Supercritical Carbon Dioxide Power Cycle Development...

25
Page 1 Supercritical CO 2 Power Cycles Symposium September 9-10, 2014 Supercritical Carbon Dioxide Power Cycle Development Overview September 10, 2014 KJ Kimball Bechtel Marine Propulsion Corporation Bechtel Marine Propulsion Corporation Knolls Atomic Power Laboratory Schenectady, NY Bettis Atomic Power Laboratory West Mifflin, PA

Transcript of Supercritical Carbon Dioxide Power Cycle Development...

Page 1 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Supercritical Carbon Dioxide Power Cycle Development Overview

September 10, 2014

KJ Kimball Bechtel Marine Propulsion Corporation

Bechtel Marine Propulsion Corporation Knolls Atomic Power Laboratory Schenectady, NY Bettis Atomic Power Laboratory West M iffl in, PA

Page 2 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

BMPC Development Program Overview:

– S-CO2 Brayton Cycle Integrated Systems Test (IST) • Turbo-machinery (turbine, compressor, bearings, seals) • Control system (startup, power control) • Heat exchangers (shell and tube) • Practical considerations (mass control, instrumentation,

system leakage) – Compact Heat Exchanger Development

• High pressure, compact, fatigue resistant, affordable – MW scale development vision

• Based on kW development • Scale-up issues • Transition from experimental to demonstration stage

Page 3 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

S-CO2 Integrated System Testing

Bechtel Marine Propulsion Corporation Knolls Atomic Power Laboratory Schenectady, NY Bettis Atomic Power Laboratory West M iffl in, PA

Page 4 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

IST Physical Layout

Turbo-Generator

Recuperator

Precooler

Turbo-Compressor (not visible)

Page 5 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

IST Turbomachinery Turbo-Generator

Turbo-Compressor

Compressor/Diffuser Turbine

Thrust Bearing

Page 6 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Maximum Power Operation November 2013 – 40kWe

**40 kW on power analyzer

Page 7 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

-10

0

10

20

30

40

50

Pow

er (k

W) o

r Effi

ecie

ncy (

%)

TG Power

TC Power

Brayton Power

Brayton Efficiency

System Up-Power

35000

40000

45000

50000

55000

60000

500 1000 1500 2000 2500 3000 3500 4000

Spee

d (r

pm)

Time (seconds)

TC Speed

Page 8 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Compressor Map

Model Prediction for Design Operating Conditions

Test Data

Page 9 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

• Initial Conditions: Hot Idle (540°F/37,500 rpm) • TG speed increased • TC speed increased in steps • Compressor recirculation valve decreased in steps • Water flow automatically controlled to maintain compressor inlet T

Turbine-Generator Speed Turbine-Compressor Speed Recirculation Valve Position

Power Increase Transient

Page 10 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Intermediate Hx Recuperator Precooler

Power Increase Transient: Heat Exchanger Heat Duties

Page 11 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

IHX Heat Transfer

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Mea

sure

d H

eat

Tran

sfer

(kW

)

Predicted Heat Transfer (kW)

HTRI w/REFPROP

HTRI w/VMGThermo

Dittus-Boelter

Measured = Predicted

Page 12 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Precooler Heat Transfer

Page 13 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Page 14 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

IST with Recompression Cycle Control Features

This loop design shows how recompression control features could be placed in the IST, allowing loop hydraulic control for startup, heatup and low power operation.

Baseline recompressor recirculation

Page 15 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

IST Up-Power Maneuver in Recompression Configuration Using end states that have been optimized for adequate surge margin this up-power transient shows good performance, with minimal under/over shoot.

Up-power rates >1%/s would be possible for a well designed recompression loop.

Page 16 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

S-CO2 Heat Exchanger Development

Bechtel Marine Propulsion Corporation Knolls Atomic Power Laboratory Schenectady, NY Bettis Atomic Power Laboratory West M iffl in, PA

Page 17 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Heat Exchanger Testing

Heat Exchanger 1

CO2 PUMP

Heat Exchanger 2

1.5” Tubing with Swagelok fittings

½ or less Tubing with Swagelok fittings

2” to 10” sched 160 Pipe (316 SS)

DP3 2468 psig

T1 Recuperator vessel

DP1

Water heat Source 1

vent

HP-8

P1

HP-9

DP 2

T4

T3

ANSI Flange

Grayloc Flange

1” Tubing with Swagelok fittings

Water heat Source 2

(2) 10x2 Reducer

HP-2

Temp Conn 1

T2

River Water Cooling

(2) 3” graylocx to 2 “ Swagelok adapter

Flow-Meter

(2) Instrumentation Ports

2” Tubing with Swagelok fittings

2” graylocx to 1.5 “ Swagelok adapter

2” graylocx to 1.5 “ Swagelok adapter

Testing Conditions: Heat Input/Rejection 20-90 kWt Pressure: ≈1,200-1,500 psi Temperature: ≈300-500°F Flow rate: ≈2-3 lbm/second

Page 18 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Recuperator Designs Tested

β=7,000-8,000 m2/m3 β=3,300-4,500 m2/m3

Page 19 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Folded Wavy-Fin Results

50

100

150

200

250

300

350

50 100 150 200 250 300 350

Heat Trnasfer Rate(kW)

Maximum Possible Heat Transfer Rate (kW)

Measured Thermal Performance

1.0 < ṁ <= 1.3

1.3 < ṁ <= 1.7

1.7 < ṁ <= 2.2

2.2 < ṁ <= 2.7

Design Point

ε = 1.0

ε = 0.9

ε = 0.8

(ṁ - lbm/sec) 0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

Pressure Drop(psid)

Mass Flow Rate (lbm/second)

Measured Hydraulic PerformanceHigh Pressure Side

1.0 < ṁ <= 1.3

1.3 < ṁ <= 1.7

1.7 < ṁ <= 2.2

2.2 < ṁ <= 2.7

Design Point

(ṁ- lbm/sec)

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

Pressure Drop(psid)

Mass Flow Rate (lbm/second)

Measured Hydraulic PerformanceLow Pressure Side

1.0 < ṁ <= 1.3

1.3 < ṁ <= 1.7

1.7 < ṁ <= 2.2

2.2 < ṁ <= 2.7

Design Point

(ṁ - lbm/sec)Prototype demonstrated thermal-hydraulic performance.

Page 20 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Summary of Progress to Date

Bechtel Marine Propulsion Corporation Knolls Atomic Power Laboratory Schenectady, NY Bettis Atomic Power Laboratory West M iffl in, PA

Page 21 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

S-CO2 Integrated System Testing

• IST demonstrating controllability of a two shaft simple S-CO2 Brayton cycle

• Normal power operation over range of power levels up to ~50 kWe has commenced

• TRACE transient modeling: – Validation has commenced – Approaching real time execution – Demonstrates controllability of re-compression cycle

Page 22 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

S-CO2 Heat Exchanger Development

• IST heat exchangers meeting expectations and validating performance models

• More compact/fatigue resistant heat exchangers being designed, fabricated and tested in dedicated 300kW test facility

Page 23 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

MW Scale Development

Bechtel Marine Propulsion Corporation Knolls Atomic Power Laboratory Schenectady, NY Bettis Atomic Power Laboratory West M iffl in, PA

Page 24 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

S-CO2 Power Cycle Development Approach Fundamental Testing Small Scale System and

Component Tests Large Component

Development

Validated Design Tools

Sandia Closed Brayton Loops

HX Development & Test

CAPSTONE UNIT

HEATER SECTION

CHILLER SECTION EXPANSION JOINTS

CAPSTONE CONTOLLER

Small System Test

Large Scale System Test

Component and System Modeling Development

Plant Concept Development

Concept Development

Operational Test

Corrosion in 825F S-CO2 at 2800 psig

0

0.1

0.2

0.3

0.4

0.5

T-91

410S

S shot p

eened

410S

S

Titanium

Fe52 /

Ni48

316S

S shot p

eened

17-7P

H31

6SS

Ni200 s

hot pee

ned

304S

S

304S

S shot p

eened

Alloy 6

90

Alloy 6

00Ni20

0

App

roxi

mat

e O

xide

Thi

ckne

ss (m

ils)

1000-1700 hours500-1000 hours0-500 hours

Turbomachinery Performance

Heat Exchanger Performance

Integrated System Test

Technology Assessment

Fluid Behavior

Safety Implications

Material Behavior

Page 25 Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Component Development

Turbomachinery Thermal Coatings Internal cooling

Path to S-CO2 Power Cycle Commercial Implementation Te

chno

logy

De

velo

pmen

t

Bearings & Seals

Controls

Engineering Design - Analysis Codes - Component Specifications

Heat Exchangers Chemistry Control

Time

STEP Pilot Plant

~10 MWe FY16

Current

Pre-Commercial

Demo ~30-50 MWe

FY20

BMPC

SNL

Echogen

SunShot

Test loop component development - heater

Applications: Oxy-Fuel /Clean Coal

Concentrated Solar Power High Temperature Nuclear

Geothermal energy Navy Nuclear Propulsion

FY?? Applications: Waste Heat

Industry FY??

Materials Development

MW scale

kW scale

GE