyer, Appl.Surf. Sci.

2000, 165, 288-302; (b) J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook

of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Praire, MN, 1992.

4. (a) M. Stöcker, Microporous Mater. 1996, 6, 235–257; (b) P. Grosvenor, B.A. Kobe, M.C.

Biesinger, N.S. McIntyre, Surf. Interface Anal. 2004, 36, 1564–1574.

5. R. Berger, J-C. Bissey, J. Kliava, H. Daubric, C. Estournès, J. Magn. Mater. 2001, 234,

535.

6. H. Huang, R. Christmann, R. Ulber, V. Schünemann, Hyperfine Interactions, 2012 205,

121–124

Page 19: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S19

S12. NMR spectra

-4-3-2-10123456789101112131415f1 (ppm)

170524.316.1.fidKathir KM11-11Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 16

3.00

1.99

1.97

Page 20: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S20

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170524.316.2.fidKathir KM11-11Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 16 13

.75

105.

59

114.

57

122.

6612

3.52

125.

3512

7.92

137.

5514

0.78

145.

22

-3-2-1012345678910111213141516f1 (ppm)

170524.317.1.fidKathir KM11-17Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 17

4.37

1.00

1.88

6.81

6.82

6.84

6.84

6.84

Page 21: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S21

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170524.317.2.fidKathir KM11-17Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 17 64

.12

64.5

9

104.

38

118.

2511

8.91

121.

2112

5.87

143.

8014

7.75

Page 22: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S22

-4-3-2-10123456789101112131415f1 (ppm)

170526.303.1.fidKathir KM11-21Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 3

3.00

2.16

1.05

5.54

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.303.2.fidKathir KM11-21Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 3 20

.70

26.3

6

36.5

5

118.

63

126.

5712

7.35

128.

88

143.

16

Page 23: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S23

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.014.515.015.516.0f1 (ppm)

170526.305.1.fidKathir KM11-27Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 5

1.00

2.01

1.27

0.83

0.96

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.305.2.fidKathir KM11-27Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 5 98

.82

117.

3512

3.89

129.

3013

3.53

147.

0214

8.99

151.

89

Page 24: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S24

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.014.515.015.516.0f1 (ppm)

170526.306.1.fidKathir KM11-28Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 6

1.00

3.27

1.86

5060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.306.2.fidKathir KM11-28Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 6 97

.10

117.

84

125.

6212

8.73

132.

3713

2.49

149.

20

Page 25: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S25

-4-3-2-1012345678910111213141516f1 (ppm)

170526.307.1.fidKathir KM11-32Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 7

3.00

0.89

1.81

0.90

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.307.2.fidKathir KM11-32Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 7 17

.63

107.

40

115.

31

125.

1412

5.92

128.

4613

4.02

137.

31

144.

9514

7.01

147.

29

Page 26: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S26

-3-2-1012345678910111213141516f1 (ppm)

170526.310.1.fidKathir KM11-54Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 10

3.00

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.310.2.fidKathir KM11-54Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 10 37

.87

91.4

2

108.

9011

3.69

117.

2712

0.86

124.

44

135.

5014

2.40

142.

9314

3.46

143.

99

Page 27: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S27

-4-3-2-1012345678910111213141516f1 (ppm)

170526.311.1.fidKathir KM11-57Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 11

3.00

1.98

2.82

2.84

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.311.2.fidKathir KM11-57Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 11 56

.27

62.3

062

.35

104.

7611

3.91

114.

2811

4.58

114.

8211

9.17

121.

3712

1.60

125.

6412

5.69

126.

2413

1.09

131.

22

150.

0015

2.03

160.

4016

3.73

Page 28: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S28

-3-2-1012345678910111213141516f1 (ppm)

170628.f347.10.fidKathir/ KM11-230PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 47

3.00

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

170628.f347.11.fidKathir/ KM11-230C13CPD CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 47 11

3.35

114.

31

128.

21

134.

00

138.

43

Page 29: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S29

-3-2-1012345678910111213141516f1 (ppm)

170526.324.1.fidKathir KM11-58Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1705 24

2.00

0.86

0.83

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.324.2.fidKathir KM11-58Au13C DMSO {C:\Bruker\TopSpin3.5pl6} 1705 24 10

2.06

105.

6210

6.59

113.

5011

5.89

145.

13

152.

1915

2.93

Page 30: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S30

-4-3-2-1012345678910111213141516f1 (ppm)

170526.325.1.fidKathir KM11-3Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 25

1.86

1.00

1.00

4.84

7.40

7.41

7.64

7.65

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.325.2.fidKathir KM11-3Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 25 97

.90

108.

2010

9.74

115.

61

133.

60

139.

38

146.

21

Page 31: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S31

-4-3-2-10123456789101112131415f1 (ppm)

170526.326.1.fidKathir KM11-4Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 26

1.00

6.10

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.326.2.fidKathir KM11-4Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 26 96

.35

118.

22

127.

4012

9.14

131.

2513

3.52

150.

59

Page 32: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S32

-4-3-2-1012345678910111213141516f1 (ppm)

170526.327.1.fidKathir KM11-12Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 27

2.00

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.327.2.fidKathir KM11-12Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 27 10

7.83

107.

9110

7.96

108.

0410

8.10

108.

1711

5.90

117.

1811

7.29

117.

3911

7.51

141.

5114

1.71

141.

9014

4.99

145.

1914

5.38

149.

6814

9.73

149.

8214

9.87

153.

0615

3.11

153.

2015

3.25

Page 33: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S33

-4-3-2-10123456789101112131415f1 (ppm)

170526.328.1.fidKathir KM11-34Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 28

2.00

2.03

4.82

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.328.2.fidKathir KM11-34Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 28 19

.36

31.5

7

119.

23

127.

2512

8.31

128.

89

138.

12

Page 34: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S34

-4-3-2-1012345678910111213141516f1 (ppm)

170526.329.1.fidKathir KM11-53Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 29

3.00

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.329.2.fidKathir KM11-53Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 29 11

4.87

115.

8911

6.70

120.

3212

3.94

126.

3412

6.38

126.

4312

6.48

126.

5312

6.57

126.

6212

7.56

132.

1513

2.20

132.

2513

2.30

132.

5413

3.00

133.

4613

3.93

Page 35: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S35

-4-3-2-10123456789101112131415f1 (ppm)

170526.330.1.fidKathir KM11-79Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 30

1.00

10.1

0

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.330.2.fidKathir KM11-79Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 30 42

.62

119.

72

127.

7512

8.28

129.

2213

5.92

Page 36: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S36

-4-3-2-10123456789101112131415f1 (ppm)

170526.331.1.fidKathir KM11-95Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 31

3.00

1.98

4.00

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170526.331.2.fidKathir KM11-95Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 31 11

0.91

118.

98

127.

2412

7.74

128.

6912

9.14

132.

6113

9.16

145.

66

Page 37: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S37

-4-3-2-10123456789101112131415f1 (ppm)

170529.326.1.fidKathir KM11-70Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 26

1.00

10.2

8

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170529.326.2.fidKathir KM11-70Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 26 94

.95

117.

9812

8.53

128.

6112

8.72

129.

6113

0.09

130.

5013

7.10

138.

94

163.

15

Page 38: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S38

-3-2-1012345678910111213141516f1 (ppm)

170529.328.1.fidKathir KM11-74Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 28

3.00

3.19

3.11

3.19

1.03

1.93

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170529.328.2.fidKathir KM11-74Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 28 17

.66

17.7

221

.03

22.9

025

.60

25.6

225

.65

26.1

336

.28

38.5

7

95.2

295

.80

116.

9811

7.28

122.

1612

2.21

133.

2013

3.32

165.

0216

5.13

Page 39: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S39

-3-2-1012345678910111213141516f1 (ppm)

170529.329.1.fidKathir KM11-76Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 29

2.00

0.82

0.84

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170529.329.2.fidKathir KM11-76Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 29 10

3.17

107.

8011

2.50

113.

3611

7.36

118.

90

147.

49

152.

28

Page 40: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S40

-4-3-2-10123456789101112131415f1 (ppm)

170529.330.1.fidKathir KM11-77Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 30

1.07

1.09

3.04

6.00

-100102030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

170529.330.2.fidKathir KM11-77Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1705 30 11

0.54

119.

1012

6.72

126.

8912

6.96

128.

6812

8.89

132.

4013

2.52

136.

3014

1.83

Page 41: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S41

-3-2-1012345678910111213141516f1 (ppm)

170613.f340.10.fidKathir KM11-142PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 40

3.00

0.90

4.84

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

170613.f340.11.fidKathir KM11-142C13CPD CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 40 16

.82

109.

68

121.

29

128.

7112

9.32

129.

3513

4.12

144.

43

Page 42: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S42

-3-2-1012345678910111213141516f1 (ppm)

170613.f342.10.fidKathir KM11-144PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 42

1.00

2.14

0.78

0.94

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

170613.f342.11.fidKathir KM11-144C13CPD CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 42 93

.34

112.

6411

5.47

118.

28

136.

15

145.

47

149.

79

Page 43: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S43

-3-2-1012345678910111213141516f1 (ppm)

170613.f344.10.fidKathir KM11-146PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 44

1.49

3.00

1.54

2.02

3.06

1.22

1.08

0.90

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

170613.f344.11.fidKathir KM11-146C13CPD CDCl3 {C:\Bruker\TopSpin3.5pl6} 1706 44 20

.63

26.2

826

.93

30.9

6

39.2

0

109.

8411

2.06

119.

53

144.

6214

7.72

Page 44: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S44

-3-2-1012345678910111213141516f1 (ppm)

170619.f337.10.fidKathir KM11-148PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 37

3.00

2.13

0.53

2.03

0.85

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

21.3

9

127.

9812

9.18

131.

96

141.

50

168.

32

Page 45: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S45

-3-2-1012345678910111213141516f1 (ppm)

170619.f338.10.fidKathir KM11-162PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 38

0.92

0.94

0.92

0.97

1.00

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

126.

9912

7.62

129.

45

138.

47

164.

16

Page 46: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S46

-3-2-1012345678910111213141516f1 (ppm)

170619.f339.10.fidKathir KM11-190PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 39

2.00

0.99

0.88

0.91

0.94

0.91

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

102.

05

108.

0210

8.19

122.

96

128.

77

147.

7015

0.14

167.

45

Page 47: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S47

-3-2-1012345678910111213141516f1 (ppm)

170619.f340.10.fidKathir KM11-196PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 40

1.01

1.98

0.85

1.00

0.85

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

119.

09

127.

9512

9.03

131.

1113

3.18

139.

81

169.

54

Page 48: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S48

-3-2-1012345678910111213141516f1 (ppm)

170619.f341.10.fidKathir KM11-197PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 41

4.36

1.00

1.00

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

127.

4712

9.14

130.

0713

0.14

131.

0213

7.60

168.

67

Page 49: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S49

-3-2-1012345678910111213141516f1 (ppm)

170620.f331.10.fidKathir KM11-198PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 31

0.89

1.00

1.97

0.92

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

121.

6412

1.77

125.

2812

5.39

125.

5912

5.64

125.

6912

5.74

126.

8612

6.91

126.

9612

7.01

128.

0912

8.16

128.

2212

8.29

129.

2512

9.70

130.

1113

0.54

132.

2413

2.68

133.

1113

3.55

138.

2813

8.31

138.

3413

8.36

167.

98

Page 50: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S50

-3-2-1012345678910111213141516f1 (ppm)

170620.f332.10.fidKathir KM11-199PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 32

1.92

0.64

2.70

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

115.

3811

5.66

130.

5113

0.63

131.

1813

1.22

162.

7516

6.04

167.

35

Page 51: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S51

-3-2-1012345678910111213141516f1 (ppm)

170620.f333.10.fidKathir KM11-202PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 33

0.99

0.82

2.00

0.80

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

128.

3412

9.18

131.

41

140.

73

163.

44

Page 52: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S52

-3-2-1012345678910111213141516f1 (ppm)

170620.f334.10.fidKathir KM11-205PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 34

3.00

1.00

1.94

1.06

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

15.7

9

127.

7213

2.04

132.

34

140.

41

164.

63

Page 53: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S53

-3-2-1012345678910111213141516f1 (ppm)

170620.f335.10.fidKathir KM11-214PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 35

1.00

0.80

1.00

0.98

0.82

0.93

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

122.

37

126.

86

138.

04

148.

8615

0.73

166.

58

Page 54: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S54

-3-2-1012345678910111213141516f1 (ppm)

170621.f356.10.fidKathir/ KM II-211PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 56

2.83

1.13

1.00

0.83

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

124.

3912

9.30

131.

0613

3.06

133.

78

147.

69

167.

69

Page 55: Supporting Information Primary Amides Oxidation Process ... · Sharif, Narayana V. Kalevaru, and Rajenahally V. Jagadeesh* Leibniz-Institut für Katalyse e. V. an der Universität

S55

-3-2-1012345678910111213141516f1 (ppm)

170621.f357.10.fidKathir/ KM II-213PROTON DMSO {C:\Bruker\TopSpin3.5pl6} 1706 57

0.95

2.00

1.95

0.86

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

116.

4111

8.68

121.

1512

2.09

125.

5013

0.33

132.

15

151.

90

166.

62