Suorakerrostuksen materiaalit -...

51
Suorakerrostuksen materiaalit J. Tuominen Tampere University of Technology Laboratory of Materials Science Laser Application Laboratory

Transcript of Suorakerrostuksen materiaalit -...

Suorakerrostuksenmateriaalit

J. TuominenTampere University of TechnologyLaboratory of Materials Science

Laser Application Laboratory

Outline• Directed energy deposition (DED) (definition)• DED methods• Feedstock types:

o Powdero Wireo Strip

• Type of metal alloys:o Propertieso Applications

• Summary

15.2.20173D Boosti ja Invest 2

Directed energy deposition (DED)

15.2.20173D Boosti ja Invest 3

• ISO/ASTM 52900:2016 ”Additive manufac-turing – General principles – Terminology”oDED is AM process in which focused thermal

energy (laser, EB, plasma-arc) is used to fusematerials by melting as they are beingdeposited

o The build surface can be an existing part ontowhich material is added (repairing)

Overview of AM processingprinciples for metallic materials

15.2.20173D Boosti ja Invest 4

ISO/ASTM 52900:2016 ”Additive manufacturing – General principles – Terminology”

Directed energydeposition

Powder bed fusion

Directed energy deposition

15.2.20173D Boosti ja Invest 5

• ASTM F3187-16 ”Standard Guide for DirectedEnergy Deposition of Metals”o Applications, DED system set-up, machine operation,

documentation, work practices, system and processmonitoring

DED methods

15.2.20173D Boosti ja Invest 6

Laser: coax-powder Laser: coax-wire (cold, hot),off-axis wire (cold, hot)

MIG/MAG, MIG/MAG pulsed,CMT

EB: coax-wire (xBeam)EB: off-axis wire (Sciaky)

TIG cold-, hot-wire Plasma-arc (powder, wire)

Others:• Additive friction stir welding• Strip cladding (SAW, ESW, laser)• Cold spraying

Standards related to DED feedstock

15.2.20173D Boosti ja Invest 7

• ASTM F3049-14 Standard Guide for Characterizing Pro-perties of Metal Powders Used for Additive Manufac-turing Processes

• AWS: Specification for Filler Metal Standard Sizes,Packaking, and Physical Attributes

• AWS: Welding Consumables – Wire Electrodes, Wiresand Rods for Welding of Aluminum and Aluminum-Alloys

• AWS: Specification for Nickel and Nickel-Alloy BareWelding Electrodes and Rods

• AWS: Specification for Copper and Copper-Alloy BareWelding Rods and Electrodes

• AWS: Specification for Titanium and Titanium-AlloyWelding Electrodes and Rods

• Etc.

Powders

15.2.20173D Boosti ja Invest 8

1. Sulatus2. Puhallus/atomisointi3. Jähmettyminen

• Produced by atomization:o Gases (Ar, He, N2) (spherical)o Plasma (spherical, smooth, high purity,

for reactive metals))o Water (irregular)o Centrifugal (spherical, smooth, for reactive metals)

• Production methods affect:o Shape (flowability, absorption)o Surface texture (moisture?)o Porosity (mechanical properties)o ’satellites’ (flowability)o Size (resolution, surface finish, flowability, efficiency)o Purity (S, P, O) (defects, inclusions, mechanical properties)

o Gas atomized PTA grade typically used (50-150µm)

Wires

15.2.20173D Boosti ja Invest 9

Guest 2014, Canada

Seamless by electrical resistance welding =sähkövastushitsaus,Umpiputkimainen täytelankaPäittäisliitetty täytelankaLimiliitetty täytelanka

• Solid wires (soft & ductile by drawing) (Ø0.8-3.2mm)– Low alloy grades often Cu coated

• Tubular wires (täytelanka) (Ø>1.2mm)– Metal sheath:

• Lubricant coated (graphite, MoS2)

– Internal powders:• Alloying elements (metals, carbides etc.)• Arc stabilizers• Fluxing agents• Slag formers• Shielding gas producers

1. Nauha2. Muotoilurullat (U-muoto)3. Jauhetäyte4. Sulkeminen

Strips

15.2.20173D Boosti ja Invest 10

• Strips for SAW & ESW (w=15–120 mm, t=0.5mm)o Solid (rolling)o Sintered (from powders, Stellites for instance)o Flux-cored

• Strip-wires (w=4.0-4.5mm, t=0.5-0.6mm)o Produced by rolling round wires or cutting from wider bandso To increase deposition rates, better surface qualityo Less penetrationo G3Si1, AlMg4.5Mn, AlSi5

Fronius International GmbH

Materiaalit

15.2.20173D Boosti ja Invest 11

• Low alloy steels (G3Si1,4130, 4140, 300M)• Tool steels (P20, M4, H13, CPM 10V, X42Cr13)• Hadfield-steels (12-19%Mn, 1.1-1.4%C, 0-2.5%Cr)• Maraging steels (low C ultra high strength)• Invar steels (FeNi36)• Stainless steels (316L, 254SMO, 2205, 431, 17-4 PH)• Hardfacing alloys (Stellites, Norem, Nanosteel, Self-fluxing alloys)• Superalloys (Inconel, Hastelloy, Monel, CMSX-4, high-Cr NiCr)• Titanium alloys (Ti-6Al-4V, Ti6242, Ti grade 2)• Copper alloys (CuAl, CuNi, CuSn)• Aluminium alloys (AlSi5 (4043), AlSi10Mg, AlSi12, AlSi7Mg)• Magnesium alloys• Refractory metals (W, Mo, Ta)• MMCs (WC/W2C-NiBSi, VC-tool steel, SiC-Al, synthetic diamonds)• Solid lubricants (MoS2, WS2, CaF2, graphite)• Intermetallics (Cr13Ni5Si2, MoSi2, FeAl, , TiAl, NiTi)• Gradient layers (FGM) (metal matrix composites, monolithes)• High entropy alloys (development of new alloys)

Low alloy steels

15.2.20173D Boosti ja Invest 12

Laser-DED powder: Hybrid (additive + subtractive)manufactured hinge (sarana, nivel) part from 4140

steel (Liou et al. 2007, USA)

Arc-DED wire: Crane hook (RAMLAB,Netherlands), ASTM A391, A973?

11mm

Arc-DED wire: Canal bridge (MX3D, Netherlands) Arc-DED wire: Cantilever beam, ulokepalkki (CranfieldUniversity, UK), topology optimized, 7m, 1500kg

15.2.20173D Boosti ja Invest 13

Arc-DED wire: Mold manufacturing, hybrid (additive + subtractive, ER70S-6 (Akulaet al. 2006, India)

11mm

Hybrid manufactured(additive + subtractive) mildsteel 70S-6 (Song et al.2005, South Korea)

S355: Rm 510-680MPa

Arc-DED wire: 300M UHSS(Skiba et al. 2010)

Low alloy steels

Tool steels

15.2.20173D Boosti ja Invest 14

Laser-DED powder: Graded build-up of laser clad gear teeth (Laser Cladding Venture, NV,Belgium)Wear resistant surface, tough core

• Strength• Fatigue• Wear• Cost

Hot-work tool steel

Tool steels

15.2.20173D Boosti ja Invest 15

Laser-DED powder: Hybrid (additive + subtractive) manufactured bearing seat(laakerin istukka) part from H13 tool steel (Nagel et al. 2010, USA)

EB-DED wire: Build-up and repair oftooling & stamping dies (Sciaky Inc.,

USA)

11mm

Arc-DED wire: Austeniticmartensitic VC tool steel(~850HV1), crack-free (TUT)

Laser-DED powder: CPM 9V (Xue et al.2013, Canada)

Laser-DED powder: CPM 9V cuttingpatterns on rotary cutting die (Xue et

al. 2013, Canada)

Tool steels

15.2.20173D Boosti ja Invest 16

Laser-DED powder: Conformal cooling channels incooling fan mold of H13 (InssTek, South Korea)Complex internal structures

(Griffith 2000)

(kiloponds per square inch = kilopaunaa per neliötuuma)

Maraging steel

15.2.20173D Boosti ja Invest 17

Laser-DED wire: Maraging250 steel test block on

H13

Laser-DED wire: Die casting(painevalu) tool repaired

with Maraging 250

Kottman et al. JOM 67(3) 2015Pangsrivinij, M.Sc. Thesis 2016

Stainless steels

15.2.20173D Boosti ja Invest 18

Laser-DED powder: AISI 431(Smurov 2007, France)

Laser-DED powder: Hybrid, turbiinin pesä,(DMG Mori)

Arc-DED wire: stainless steel (MX3D,Netherlands)

Arc-DED wire: Pelton runnersfor hydropower stations(Andritz Hydro, Switzerland)

Stainless steels

15.2.20173D Boosti ja Invest 19

AISI 308L with GMAW-P (Uziel 2016)

Arc-DED wire: AISI 308L demonstrator part, 85% reduction inmaterial compared with machining (Uziel 2016)

Stainless steels

15.2.20173D Boosti ja Invest 20

Laser-DED powder: elektroniikan kotelo/vaippa

Stainless steels

15.2.20173D Boosti ja Invest 21

Arc-DED wire: Adding features to pressurevessels (Nuclear AMRC, UK)

Arc-DED wire: AISI 304 with CMT (Kapustka 2015,USA)

Arc-DED wire: Blade withCMT, duplex SS 2209(Posch, Fronius Int.GmbH)Instead of casting30 – 60 FNMechanical properities of 2209 (Posch,

Fronius Int. GmbH, AUT)

15.2.20173D Boosti ja Invest 22

Lähde: IMTI National Research Council Canada

§ Complex thermal history (directional heat extraction, repeated melting & rapid solidification, repeated solidstate transformations)§ Reduced grain size due to high solidification rates§ Directionally solidified structures§ Anisotropic mechanical properties

Lähde: IMTI National Research Council Canada

Stainless steels

Stainless steels

15.2.20173D Boosti ja Invest 23

Laser-DED powder: (Rombouts et al. 2012, Belgium)

Lying

Standing

Ni-based superalloys

15.2.20173D Boosti ja Invest 24

Laser-DED powder: Combustion chamberpart (engine casing) IN-718 (TWI Ltd, UK)

Ø300mm, H100mm, t0.8mm2-3 months -> 6 hours

Laser-DED powder: Oil & gas flange In625(TWI Ltd, UK)

Ni-based superalloys

15.2.20173D Boosti ja Invest 25

Arc-DED wire: IN718 (Baufeld 2012)

Arc-DED wire: IN718 (Fronius USA)

Ni-based superalloys

15.2.20173D Boosti ja Invest 26

Laser-DED powder: SIFCO, Ireland

Airfoil (siipiprofiili)

Inconel 625

NRC-CNRC

Laser-DED powder

Laser-DED powder: IN-718 impeller (Xue et al.,2011, Canada)

Laser-DED powder: IN625 mold with coolingchannels (Xue et al., 2011, Canada)

Laser-DED powder: IN-718 honey comb tube(Xue et al., 2011, Canada)

Ni-based superalloys

15.2.20173D Boosti ja Invest 27

Inconel 625 (Rombouts et al. 2012)

15.2.20173D Boosti ja Invest 28

Lähde: IMTI National Research Council Canada

Microstructure of In625

Ni-based superalloys

Ni-based superalloys

15.2.20173D Boosti ja Invest 29

Numerical analysis of residual stresses in IN718 on IN718 (Mukherjee et al. 2017)

Co-based alloys

15.2.20173D Boosti ja Investi 30

In-situ repair of turbine blades with Stellite 6 (TWI Ltd) Micro-cladding of Stellite (de Val et al. 2014, Spain)

Stellite 21 on AM355 mart. SSAbrasion resistance needed

Ti alloys

15.2.20173D Boosti ja Invest 31

Laser-DED powder: Hip implant (LENS,Optomec) Laser-DED powder:

Femoral component

Manufactured by DMDmethod

Laser-DED powder: (Fraunhofer IWS,Germany)

Ti alloys

15.2.20173D Boosti ja Invest 32

• Laser-DED powder manufacturedand post-machined airliner part

• Ti-6Al-4V

• Length approx. 600 mm

• Improves ’buy-to-fly’ ratio

• Airbus, for instance, spends £250million for conventionallymanufactured Ti componentsevery year -> huge savingpotential

Buy-to-fly ratio = the ratio of the amount of materialpurchased to the amount of material found in thefinal component (lower the better)

Large stair-stepping effect

Aeromet Corp.

Ti alloys

15.2.20173D Boosti ja Invest 33

A large 3D printed titanium part for J-20 or J-31 stealth fighter (China)

A 5 m long Ti central wing spar (siipisalko) forComac C-919 passenger plane (NPU, China)

Large titanium part for mainstructural component in aircraft,1730x250x230mm (Beihang,China)

Ti alloys

15.2.20173D Boosti ja Invest 34

Laser-DED powder: Fatigue strength of Ti-6Al-4V (Prabhu et al. 2015)Presence of unmelted particles affects fatigue lifeRepair condition means that deposited parts are joined to wrought part

Laser-DED powder: Bell helicopterExhaust duct Ti-6Al- 4V (LENS)

EB-DED: Ti6Al4V screw (Sciaky Inc.,USA)

EB-DED wire:Rear upper spars

for Airbus wing(Sciaky Inc.)

Ti alloys

15.2.20173D Boosti ja Invest 35

Ti alloys

15.2.20173D Boosti ja Invest 36

Ti-6Al-4V

Laser-DED wire:Kottman et al. JOM 67(3) 2015Pangsrivinij, M.Sc. Thesis 2016

Laser-DED wire: University West,Sweden

Laser-DED powder: Suspension mountingbracket, jousen kiinnitysteline Red Bull F1,Ti-6Al- 4V (LENS)-92% Material loss

Laser-DED powder: vetoakselin osa,LENS Laser-DED powder:Valves for racing motorcycle, Ti-6Al- 4V

(LENS)

Ti alloys

15.2.20173D Boosti ja Invest 37

Ard-DED wire: Ti6Al4V flap rib = siiventukikaari (Cranfield University)

Weight as design 1.43kgBillet weight 53kg

Weight as deposited with plate 9kg

Arc-DED wire: Ti alloy landing gear rib =laskutelineen runko (Cranfield University)

Weight as design 21kgBillet weight 240kg

Weight as deposited 24kg

Ti alloys

15.2.20173D Boosti ja Invest 38

’Eliminating 50-75% of thecosts when fabricating titaniumcomponents with arc-DED’

’1000 titanium parts in Boeing787 that can be printed’

’200-lb. needed for 20-lb. partby subtractive manufacturing,30-lb. needed by AM’

Norsk Titanium AS, plasma-arc

Ti6Al4V control arm demonstrator, hot-wire TIG,(EWI, Uziel 2016)

EB-DED wire: Ballast tank forsubmarine =

painelastivesisäiliö (SciakyInc.)

Ti alloys

15.2.20173D Boosti ja Invest 39

Arc-DED wire: Ti6Al4V tensile & fatiguestrength (Cranfield University)

Ti alloys

15.2.20173D Boosti ja Invest 40

Arc-DED wire: Ti6Al4V, high-pressure cold-rolling (Cranfield University)Isotropic mechanical properties + diminished residual stresses

Al alloys

15.2.20173D Boosti ja Invest 41

Arc-DED wire: Stiffened Al panels(Cranfield University) Arc-DED wire: Wing rib = siipikaari

(Cranfield University)

150 layers 40 mm3/s

Hypoeutectic AlSi5(4043) by robot-guidedCMT process, 50 HV0.05

Ra 3.0µmArc-DED wire: tukiseinä/laipio (Cranfield

University)

Al alloys

15.2.20173D Boosti ja Invest 42

Arc-DED wire: Tensile performances of Al alloys (Martina 2015,Cranfield University)

Porosity problemin Al alloys

Rolling helps toremove porosity

Cu alloys

15.2.20173D Boost ja Invest 43

Arc-DED wire: Brass (Posch, Fronius Int.GmbH, Austria)

Arc-DED wire: Brass sculpture (MX3D, Netherlands)

Laser-DED powder: Drawing die (vetomatriisi) with cooling channels,CuAl10Fe1 (aluminium bronze) (Freisse et al., 2015, Germany)

Mg alloys

15.2.20173D Boosti ja Invest 44

Laser-DED powder: Elektron™ MAP 43 Mg (T. Palmer, PennState, USA)

Refractory metals

15.2.20173D Boosti ja Invest 45

Arc-DED wire: (Williams 2016, Cranfield Unversity, UK)

Intermetallics

15.2.20173D Boosti ja Invest 46

Laser-DED powder. TiAl (Fraunhofer ILT,Germany)

Laser-DED powder:TiAl (Fraunhofer IWS,Germany)

Multi-material

15.2.20173D Boosti ja Invest 47

Laser-DED powder: Nickel/Copper, hybrid (additive +subtractive) (Kerschbaumer et al., 2004)

Arc-DED wire: Steel/Bronze (CuSi3)(Cranfield University)

Multi-material

15.2.20173D Boosti ja Invest 48

Laser-DED powder

FGM

15.2.20173D Boosti ja Invest 49

Laser-DED powder: Graded stainless steel 316L / Stellite 6 (Smurov 2007)

Laser-DED powder: In690/TiC FGM (Wilson et al., 2012)Laser-DED powder: NiBSi/WC,NiBSi/CrC FGM, cutting-edge of circularknife (Theiler et al., BIAS Bremen)

FGM

15.2.20173D Boosti ja Invest 50

Laser-DED powder: Graded structure (Smurov 2007)

Laser-DED powder: 304L/Invar (Hofmann et al., 2014)

Yhteenveto• Suorakerrostuksessa lähtöaineet voivat olla jauheen lisäksi

myös lankoja ja nauhoja• Useita materiaalivaihtoehtoja: teräkset, Ni-pohjaiset super-seokset, alumiini, titaani jne.• Myös monimateriaalit, gradienttirakenteet, metallimatriisi-

komposiitit• Hauraat ja kovat materiaalit haasteellisimpia• Kiderakenteet suuntautuneesti jähmettyneitä -> anisotroop-

piset mekaaniset ominaisuudet• Mekaaniset ominaisuudet heikkenee, jos

prosessiparametreistä tai lisäaineen laadusta johtuvia virhei-tä

15.2.20173D Boosti ja Invest 51

KIITOS!