SUPERFICIES PRIMARIAS

26
SUPERFICIES PRIMARIAS Son las superficies encargadas de proporcionar el movimiento de la aeronave sobre sus tres ejes. -Elevadores, timón de profundidad, elevators -Timón de dirección, rudder -Alerones, ailerons ELEVADORES, TIMÓN DE PROFUNDIDAD, ELEVATORS. Superficies móviles situadas en el estabilizador horizontal, al ser accionadas (semivolante o bastón hacia adelante o hacia atrás) Bajan o suben y por efecto aerodinámico del viento relativo con la superficie (mayor curvatura, se incrementa la succión) el avión baja o sube la nariz produciéndose un movimiento sobre el eje lateral o transversal denominado cabeceo o pitch. TIMÓN DE DIRECCIÓN, RUDDER.

Transcript of SUPERFICIES PRIMARIAS

Page 1: SUPERFICIES PRIMARIAS

SUPERFICIES PRIMARIAS

Son las superficies encargadas de proporcionar el movimiento de la aeronave sobre sus tres ejes.

-Elevadores, timón de profundidad, elevators-Timón de dirección, rudder-Alerones, ailerons

ELEVADORES, TIMÓN DE PROFUNDIDAD, ELEVATORS.

Superficies móviles situadas en el estabilizador horizontal, al ser accionadas (semivolante o bastón hacia adelante o hacia atrás) Bajan o suben y por efecto aerodinámico del viento relativo con la superficie (mayor curvatura, se incrementa la succión) el avión baja o sube la nariz produciéndose un movimiento sobre el eje lateral o transversal denominado cabeceo o pitch.

TIMÓN DE DIRECCIÓN, RUDDER.

Superficies móviles situadas en el estabilizador vertical, al ser accionadas (se oprime pedal izquierdo o pedal derecho) moviéndose hacia la izquierda o hacia la derecha y por efecto aerodinámico del viento relativo con la superficie (mayor curvatura, se incrementa la succión) el avión gira hacia la izquierda o la derecha la nariz produciéndose un movimiento sobre el eje vertical denominado guiñada o yaw.

Page 2: SUPERFICIES PRIMARIAS

ALERONES, AILERONS

Superficies móviles situadas en el borde de salida en la punta de los planos, al ser accionadas (semivolante o bastón hacia la izquierda o hacia la derecha) el alerón izquierdo sube, el alerón derecho baja (o alerón derecho sube y alerón izquierdo baja) y por efecto aerodinámico del viento relativo con las superficies (mayor curvatura, se incrementa la succión) se produce un movimiento sobre el eje longitudinal del avión a la izquierda o a la derecha denominado alabeo, banqueo, bank o roll.

OTRAS SUPERFICIES

TABS O COMPENSADORES

Son superficies móviles situadas en las superficies primarias (elevadores, timón de dirección y alerones). Su propósito al ser activadas es minimizar el esfuerzo realizado por el piloto cuando acciona las superficies primarias, los tabs producen las fuerzas por efectos aerodinámicos. En los aviones pequeños generalmente se encuentran en el elevador solamente, en las aeronaves más grandes se pueden ubicar en las otras superficies. El tab o compensador (trim) siempre se mueve en sentido contrario al movimiento de la superficie primaria.

Page 3: SUPERFICIES PRIMARIAS

SPOILERS

Son superficies móviles ubicadas en el extradós de los planos, su propósito al ser activadas (por efectos aerodinámicos) es direccionar el flujo de aire de acuerdo al ángulo con que salga, cortando así el flujo laminar y por lo tanto disminuyendo la sustentación.

GROUND SPOILER (ESPOILER DE TIERRA)

Se activan (salen del extradós formando un ángulo de casi 90°) cuando el tren de aterrizaje hace contacto con la pista. De esta forma corta el flujo laminar del extradós, perdiéndose sustentación lográndose que el peso se haga mayor que la sustentación y por lo tanto disminuyéndose la velocidad del avión.

FLIGHT SPOILER (ESPOILER DE VUELO)

Se activan generalmente sincronizadas con los alerones y salen formando un ángulo de acuerdo al movimiento de los alerones, también son utilizados para disminuir sustentación y por lo tanto bajar la velocidad de la aeronave.

Page 4: SUPERFICIES PRIMARIAS

SUPERFICIES HIPERSUSTENTADORAS

Son las superficies encargadas de aumentar la sustentación del avión en velocidades lentas (despegue y aterrizaje).

FlapsFlaps de borde de ataqueSlatsSlots

FLAPS

Superficies móviles localizadas en el borde de salida en la raíz del plano, al ser accionadas bajan (algunas también se desplazan) aumentando la curvatura, por lo tanto en el extradós se incrementa la velocidad de la partícula de aire disminuye la presión y aumenta la sustentación, en el intradós aumenta la presión y se incrementa la resistencia al avance. En las aeronaves grandes se encuentran el flap exterior (inboard flap) y el flap exterior (out board Flap), los

Page 5: SUPERFICIES PRIMARIAS

aviones pequeños solamente utilizan el flap interior. El propósito de los flaps es aumentar la sustentación en velocidades lentas. Generalmente en despegue (take off) se utilizan pocos grados de flaps, mientras que en aterrizaje (landing) se utilizan máximos grados de flaps (full flaps). Al ser activados se colocan desde el primer punto de flaps hasta llegar al último.

Page 6: SUPERFICIES PRIMARIAS

EFECTOS QUE PRODUCEN LOS FLAPS

Aumenta la curvatura, la superficie alar (en algunos casos) Aumenta la velocidad de la partícula de aire en el extradós por lo tanto disminuye la

presión Aumenta la sustentación Aumenta la resistencia al avance Aumenta el ángulo de ataque sin variar la actitud de vuelo Posibilidad de volar a velocidades más bajas sin entrar en pérdida Se necesita menor longitud de pista en despegues y aterrizajes En el momento de su deflexión el avión tiende a ascender y perder velocidad

ALGUNOS TIPOS DE FLAPS

SENCILLO

Al ser accionado baja tanto la parte del extradós como del intradós, utilizados en aeronaves pequeñas.

DE INTRADOS

Page 7: SUPERFICIES PRIMARIAS

Al ser accionado baja solamente la parte del intradós, la superficie del extradós queda idéntica.

RANURADO

Al ser accionado se desplaza (hacia el borde de salida) y baja, aumentando la curvatura y la superficie alar; por lo tanto aumentando la sustentación.

FOWLER

Se encuentra dentro del intradós del plano, al ser accionado se desplaza dentro del intradós hacia el borde de salida luego van saliendo uno o dos más. Es el flap que más aumenta la curvatura y la superficie alar por lo tanto es el de mayor incremento de sustentación, utilizado en las aeronaves grandes

FLAP DE BORDE DE ATAQUE

Algunas aeronaves además del flap tienen flap de borde de ataque el cual se encuentra ubicado en la raíz del plano hacia el borde de ataque, su propósito es al salir, aumentar curvatura, superficie alar y por efectos aerodinámicos incrementar la sustentación. Generalmente los aviones que tienen los flaps de borde de ataque también llevan los Slats.Algunos flaps de borde de ataque se encuentran fuselados en el intradós de los planos y al ser accionados salen de abajo hacia arriba, aumentando la geometría del plano tanto en curvatura como en superficie.Otros flaps se encuentran hacia el extradós y al ser accionados bajan y se desplazan hacia el borde de ataque.

Page 8: SUPERFICIES PRIMARIAS

SLATS

Son superficies móviles ubicadas en el borde de ataque de los planos, al ser accionados se desplazan hacia el borde de ataque dejando una ranura, por la cual penetra el viento relativo de la mayor presión (intradós) a la menor presión (extradós), aumentando la velocidad de la partícula de aire en el extradós disminuyéndose la presión y por lo tanto incrementándose la sustentación.El Slat realmente es un retardador de la entrada en pérdida del avión, sin el Slat el ángulo de ataque crítico o máximo de la aeronave es menor que cuando se ha activado el Slat por lo tanto es utilizado en velocidades lentas.

Page 9: SUPERFICIES PRIMARIAS

TIPOS DE SLATS

MANUAL.Es activado por el piloto

AUTOMÁTICO (AERODINÁMICO).

Se activa por la diferencia de presiones entre el extradós y el intradós cuando el avión se acerca al ángulo de ataque crítico o máximo, para así dar mayor ángulo de ataque y retardar la entrada en pérdida.

SLOTS

Son planos con una ranura fija y un ángulo determinado ubicado hacia el borde de ataque, actualmente en aviación comercial no es utilizado. Lo utilizan algunos aviones muy rápidos cuando hacen virajes en velocidades relativamente lentas. Las ventajas de su uso en velocidades lentas, retardan la entrada en pérdida, la desventaja en velocidades rápidas (crucero) porque ofrece mayor resistencia al avance y una tendencia a aumentar la sustentación.

RESISTENCIA AL AVANCE

Se produce por el contacto de la superficie (aeronave) en vuelo con el viento relativo debido a su densidad y viscosidad.

1

Page 10: SUPERFICIES PRIMARIAS

La resistencia al avance (resistencia total) se descompone en:

Resistencia alar (Da) Resistencias parásitas (Dp) Resistencias por fricción (Df) Resistencias inducidas (Di)

RESISTENCIA ALAR (Da)

Se produce por el contacto del aire con el plano y se incrementa cuando se aumenta el ángulo de ataque, en el extradós se va desprendiendo flujo laminar convirtiéndose en turbulento (generando mayor resistencia al avance) y en el intradós se produce mayor presión.

FÓRMULA DE RESISTENCIA ALAR

Da = ½ .p. CD. S. V 2

Da = Resistencia alarP =Densidad del aireV2 = Velocidad al cuadradoS = Superficie alarCD = Coeficiente aerodinámico

Cuando se aumenta la densidad del aire, la superficie alar y la velocidad se incrementa la resistencia alar.

Page 11: SUPERFICIES PRIMARIAS

RESISTENCIAS PARÁSITAS (Dp)

Son producidas por partes o componentes de la aeronave que no intervienen en la sustentación. Partes frontales del avión trenes de aterrizaje fijos, antenas.

RESISTENCIAS POR FRICCIÓN (Df)

Se producen por el contacto del aire con el fuselaje formando una capa límite que genera resistencia al avance, por lo tanto se debe tener la superficie limpia y exenta de abolladuras.

RESISTENCIAS INDUCIDAS (Di)

Se producen en las puntas de los planos por el paso del aire de la mayor presión (intradós) a la menor presión (extradós) formando torbellinos o remolinos denominados VORTEX o VÓRTICES que generan alta resistencia al avance incrementándose el consumo de combustible.

Page 12: SUPERFICIES PRIMARIAS

Las resistencias inducidas se producen en velocidades lentas por lo cual se denominan resistencias producidas por la sustentación.Aproximadamente la resistencia inducida es el 85% de la resistencia total en un avión.

Page 13: SUPERFICIES PRIMARIAS
Page 14: SUPERFICIES PRIMARIAS

FORMAS PARA DISMINUIR LAS RESISTENCIAS INDUCIDAS

Colocación de aletas marginales, wing tips, carenas y tip tanks: su propósito es disminuir el paso del aire de la mayor presión (intradós) a la menor presión (extradós) reduciéndose la resistencia inducida y el consumo de combustible.

WING TIP

TIP TANK

Page 15: SUPERFICIES PRIMARIAS

CARENA

Alargamiento de los planos

Al alargar la envergadura de los planos se debe reducir la cuerda sin variación de la superficie alar, al disminuirse la cuerda el paso del aire de la mayor presión a la menor presión decrece disminuyéndose la resistencia inducida.

WINGLETS

Page 16: SUPERFICIES PRIMARIAS

Son parte integral del plano su propósito primario es reducir el paso del aire de la mayor presión a la menor presión el viento turbulento que se pasa hacia el extradós lo “recogen” los winglets lo convierten en flujo laminar tomando la dirección del viento relativo, el winglet reduce en más alto porcentaje la resistencia inducida.

EMPENAJE

Es la parte posterior del avión conformada por el estabilizador horizontal y el estabilizador vertical. El estabilizador vertical con su superficie timón de dirección o Rudder, el estabilizador vertical con su superficie timón de profundidad o elevator. El propósito del empenaje es dar estabilidad a la aeronave, un avión sin empenaje es inestable

TIPOS DE EMPENAJE

Page 17: SUPERFICIES PRIMARIAS

EMPENAJE CLÁSICO O CONVENCIONAL

El estabilizador horizontal se localiza en la parte inferior del estabilizador vertical, es el empenaje más común utilizado aproximadamente por el 75% de los aviones.

EMPENAJE ALTO O EN T

El estabilizador horizontal en la parte superior del estabilizador vertical, es el segundo empenaje más utilizado, el empenaje alto permite la construcción del estabilizador vertical más pequeño, es utilizado generalmente por los aviones que tienen los motores en la parte posterior del fuselaje.

EMPENJE CRUCIFORME

O en forma de cruz surgió de tomar las mejores características del empenaja clásico y el empenaje alto. El estabilizador horizontal se coloca en una posición más alta que el empenaje clásico, pero mucho más baja que el empenaje alto.

Page 18: SUPERFICIES PRIMARIAS

EMPENAJE EN V

Conformado por dos superficies que no son verticales ni horizontales, sino que forman ángulo entre ellas. Generalmente utilizado por la aviación con altas velocidades

EMPENAJE EN H

Un estabilizador horizontal y en sus extremos un estabilizador vertical, el empenaje en H permite reducir la altura de los estabilizadores verticales. Los propósitos de este empenaje son que el avión no tuviera dificultad de entrar a los hangares y lograr que la estela generada por los motores produzca un mejor efecto aerodinámico en los timones de dirección.

Page 19: SUPERFICIES PRIMARIAS

EQUILIBRIO Y ESTABILIDAD

EQUILIBRIO

Un cuerpo está en equilibrio cuando la suma de momentos que actúan sobre él es igual a cero. (Ejercicio de aplicación).

CLASES DE EQUILIBRIO

1.- Equilibrio estable2.- Equilibrio inestable3.- Equilibrio indiferente

EQUILIBRIO ESTABLE

Un cuerpo se encuentra en equilibrio estable, cuando estando en equilibrio, este se ve alterado, produciéndose unas fuerzas y momentos que lo regresan a su posición inicial. Ejemplo Péndulo. (Dibujo de equilibrio estable), (estable plano alto)

Page 20: SUPERFICIES PRIMARIAS

EQUILIBRIO INESTABLE

Un cuerpo se encuentra en equilibrio inestable, cuando al apartarlo de su posición de equilibrio, se producen fuerzas que lo alejan de su posición inicial. Ejemplo tobogán. (Dibujo de equilibrio inestable), (mal cargado, mal pesado cola o nariz, mal reglado

Page 21: SUPERFICIES PRIMARIAS

EQUILIBRIO INDIFERENTE

Un cuerpo se encuentra en equilibrio indiferente, cuando al apartarlo de su posición de equilibrio, No se producen fuerzas que lo alejen o lo acerquen a su posición inicial. (Dibujo de equilibrio indiferente).

ESTABILIDAD

Es la capacidad que tienen los cuerpos para mantener su equilibrio o regresar a él en caso de que este sea alterado.

CLASES DE ESTABILIDAD

1.- Estabilidad estática2.- Estabilidad dinámica

1.- ESTABILIDAD ESTÁTICA

Una aeronave tiene estabilidad estática Cuando se encuentra volando en equilibrio y por cualquier motivo éste se ve afectado y sin mover los mandos de la aeronave esta regresa directamente al equilibrio. (Dibujo de estabilidad estática).

2.- ESTABILIDAD DINÁMICA

Una aeronave tiene estabilidad dinámica, cuando se encuentra volando en equilibrio y por cualquier motivo éste se ve afectado y sin mover los mandos de la aeronave, esta regresa a su posición de equilibrio con una oscilación amortiguada. (Dibujo de estabilidad dinámica)La estabilidad dinámica puede ser de tres tipos, (con respecto a cuerpos estáticamente estables).

a.- Estabilidad dinámica positiva: Si el cuerpo retorna a su posición de equilibrio de forma periódica o por medio de una serie de oscilaciones amortiguadas.

b.- Estabilidad dinámica indiferente o neutra: Si siempre tiende a su posición de equilibrio, pero lo hace a través de oscilaciones no amortiguadas y por tanto indefinidas.

c.- Estabilidad dinámica negativa: Si el cuerpo tiene oscilaciones cada vez de mayor amplitud.

Page 22: SUPERFICIES PRIMARIAS

ESTABILIDAD EN LOS EJES DEL AVIÓN

1.- Estabilidad longitudinal2.- Estabilidad direccional3.- Estabilidad Lateral

1.- ESTABILIDAD LONGITUDINAL

La estabilidad longitudinal se presenta sobre el eje lateral del avión, el estabilizador horizontal y sus superficies móviles mantienen la estabilidad del avión en caso de sufrir perturbaciones que alteren la estabilidad longitudinal.

2.- ESTABILIDAD DIRECCIONAL

La estabilidad direccional se presenta sobre el eje vertical del avión, el estabilizador vertical y sus superficies móviles mantienen la estabilidad del avión en caso de sufrir perturbaciones que afecten la estabilidad direccional.

3.- ESTABILIDAD LATERAL

Si el eje lateral bajo condiciones normales de vuelo, no permanece en equilibrio, se presenta una inestabilidad lateral, con el empenaje del avión se consigue la estabilidad lateral, si una aeronave tiende al banqueo, las fuerzas que actúan sobre estas superficies lo impedirán.