Study on Heat Transfer and Fluid Flow Characteristics of ...

51
Title Study on Heat Transfer and Fluid Flow Characteristics of Rectangular Finned Surface in Duct( Abstract, Chapter 1-4 ) Author(s) Didarul, Islam Md. Citation : 1-100 Issue Date 2007-09 URL http://hdl.handle.net/20.500.12000/5748 Rights

Transcript of Study on Heat Transfer and Fluid Flow Characteristics of ...

Title Study on Heat Transfer and Fluid Flow Characteristics ofRectangular Finned Surface in Duct( Abstract, Chapter 1-4 )

Author(s) Didarul, Islam Md.

Citation : 1-100

Issue Date 2007-09

URL http://hdl.handle.net/20.500.12000/5748

Rights

PhD・Dissertation

onHeatTransfcrandFluidFlowCharacteristicsStudy

ofRectangularFinnedSurfnceinDuct

September2007

UniversityoftheRyukyus

GraduateSchoolofEngmeermgandScience

Material,StrucmralandEnergyEngmeermg

IslamMdDIDARUL

Contents

Abstract

Nomenclature

l・Introduction

L1Whyheattransferaugmentationisimportant?

L2Differentmethodsofenhancingheattransfbr

1.2.1Vortexgenerator-anemergingtechnology

L2・ZExtendedsurftlces

l30bjectiveofthisresearch.

Pageno.

11136

ZExperimentalApparamsandProcedure

2、1Intmduction

2、ZFinpattemsandalTangemems

23Expelimemalsetupfbrheattransfermeasuremem

23・lFinsinsidetheduct

2、3.2Heatingsurfhcewithfins

23.31nffaredimagetechniqUe

2、3.41nsulationtechnique

0012345567

881111111111

2.4Expelimentalapparamsfbrpressuredropmeasuremem

2.5F1owvisualizationapparams

2、5.1Experimentalsetupfbrdienowinwaterchannel

25・zEXperimentalsetupfbrsmokeflowvisualization

2.5.3Expenmentalsetupfbroiltitamumoxidefilmflowvisualization,C

3.DataReductionandUncertaintyAnalysis

3」Intmduction

32Datareductio、

3.3Uncertaimyanalysis

18

18

20

4HeatTransfbrCharacteristicsandFlowAnalysisofFinnedSurfacesinCaseof

TallDuctandNarTowDuct、

4.1Introduction

4.2.Localheattransfbrcoefficiellts

4.2.1Smoothductresults

4ユZEffectofinclinationanglesonheattransfer

4.2.3Heattransfbrthrougdlfinofresinmaterial

4.2.4Effectoffinheightonheattransfercharacteristics

42.sEffectofvelocityonheattransfbrcharacteristics

43Detailedheattransfbranalysis

44.Area-averagedheattransfer

4・SFlowvisualizationbydyefIowinwaterchanne1

4.6.Frictionfactor

21

111367

222222

28

069

333

41

4247Sunmary

SF1uidFlowandHeatTransferAnalysisofDifferentFinPatternsand

ArrangementataNarrowDuct,

5.1Introduction

333

444

5.2F1owvisualization

5.2.1SurfaceoilfilmHowpattemsaroundfinsattheendwall

5.2.2Smokeflowvisualbration

43

46

4853Frictionfactor

5.4Detailedheattransferanalysis

5、5A1℃a-averagedheattransfbrCoefficient

5.6Thermalperfbnnancerati0

5.7Sunmary

50

835

566

6.TheEffectsofDuctHeightonHeatTransferE血ancementandFlow

CharacteristicsofFinnedSurface.

777

666

6.1.Introduction

6.2.Detailedheattransfer

6.3AreaaveragedheattransferandNusseltnumbels

64Frictionfactor

6,sVortexstructureanalysis

d6Thermalperfbnnanceratio

6,7Summary

7・Conclusions

81

85

87

90

93

94

Refbrences 97

Acknowledgements 100

Abstract

StudyonHeatTransfbrandFluidFIowCharacteristicsofRectangular

FinnedSurfiuceinDuct

AdetailedexperimentalinvestigationoftheheattransfbrandnuidHowcharacteristicsof

rectangLllarfhmedsurfacesoffburdiffbremfinpatterns,co-angular,zigzag,co-rotatmgandco-

counterrotatingwasconductedfbranairflow(Re=15700-104500)inaductShortrectangular

finsofeitheraluminumorresinmaterialwereattachedin7x7arraystoaheatmgsurface(base

plate)ofconstantheatnuxbydoublesidedthintapaT-typethennocouplesandanin丘ared

camera(TVS8000)withal60x120pointln-SbsensorwereusedtocapturetheinhPared

imagesaswellastomeasurethetemperatureandthedetailedheattransferattheendwallalong

withfinbase.DiffbremnowvisualizationtechniqUe,fluorescencedyeflowmwaterchannel,

smokeflowvisualizationandoiltitamumoxidefilmflowvisualizationwereusedtoanalysisthe

Howbehavioranditseffectonheattransfer、Inthisstudywehavefirstinvestigatedtheheat

transferandfluidflowcharacteristicsofco-angularandzigzagfinpatternataflatplate(200mm

ductheight)boundarylayerandnarrowductof20mmheight・Zigzagpattemwerefbundtobe

moreeffbctivemheattransfbratbothflatplateandnaxTowductcase・Incaseofco-angUlar

pattemdyeflowstagnatedmfiPontofthefinandfbnnedastronghorseshoevortexaroundthefin

whilethelongitudinalvortexesgeneratedbythesidetopedgestouchedthefinsurfaceandthe

endwalLOntheotherhandmcaseofzigzagpattemaweakhorseshoevortexappearedand

longimdinalvortexstrucktheendwallmainlyandasinusoidalwavyflowbehaviorwasobserved

WehavethenfhrtherinvestigatedheattransfbrandUowcharactelisticsofco-rotatingpatternand

co-counterrotatingpatternalongwithothertwopatternataductof50mmheight・Theheat

transferresultshowsthattheco-rotatillgpattemhasthehighestNusseltnumberandtheco‐

angularpatternhastheleastNusseltnumber、ConsideringthethermalperfbnnanCe,co-rotating

patternwithsmallerpitchratiowasfbundtobethemostrecommendedpattemastheheat

transferaugmemationwithco-rotatmgpatternismorethanthreetimesthefin-lessduct・

Horseshoevortex,mainlongitudinalvortexandrolledUpvortexwereagainconfinnedbysmoke

flowandoiltitamumnowvisualization・AmongthefburpatternslargestfiPictionfactorocculTed

fbrtheco-rotatingpatternatsmallerpitchratioowingtothestrongUowinteractionsand

combmedvortexattackontheendwallandfhlsurfacewhereastheleastfiPictiondevelopedfbr

co-angularpattenLFinallytheeffectsofducthei8lltonheattransferandflowcharacteristics

wereinvestigatedandthemostimportantinfbnnationaboutvortexstrucmresatseveral

streamwisepositionswasobtainedwhichshowsthereasonsofheattransfbrenhancement、

Vortexstructuresfbrco-angularandco-rotatingpatternwerefbunddifferemandthe

reattachmentpositionswereobtame。、Comparativelylargescalevortexrotationwasobservedin

co-rotatingcasewhichisobviouslyresponsiblefbrheattransferenhancemem.

K臼ywo伽JConvectiveheattransfer;HeattransferenhancememRectangularfin;Longimdinal

voltex;Horseshoevortex;Inffaredlmage

Nomenclature

DH:Hydraulicdiameteroftlleduct,m

DE:EqUivalentdiameteroftheduct,m

/:Frictionfactor

L:Finlength=Z0mn

Ha:Heightofduct20~Z00mm

Hi:Heigiltoffin=5~15,m

A:Averageheattransfbrcoefficient,W/m2.K

A:HeattransfercoefficiemW/m2.K

ハx:Streamwiselocalheattransfbrcoefficient,W7m2,K

hz:Spanwiselocalheattransfercoefficient,W/m2.K

jVil:Area-averagedNUsseltnumber(/i、,,/几)

MJE:Area-averagedNUsseltnumber(/JDB/几)

IVjJL:Area-averagedNusseltnumber(んL/几)

lViJ。…,ノ:Area-avemgedNusseltnumberonoverall surfacea1℃a(A…"、H/几)

Mイノi、:Area-averagedNusseltnumberonfi、base(/i/1,iDH//L)

RPbo:Streamwiseandatmosphericpressurerespectively,N/m2

jW:Walltemperamre,oC

16。:Mainstreamtemperature,。C

Re:Reynoldsnumber[UDH/v]

ReE:Reynoldsnumber[UDE/v]

ReL:Reynoldsnumber[UZ/v]

U:Meanairvelocity,m/S

PR:Ptchratio

Sx:Finspacingmsn℃amwisedirection(showninFig、2.1)

Sz:Fmspacinginspanwisedirection(showninFig、2.1)

Z:Streamwisecoordinate(X=OatthecemerofrectangularfinoffirstrDw)

Z:Spanwisecoordinate(Z=Oatthecenterofrectangularfinoffirstrow).

r:Streamwisecoordinateぽ=OatthecenterofrectangularfInofthirdrow)

Z.:Spanwisecoordinate(Z*=Oatthecenterofrectangularfinofthirdrow)

G”ekqy腕boKF

a:Inclinationangle

v:Kinematicviscosityofair,m2/s

/I:Themlalconductivity,W/(、.K)

Subsripts

s:Smoothsurface

訓Introduction

1.1Whyheattransferissoimportant?

HeattransferorThermalmanagememisanimportantfhctorinengineenngwhichhave

greatcomlibutiontothetechnologicaladvancementofthemodemcivilization・Thermal

managementortemperaturecontrolisagreatconcerntoheatgeneratingbodies,asfbrexample,

powerplants,nuclearreactors,engines,motors,heatexchangers,processindustries,generators,

electronicequipment,digitalcomputerseventhoughinspacecraft・Iftheheatgeneratedina

machineisnotremovedatasufficientrate,someproblems,eventhebreakdowncantakeplace

mthemachineduetooverheatmg・Thissortofproblemcanonlybeovercomebyamore

effectiveheattransfbnSoagreatdealofresearchworkisgoingonmthisfieldtodevelopa

moreeffbctivetechnology.

1.2.Differentmethodsofenhancingheattransfer

Therearemanywaysofenhancingheattransfbr、Coolingbyjetspray,especiallyathigh

temperatures,vortexgeneratorsandfinsorextendedsurfacesareveryimportanttechnologyand

commonlyencounteredinheattransfbraugmentation・Iwouldliketolimitmyliteraturereview

onvortexgeneratorsandextendedsurfaces.

1.2.1.Vortexgenerators-anemergingtechnology

Avortexgeneratorisanemergingtechnologytoenhanceheattransfbr・Smdies

concemingtheinfluenceoflongimdinalvorticesonheattransferareagreattopictothepresem

daydevelopmentofhighperfbrmancethennalsystems・Theuseoflongimdinalvortices

generatedbydifferentkindofvortexgeneratorstoenhancetheheattransferintheairsideof

heatexchangershasbeenconsideredpmmising・Umillastdecade,fewresearchworkshave

shownthepotentialuseofvortexgeneratorsinenhancingheattransferincompactheat

exchangers・Mostlyearlierworksdealtwitlllongimdinalvorticesandheattransferrelatedto

mrbinebladecooling,OneoftheearliestisreportedbyEdwardsandA1ker[19741who

investigatedtheeffectofbothcounterrotatmgandco-rotatingvorticesonheattransferof

boundarylayers、Spatiallyresolvedheattransiierratesweredeterminedbypassingflowovera

wallofunifbmlheatflux・Cubesandvortexgeneratorsbladeswereusedtocreatethe

longimdinalvorticesandfbundtllatthecUbespmducedthehighestlocalheattransfer

improvememofupto160%whilethegeneratorseffbctwasextendedatfartherdownstream・The

counterrotatingvortexpairsshowedmoreeffbctivenessthantheco-rotatmgpairswithan

increasemheattransferofmaximum65%thannatplatevaluesfbrthecounterrotatmgvortex

generatorswithl5oattackanglaTurkandJunkhan[1986]measuredthespanwiseheattransfer

downstreamofarectangularbladetypevortexgeneratorsmountedonaflatplateandthe

spanwiselocalheattransfercoefficientswerefbundvarymgwiththespanwisebladespacing

Fiebigandcoworkers(1986,1991)haveconductedaseriesofexperimemalandnumerical

simulationabouttheinfluenceofwmgtypevortexgeneratorsonheattransfbrandpressureloss

inductHows、Theytriedtoimprovetheperfbnnanceofplate-finheatexchangers、Heattransfer

infm-tubeconfigurationwasfirstsmdiedbyRusseletal[1982]andfbcusedontheuseofvortex

generatorstoenhanceheattransferinfintubeconfigurations・Theirexperimemalworkwasvery

promisingbecausetheyshowedthatthevortexgeneratorscouldenhanceheattransfbr・Inamore

applicationbasedeXperiment,FiebigetaL[1993,1994]studiedtheinfluenceofwinglettype

vortexgeneratorsinfinmbeconfigurationswiththreetuberowsandmeasuretheheattransfer

andpress、巴lossfbrdifferemfinSpacmg,tubearrangement(inlineorstaggered)andmbefbnn、

TheyfbundthattheheattransfercoefYicientwasenhancedby55%-65%fbrcirculartubewith

aninlinearrangementwhereasstaggeredarrangementcaused9%.

1.2.2.Extendedsurfnces

Finsarewidelyusedastheprimarymeansofheatexchangingdevices・Theneedfbr

moreefficientcoolingtechniquesofdeviceshasrecemlypromptedsmdyintoheattransfbrand

nowcharacteristicsofvariousconfigurationsoffinnedsurftlces・Thepinfinisatypical

configurationthatisoftenusedtocoolthetrailingedgeregionofmrbineblades;theintemal

passageofturbinebladescanbeverynanPow,sothatthechoiceofcoolmgsCllemeislimited、

TheeffectiveheattransfbrofstaggeredalTaysofshortpinfinswasstudiedbyVanfbssen[1982]

andfbundtobehalfthatfbrlongerpinfins、However,thisstudydidnotdetailthelocal

characteristicsofpinfinarrays・SpalTowetal.[1976]investigatedthelocalheattransfer

coefficientoveraplatesurfacebythenaphthalenesublimationteclmiqUefbratwo-rowplatefin

andmbeheatexchangerlfindingthatthecoefficientwaslowestbehindthepin・Theeffectofpin

finarrangementonheattransferoveranendwall,theheatingsurfacewherethefinsareattached,

wasexaminedusingathennosensitiveliquidcrystalfilmbyMatsumotoetaL[1997],Who

concludedthattheheattransfbrfiomtheendwallwasenhancedbyflowaccelerationbetweenthe

pinfinsratherthanthehorseshoevortexaroundthepinRectangularfinisfbundtohavean

extensiveuseinheatexchangersurfacesandinmanyapplications,Geometncparameters,such

asaspectratio,finheighttoductblockageratio,finmclinationangle,orientationoffini.e・fin

pattern,finpitchratioinstreamwiseandspanwisedirectionandfInshapeshavepronounced

effectsonthelocalandoverallheattransfbrcoefIiciemsaswellasonthethennalperfbrmanceof

theheatexchangingdevices、Withtheincreasingdemandofcompact,lightweighthigh

perfbnnanceheatexchangingdevicesresearchersaretryinghardtoservethefinsasextended

surfaceaswellasvortexgeneratortoobtainthecombinedeffbctofextendedsurfaceandvortex

generatorwhichisanemergingtechnologyinthefieldofheattransfbr,

Recently,inclinedrectangularfinembeddedtotheendwallisfbundtobeaneffective

confIgurationfbrheattransfbrenhancemem,becausetheinclmedfinproducethelongitudmal

vortexofwhichintensityexistatfardownstream、Itisexpectedthattheheattransfbrffomthe

endwallandthefInsurfacecanbeimprovedbythismclinedfinsandhencethisconfigurationis

identifiedasbeingverypromising・ToriiandYanagihara[1997]hasreviewedonheattransfbr

enhancementbylongimdinalvorticesanddiscussedhowlongitudmalvorticesareproducedby

diffe泥ntkindofvortexgeneratorsandenhancesheattransfbr・Thatreviewfbcusedontheeffect

oflongimdinalvorticesgeneratedbywingsontheheattransferenllancementinboundarylayers,

ductsandplatefintUbegeometlies・HeattransferenhancementinalTaysofrectangularblocks

hasbeeninvestigatedbymanyresearchers、SpalTowetaL[1982,1983]studiedtheheattransfer

andpressuredropcharacteristicsofarraysofrectangularmodulesconⅡnonlyencoumeredin

electronicequipmentlntheirexperiment,heattransferenhancementsexceedingafactoroftwo

wereachievedbytheuseofmultiplefbnceslikebalTiers,withtheimerbarrierspacingandthe

balTierheightbeingvariedparalnetricallyalongwiththeReynoldsnumber・Igarashi[1983]

studiedheattransfbrfromasqUarepnsmwithdiffbrentinclinationanglesandobserved

reattachmentflowfbrinclinationanglesofl4o-35o、HeattransfbrfiomananFayofparallel

longimdinalfinstoamrbulemairstreampassmgthroughthemterfinspaceshasbeen

mvestigatedbothnumericallyandexperimemallybyKadleandSparrow[1986]・Theyfbundthat

thelocalheattransfercoefIicientsvariedbothalongthefinsandthesurfaceofthebaseplate・

OyakawaetaL[1993]smdiedtheheattransferofplatesettingrectangularfinswithincUnation

angleof20oandshowedtllatthisconfigurationcanenhanceheattransfbr幹MolkietaL[1995]

experimemallysmdiedtheheattransferattheentranceregionofanarrayofrectangularheated

blocksandpresemedempiricalcolTelationsoftheheattransfbrfbrthealTay・El-SaedetaL

[2002]investigatedheattransferandfluidUowinrectangularfinarraysandfbundthatthemean

NusseltnumberincreaseswithincreasingReynoldsnumber,inter-finspaceandfinthicknessbut

didnotexamineendwallheattransfbr、BilenandYapici[2002]investigatedheattransfer

enhancememfromasurfacefittedwithrectangularblocksatdiffbrentinclinationangleand

fbundthatthemaximumheattransferwasobtainedatanangleof45.whiletheeffectof

inclinationangleislittlefbrlargerthan225。,thoughthelocalheattransfercharacteristicswere

notreported・

IncontrasttorectangUlarfins,cylinder-likepinfinshavebeenfbundtoexhibitalarge

pressu頬dropduetothedragfbrceandflowaccelerationordecelerationthroughthefins、This

difIbrenceisduetothefactthatrectangulararraysdonotfbnnextremelynarrowpassages,

whichalsocausestheheattransferfbrrectangularfinstoberelativelylower・However,thepoor

heattransferregionbehindthepmmaybeimprovedbylongimdinalvortexesgeneratedbythe

fmFurthermore,WhenthefInarrayissetsuchthattheinclinationangleofeveryrowischanged

altemately>thelongimdinalvortexproducedbythetopedgeofthefinreattachestothatofthe

fbllowmgfinincreasingtheheattransferffomthefinsurhlce・Astheaboveliteraturereview

shows,previousstudieshaveinvestigatedheattransferenhancememfromsurfnceswitharraysof

shortrectangularfinsandafewsmdieshaveconcentratedonheattransferffomendwallfbrshort

rectangularfinswithdiffbrentinclinationangles、However,adetailedheattransferanalysisfrom

anendwallwitharraysofshortrectangularfInsofdiffbrentpattems(co-angular,zigzag,co-

rotatmgandco-counterrotatmg)intheductflowhasnotyetbeencompletedBilenandYapici

[2002]haveconductedasmdyfbrtheco-angularcaseonly,butdidnotclarifythelocalheat

transfercharactelistics・Inco-angularpattern,finsarrangedatsameangletothesamedirectionat

eachandeveryrow・Thisinclinationangleofthefinswillfbrmlongitudinalvortexwhichwill

stlikethenextfinsurfhceandendwalLF1owwilltouchbothsidesofthefinsurfaceandsoitis

expectedtheextendedsurfhceeffbctwillbehigherthanvortexeffectontheendwalLWhenthe

finsaresetatsameangleateachrowbutthedirectionsarealtematelychangedthenwedefine

thatpattemaszigzagpattern,Duetothealtematedirectionsofthefins,aslnusoidalwavyUow

behaviorisexpectedtoobservewhichwillincreasethevortexeffbctontheendwaUmorethan

theextendedsurfaceeffect、Inco-rotatmgandco-counterrotatingpattern,finsaresetinsucha

waythatitfbnnsconverginganddivergmgfinpairsinarow・Inco-rotatingpatternthe

convergmganddivergingfinpairsremainsameatcoITespondingfinrows・Inco-counterrotating

pattemtheconvergmganddivergingfinpairsarealternatelychanged、Thisdivergmgfinpairs

willfbnnacoupleoflongimdillalvortexwhichmightstrikestheendwallstronglyandthis

combineddownwashisexpectedtoenhanceheattransferhPomtheendwallsignificantly.

L30bjectiveofthisresearch・

Therefbre,wehaveinvestigatedtheheattransferenhancementfbrfinarraysoffbur

diffbrentpattemsatnalTowandtallductbysettingshortrectangularfinsonaductwalLWehave

chosenthefburfInpatterns,becausetheorientationsofthefinpattemgreatlyaffbcttheflow

fleldandasaresultheattransferisaugmented、Inthissmdy,shortrectangularfinswithfbur

differempatterns,areinvestigatedbecauseofitssignificantheattransfbrenhancementcausedby

thelargescalevoltexeffbctandextendedsurfaceeffect・Inadditionto,determiningtheoverall

heattransfbroftherectangularfInarray,therelativemagnitudesofheattransferbetweenthefins

andendwallcanbedetemlinedinthisstudy、Thissmdyattemptstoanalyzethedetailedheat

transfercharacteristicsoffinbaseandendwallsurfhcefbrdiffbrentfinpatternsandexaminethe

extendedsurfaceeffectfiPomthefinsurfacesandthevortexeffbctontheendwallfbrvarylng

pitchratioinstreamwisedirection、Detailedheattransfbrs,aswellasaverageheattransfer

coefficientsareestimatedffomtheinffaredimagesoftherepresentativefinregion・Theflow

behavioramundthefinsisfUrtheranalyzedtodetermmethelclationbetweentheheattransfer

andfluidflowcharacteristics,Furthelmorewediscussedthethermalperfbrmanceofthefbur

differentfInpattemsundertheconstantpumpingpowercondition,becausetheheattransfer

enhancementalwaysaccompaniesthedragfbrceandpressuredropsimultaneously・Sowemight

comparetheheattransfbrenhancementrateofthissystemwithtjhatofsmoothduct.

Z’ExperimentalApparamsandProcedure

2.1Introduction

Inthissectionwehavemainlydiscussedthediffbrentfinpatternsandtheexpenmental

setUpfbrtheheattransfermeasurements,pressuredropmeasurememsandflowvisualization

technique・Heattransfercoefficientsweremeasuredbytwotypesofapparams;heattransfbr

measurementbyTtypesthermocouplessolderedonthebacksideoftheheatmgsurfaceandthe

othertypeisheattransfermeasurementbymfiaredcamera.

2.2Finpatternsandarrangements

FourtypesoffinpattemsaresmdiedmthisresearchworkasshowninFi9.2.1

Thefinsweremadeofeitheraluminumorresinmaterialsandwererectangularwithdimensions

20mmlong,Smmthickandthreeheights,5,10andl5mm・Thefinsweresetinlinesandrows

ofseveneachFinspacmg,fincentertocenterdistanceSx,mstreamwisedirectionwere

maintained40mm,60mmand70nⅡnwhereasqinspanwisedirectionwas40mm、Theratios

SyLandS/Laredefinedaspitchratio,PRhereafter・Theanglesofthefinstotheflowdirection

weremaintainedatcL=0.,20.and25..Intheco-angularpattemthefinsweresetatthesame

angleandinthesamedirection・Inthezigzagpattemthefinshavethesameanglebutaresetin

alternatedirectionsaftereachrow、Incaseofco-rotatingpatternfinpairsarerotatedinsame

directionandfbnnconvergentanditbecomessameateveryfinrows・Contrarily,incaseofco‐

counterrotatingpatternfinpalrsaresetasconvergentanddivergentaltematelyatrow-wise

direction.

Aとらら鼻うらみBつつつつヴグP

C色-Vぞa且2-色_色_PamidlineDグーヅー少・ヴー・グーダーゲcenterline

EPPPPPPP-

FつPPPPPP-Qa

nP-P尊P(a)Co-angularpattem

7Pづづ多づづP

】・

6,勺、一、、、、

一一

5つPつ一錫つググ趣a

4勺。、一も、。、秤Z

3グググー惨PPP醜

2,,,-、、、、⑥

』’

1グジグーづつPP

ABCDEFG

7ppq夢ppq

6勺P負やQPQm

5勺ロロラロリ、脚

4勺つ勺稜qPQ煙a

3勺ヴローサロつQmo

2勺つQ-PQつ勺加

lロヮロラロつQ

ABClDEFG

7勺つ9づQPQme

6つ。つ一句つ。つ剛

』』

5勺つローヴQPQ・唾a

4。Qつ一句PQPme

3勺。。-ザQPQmO

2つ。P一句つQPK

--

lQつQ-PQpQ⑥

ABClDEFG

Fig.2.1Diffbrenttypesoffinpattems

2.3ExperimentalsetupfDrheattransfermeasurement

2.3.1Finsinsidetheduct

Expelimemswereconductedinlongrectangularductsbothof20and200mmheight,

230mmspanwidthand784mmlengthThefirstrowoffinswaslocated200mmawayfromthe

ductentrance、TheeXperimentalapparamsandfinsettingsareshowninFig、2.1.AsshownmFig

2・ZfbraductheightofHa=200,Ⅱn,thevelocityfielddoesnotdevelopoverthetestsection,

butratheritassumesfinsaremflatplateboundarylayerOntheotherha、。,atHa=20mmthe

flowisfUllydevelOped・ThefinswereattachedtothelowerwalloftlleductbymeansofalOO

似mdoUblesidedthintape・Theupperplateofductwasmadeofatransparemacrylicresinplate

fbrobservationoftheimenoroftheduct.◆

目L1rllc

~>'二

Fig.2.2Finsinsidetheduct(alldimensionsareinmm)

10

2.3.2Heatingsurfacewithfnns

Tomeasurethelocalheattransfbrcoefficients,thelowerwallwasfblmedofaBakelite

plateofthicknesslOmmanda30umthickstainlesssteelfbil(200mm×784mm)asaheating

Surface・Aconstantheatflux9wasfbnnedattheheatingsurfaceusingadircctcurrentsource.■

Topreventheatlossfiomtheheatingsurfacethroughthelowerwall,alayerofglasswoolwas

placedundertheBakeliteplate,Thewalltemperamre恥wasmeasuredusing70ⅡmdiameterT-

typethennocouples,solderedonthebacksideofthelowerwallat58discretelocationsalongthe

centerlineoftheheatingsurfaceandthemidlinebetweenthefinsinthespanwisedirection,as

showninFig.2.3.

Heating CenterlineMidline

thcrmocouplethermPcouplcsurlace

露》雫一

ニニニエニジニー

ニジニニニー

蟇霄二一

窕露》画一

LX

784

Sidetopontside、

Fig.2.3Heatmgsurfacewiththennocouplelocations(Dimensionsinmm)

11

2.3.31nfraredimagetechnique

lnordertoobservethedisnibutionsofthetemperatureandtheheattransfbrcoefficients

aroundthefinsattheendwall,infraredimagesweretakenusinganinffaredcamerawitha

indium-antimony(In-Sb)sensor,whichcanmeasurcthetemperatureatl60x120pointswitha

resolutlonofOO25oCfbrablackbody、Hereitshouldbementionedthatanotherheatingsurftlce

similartothepreviousoneismadeexceptthethemlocouplesattachments・Inthiscase,the

temperaturewasmeasuredatthebackoftheheatingsurfacethroughawindowcovercdby

polyvinyledenefilmwithatransmissivityfbrinfraredenergyofnearlyunity、Thebackofthe

heatingsurfacewaspaintedblackandthewholeexperime、talapparatuswascoveredbyblack

clothtoensurethatthesurroundingswerecompletelydarkasshowninFi924.

囮]E窪匡團巨塞曇QLD

Blackoutcurtain

、A 。,LLocalheattmnsfe

coefficients

繍糟w…T>|<耐多し

Foam

MW,。.、。NozzleIA

Bakeliteplate

÷f1ii箒篶予

CつN1つNⅡ百田

Fig.2.41nfraredimagetechnique

12

First,wemeasurcdtheheattransferusingthethennocouplesinthelargerregiontodeterminethe

effectofthefinsetting・WethenestimatedthedetailedheattransferandaveragedNusselt

numbersintherepresentativeregionbythemfraredimagetechnique、

2.3.41nsulationTechnique

Figure25(a)and(b)showsthethelmalinsulationoftheheatingsurfacewith

thermocouplesandwithoutthermocouplesrespectively・Thestainlesssteelfbil,attachedtothe

bakeliteplatewasusedastheheatmgsurftlceandthatbakeliteplatewascoveredwith60mm

thickmsulator,fbamtopreventheatlosshomthebackoftheheatingsurface,Therefbreheat

losseshPombackoftheheatmgsurfaceexceptwindowmayassumetobeverylittleThe

measurementwindowwascoveredwithtwolayersofpolyvinyledenefnmwithlmmspace

clearance・Heatlosseswere1.3%oftheheatfluxsuppliedtothesurfhcebymeasurementof

temperature difference betweensurfaceheatingandbacksurface.

0.1

plate

〃'''BakcliteF

fbil

ape

(b)Thennalinsulationoftheheatingsurfaceexceptwmdow(a)Thennalmsulationoftheheatmgsurftlce

attachedwiththennocouples.

Fig25Thennalinsulationtechnique(dimensionsareinmm)

13

2.4ExperimentalapparatusfOrpressuredropmeasurement

TomeasurethepressuredlDpresultingfromthepresenceofthefins,0.5mmdiameterstatic

pressuretapswereplacedatl3vanouslocationsofupstreamanddownstreamofthefinsonthe

pressureplatewith60-l20mmspaceintervaLExperimentalapparatusfbrpressuredrop

measurememisshowninFig2.6.Herethepressureplateisapolishedaluminumplateandthe

finsweresetontheplatebydoublesidedthintape・Pressurewasmeasuredbyadigitalmicro

manometerwithanaccuracyof±O1mmH20.

に一一一一

O~200

Fig.2.6Experimentalsetupfbrpressuredropmeasurement(dimensioninmm)

14

2.5Flowvisualizationapparatus

InordertoObservethebasicUowpatternandtheflowbehavioraroundthefin,How

visualizationisveryimportant・Therehavebeenuseddiffbrentmethodstovisualizetheflow

behavior・Inourexpenment,thef1uidnowwasvisualizedasfbllows:Dyeflowmwaterchanne1,

Titaniumoxideoilfilmflowvisualizationandsmokeflowvisualiズation.

2.5.1Experimentalsetupfbrdieflowinwaterchannel

Dyeflowmwaterchanneliso、eofthegoodvisualizationtechniquestogetaclearview

oftheflowpattelnFigure27showstheexperimentalsempfbrdyeflowinwaterchannel・Flow

wasvisualizedbyinducingfluorescentdyeinthewaterchannelatlowerReynoldsnumberto

observetheflowpatternclearly・Thewaterchannelwasmadeofatransparentacrylicplateof

Overflowtank

Hallidelight

Nozzle

トーラz5-l

T<一面一>

|’雲霧富

Testsection

era

Fig.2.7Experimentalapparatusfbrdyeflowinwaterchannel

15

dimension50mmheightandZOOmmwidthFinswereattachedtothesidewallasshownin

Fi92.7.FluorescentdyewasinducedjustattheffontofthefinsbyanalTowtube・Ametalhalide

lightsetatthetopofthechannelandadigitalcamera(NikonD70)setpelpendiculartochannel

sidewallwereusedtoobserveandshotthephotographsatpropertime.

2.5.2Experimentalsetupfbrsmokef1owVisualization

lnordertodetelminethenowbehaviorindetailsaroundtherectangularfInofdiffbrentpattern,

thenuidflowwasvisualizedbyflashlightsheetmethodusingsmokeasatracersuppliedat

upstreamsideatlowerReynoldsnumber・SmokeUowvisualizationapparatusisshownin

Fi9.2.8.ItconsistsofarectangularductmadeoftranSparentacrylicsheet,greenNd:YAGlaser

light,digitalcamera(NikonD70)andasmokegeneratorthatproducesmokeoffinedropletof

diameter0.3~1Um・ForsmokefIowvisualizationfinsweremadeoftransparentacrylicsheet・

TheNd:YAGlasersheetwhichwasusedhasanemittedradiationofwavelengthof532mn.

Camerawaspositionedattopoftheductandthelaserlightwassetatthesideoftheductparallel

tothelowerwalloftheductwherethefinset、Oncethecameraandlasersheetwerepositioned,

thesmokegeneratorsuppliedthesmokeattheentranceoftheduct,thenimagesofflowpattem

wererecorded.

〃Air

F1ow aser

SmokeGenerator Imageprocessor

Fig.2.8EXperimentalapparamsfbrsmokeflowvisualization

16

2.5.3ExperimentalsetupfUroiltitaniumoxidefilmfIowvisualization

ExpenmentalsetupfbrtheoiltitaniumoxidefilmflowisshowninFig2.9.Titanium

oxideoilfI1mflowpattemsatthelowerwallaroundthefinswereobservedatthesameReynolds

numberofthatofthcmainexperlmentnow・Inthisexpenment,athinblackfIlmwasattachedto

thelowerwallandblackpaintedfinswereattachedtothefilmThelowerwallandthefin

surfacewerepaimedbyamixmreoftitaniumoxide,lmseedoilandoleicacidofsuitabledensity

andwereeXposedtoairflowtoobservetheoiltitaniumoxidefilmflow・Aftercompletionofthe

run,photogPaphsweretakenbyadigitalcamera(NikonD70).

Camem

NikonD70:蝋、/

’一

4円FII e

Fig.2.9Expenmentalapparatusfbroiltitaniumoxidefilmflowvisualization●

17

3DataReductionandUncertaintyAnalysis

3.11ntroduction

Inthischapterdatareduction,heatbalanceanduncertaintyanalysisaredescribed,because

theheatbalanceanduncertamtyanalysisareveryimportantfbrthereliabilityofthe

experimemalsmdy.

3.2.Datareduction

InthissmdywehaveinvestigatedthefluidUowandheattransfer・Theessentialquamities

determinedwerethefiictionfactorandtheheattransfercoefficientsfbrthedifferentfinpattems.

TI1etotalheatgeneratedfiomtheheatingsurfaceisdistributedintotheheattransfelTedby

convectiontotheflowingair,heatlossesfbroughtheinsulationandthewindow、Heatlosses

hombackoftheheatmgsurfaceexceptwindowmayassumetobeverylittleasthebakeliteplate

wasinsulatedby60mnthickinsulator,fbamtoprevemheatloss・Itwasfbundthattheheatloss

ffomwindowwas1.3%oftheheatUuxsuppliedtotheheatingsurface・Soitsvalueissosmall

comparedtotheheatinputvalueanditcanbeneglectedConseqUentlythetotalheattransfbrred

byconvectiontotheUowingairequalstheheatfluxsuppliedtotheheatingsurface,

Thehictionfactor/wasevaluatedfromthepressuredifferencebetweenpointsjust

upstreamanddownstreamofthefinsattachedtotheheatingsurfaceusmgtheEq.(3.1)

/=Ploss(DH/O/(paU2/2),(3.1)

whereノisthedistancetotherefbrenceregion,i、e・thedistancebetweenjustupstreamofD1fin

anddownstreamofD7fmandDHisthehydraulicdiameteroftheduct.

18

Theheattransfercoefficiems,

ノz=9/('鵬一t。。),(32)

wereobtainedatrepresentativeregion,wheretwisthewalltemperatureandtllet,cisthe

mainstreamtemperature・

WeconsideredthreekindsofReynoldsnumbersandexaminedtheireffbctsontheheat

transfercharacteristicsattheflatplateboundarylayerandthenalTowductwithfinarrays.

Reynoldsnumberbasedonthemainstreamvelocityandfinlengthcanbeexpressedas

(3.3)ReL=UZ〃

Reynoldsnumberbasedonthemainstreamvelocityandtheducthydraulicdiameterandcanbe

expressedas

Re=DDH〃 (3.4)

Reynoldsnumbersisbasedonthemeanvelocityandtheductequivalentdiameterandcanbe

expressedas

ReE=UDE" (3.5)

Thearea-averagedNusseltnumberbasedontheducthydraulicdiametercanbeexPressedas

(3.6)M=ハDH/几

Thearea-averagedNusseltnumberbasedontheductequivalentdiametercanbeexpressedas

(3.7)/VjlE=ADE/几

Thearea-averagedNusseltnumberbasedonthefInlengthcanbeexpressedas

jVZZL=AL/ス (3.8)

19

3.3Uncertaintyanalysis

Thepressurewasmeasuredbyadigitalmicromanometerofaccuracy土0.1mmofH20・

Theheatingsurfaccwascoveredwith60mmthickinsulator,fbamtopreventheatlossffomthe

heatingsurface・Therefbreheatlossesfrombackoftheheatingsurfacemayassumetobevery

little・Windowwascoveredwithtwolayersofpolyvinyledenefilmwithlmmspaceclearance

andheatlosseswere1.3%oftheheatfluxsuppliedtothesurface、Asaresult,heattransfer

coefficientcontainedlessthan3%uncertamty、Thetemperaturewasmeasuredbyboththe

themlocouplesusingadataloggerandtheinfiParedcamera・Thepercemagerelativeuncertainty

mthemeasuredtemperaturefbrthethermocouplesandtheinfiaredcamerawere±0.25%and±

1.3%respectively、Thepe1℃entagerelativeuncertamtymthemeasuredelectricpowerinputwas

±1.4%、Thepercemagerelativeunceltaintyinthecompoundvariableswerefbundtobeless

than±5%bothfbrthevelocityandtheReynoldsnumberand±3%bothfbrtheheattransfer

coefficientandNusseltnumber.

20

(11伽司『HeatTransferCharacteristicsandFlowAnalysisofFinnedSurfacesinCaseof

TallDuctandNarrowDuct.

4.1Introduction

Inthischapterwewouldliketodiscusstheheattransfercharacteristicsandfluidflow

analysisoffinnedsurfacesofco-angularandzigzagpatternExperimemswereconductedfbr

finssettingataHatplateboundarylayeri.e・intallductandnarrowductcolTespondingto200

mmand20mmductheight.

4.ZLocalheattransfercoefficients

4.2.1Smoothductresults

ThedistributionsofthelocalheattransfbrcoefficientsArattheendwallwithout

rectangularfinsareshowninFi9.4.1.Tochecktheaccuracyoftheheattransfermeasurements

andtodetenninethecharacteristicsofbothductswithoutfins,wemeasuredthelocalheat

transfercoefficientonthesmoothductsurface・Fig.4.1(a)presemsthestreamwisedistributions

ofthelocalheattransfercoefficiemalongtheendwallfromtheductentranceintheductofHd=

20OmmfbrU=5,10and20m/s・Thedistributionsgraduallydecreaseinthestreamwise

direction・Sincetlleductheightwassolarge,boththehydmdynamicandthennalboundary

layerswerestilldeveloPmg,evenatthetestsection・Duetotheroughsurfaceattheducti、let,

actlngasatriPPingsurface,theflowwasmrbulent,ThelocalNusseltnumber,basedoMrand

thedistance,Xfmmentranceagreeswiththeequation

M↓漣=0.0296Rejro8Pノ"06 (4.1)

21

fbramrbulentboundarylayeronanatplate,asshownbythesolidlinesinFig4l(a).Inthe

figure,theopenandsolidsymbolsdesignatethecenterlineandthemidlme,respectivelyBoth

setsofdataareequalregaldlessofspanwisepositionindicatingthetwodimensionalityofthe

150

国100m

g彦一

二i<50

-10-505101520

XL

(a)Hb=200mm

150

口100GJ

日~

芦一

旦<50

0

-10505101520

X/L

(b)Hu=20mm

Fig41Localheattransferdistlibutionswithoutfinonsmoothsurfhce

heatingsu1face、ThedatashowsgoodagreementwithEq.(4.1).

TheresultsfbrthenarrowductareshowninFig4.1(b).Thedistributions獣adually

decreasetowardthedownstreamdirectionatlowerReynoldsnumbers,AtRe=Z34x104and

22

35lx104,thedistributionslowlyincreasesandcoillcideswiththefbllowingequationfbrafUlly

developedhydrodynamicboundarylayerfbrairflowatthedownstreamregionasshownbythe

solidlines:

jVjl=0.O19Req8 (4.2)

HencetheductheightsofHa=Z00mmandHti=20mmrepresentsaflatplateturbulem

boundarylayerandaMlydevelopedductHowintestsection,respectively.

4.2.2EffCctofinclinationanglesonheattranSfer

Theeffectoftheinclinationangleoftherectangularfinonthelocalheattransfer

coefficientispresentedinFigs、42.(a),(b),and(c)fbru=0.,20.and25゜,respectivelyEach

graphrepresemsthestreamwiselocalheattransferCoefficientatthecemerlmeandatthemidline・

Cemerlmeandmidlinedataarecalculatedalongthecenterofthefinrowsandmiddlebetween

finlinsrespectivelyasshowninFi9.2.LTY1edatafbrthecemerlinedecreasesgraduallyuptothe

firstrowoffIns,whereitexhibitsarapidincreaseandattainsamaxⅡnumvaluebefbrerapidly

decreasingtoaminimumvalue,withthepatternrCpeatedperiodically,Maximumvaluesare

obtamedatfinpositionsandtheminimaareobtamedbetweenthefinsalongthestreamwise

direction・Themax1mumvalueatthefincentermaybethecombinedeffectoftheextended

surfaceandlongimdinalvortex・Eventheminimumvaluesarehigherthanthosewithoutfinsand

henceitmaybeconsideredthatheattransfbrisenhancedbyturbulenceorlargescalevortexes

generatedbythefins・Thesolidsymbolsinthefiguredescribetheheattransfbrenhancementsat

theendwallcausedbythelongimdinalandothervortexes・Asthelongitudinalvortexfbmledby

thetopsurfaceofthefinstrikestheendwallbetweenfinssotheheattransferisaugmentedof

thatにgion、Atthesametimetulbulencecausedbythecorneredgealsoincreasestheflow

mixing;asaresultheattransferisincreasedbehindthefins、Fig.42(a)showsthepeliodical

23

distributionfbroL=0.whiletheheattransfbrincreasesbetweenthefinsinthespanwisedirection

anddecreasesatotherplaces・Thoughtheheattransfercoefficientsalongthecenterlineposition

ofthefinfbru=20。(Fig.4.2(b))and25。(Fig.42(c))mcreasesinthesamemannerasibru=

0.,theheattransfbrcoeffIcientsalongthemidlinearesomewhatdifferent・Alongthemidlme,the

localheattransfercoefficientsareaffectedbythelongimdinalvortex,maimaminglargevalues

fbru=20.and25゜comparedtoOo・TheheattransfbrcoefIicientfbru=Z0oiscomparatively

higheramongthethreeinclinationangles,whichagPeeswiththedataobtainedbyBilenetaL

[2002]whofbundthattheeffectofinclinationangleonheattransferenhancementissmallfbr

inclinationanglesfbrlargerthan22.5..Aninclinationangleof20ocausedconsiderable

enhancementinheattransfer,Thisisbecauseoftheedgeeffectoftherectangularfin,which

increasestheHowmixmg・Whenthefinsaremmedaroundthemidpoint,thesideedgescan

producemoreturbulence・Becauseofmrningaroundmidpoint,thefinwillactasvortex

generatorandproducethelongimdinalvortexconstructingtrailingvortex,comervortexand

inducedvortex・Thelongitudinalvortexisalsocalledthestreamwiseonewhichaxisisinsame

directionasthestreamwise,andpersistsoveralongstreamwisedistance,distulbingtheentire

velocityfieldandtemperaturefIeld・Asaresultheattransfbrratemcrcases・Alsothecomeredges

increasesthemrbulenceleveLThissituationhasbeendiscussedbyHennan[1994]andHelman

andKang[2001]Therefbre,aninclinationangleof20oispreferredfbrfUrtheranalysis.

24

150

OCCs

[】對三]然函

-5 0 510

X/L

(a)CFO。

15

-0-centerline

+midlme

0000

s05

1[】判:β]詫二P ̄F’■■FロP ̄F ̄

-5 0 S10

X/L

(b)GI=20

15

-O-centerline

-十midline

150

0005

画週」宴]耳

戸一■■ ̄ ̄ ̄■■ ̄P ̄■■ ̄ ̄ ̄

-5 0 510

X/LO

(c)u=25

15

Fig.4.2EffectofinclinationangleonlocalheattransfercoefficientsfbrHf=10mm,Hb=Z00mnandU=10m/s

25

4.2.3Heattrans化rthroughfinofresinmaterial

Wenowwanttodiscussthefinmaterialwithregardsestimatingtheeffectofavortex

generatorontheendwall,butnotfbrtheextendedsurfaceThelocalheattransfercoefficientwas

measuredfbraresinmaterialfin,ratherthananaluminumfin・Theresultsareprcsentedin

Fig、4.3.Inthisfigur巳cemedmedistributionshowsthattheheattransfercoefficientatthefin

positionfbrtheresinmaterialincontrasttothealuminumfinasshowninFig42(b)issmaller,

becauseofnoextendedsurfaceeffect・Thecoefficientatthemidlinealsoappearstobeequalto

thatofthecenterline・Sotheoverallheattransfermaybeenhancedbyafactorofabouttwotimes

thanthatofwithoutfins、ThisresultsintheeffectofvortexgeneratorwithnoeffecthPom

150U(m/S)

一○--●-5

-匹-■-10

一○一一ローcenterline

一一midline0005

[】M…F]ゴ

-4 20246 8101214X/L

Fig.43Variationoflocalheattrallsfercoefficientsfbrresinmaterialwithα=20,HIP=10mm,Ba=200mm.

extendedsurface・BecausetheBiotnumberfbrtheresinmaterialwasestimatedlOandthe

conductionresistanceofresinmaterialwasnearlyequaltothethermalresistanceTherefbre,the

heattransfere血ancementbyanaluminumfinonlywillbediscussedinthepresentexpenment

asthealuminumfinswillhavetheeffectofextendedsurfaceandthevortexgeneratoratthe

sametime・Asmentione。,thindouble-sidedtapeofthicknesslOO1unwasusedtoattachthefin

totheheatingsurface・Forthealunnnumfin,theconductionresistanceofthetapewas5%ofthe

26

totalresistance(fbranaverageheattransfercoefficienthassumedtobe200W7m2K).Therefbre,

thetapedidnothavemuchafTbctontheestimationoftheheattransfbrCoefficient、Also,theBiot

number,Bjofthealuminumfinwasabout0.009,whichissmallenough、Therefbre,theheat

transferenhancementbyaluminulnfinonlywillbediscussedhereafter.

4.2.4EffectoffinheightonheattransfbrcharacterMics

Theeffectoftheheightofthefinonthelocalheattransfercoefficientisnowdiscussed・

Fig.4.4showsthestreamwiselocalheattransfercoefficientdistributionfbrvaryingfinheightin

caseofco-angularpatternataUatplateboundarylayerasatypicalexample、Itwasfbundthatas

thefinheightmcreases,theextendedsurfaceareaalsoincreasesandasaconsequencetheheat

transferratelncreases・Thelocalheattransfbrcoefficientshowsaperiodicdistributionregardless

offinhei甑t・ThediffbrenceintheheattransferenhancementbetweenfinheightsoflOmmand

l5mmwasverysmall,whilethediffbrencebetweenfinsof5mmheightandotherfinswas

larger,Consideringthelargerpressurepenaltyfbrl5mmheightfin,10mmheightflnwas

chosenaSatypicalfi、.

200

000

505

引凶同自刮傷]×畠

-4-2024681012X/L

Fig.4.4EffectoffinheightonlocalheattransfbrcoefficiemalongcenterlineatcopattemfbrHd=Z00mmandU=10m/s

angular

27

4.2.SEffCctofvelocityonheattransfercharacteristics

Theeffbctofvelocityonthelocalheattransfbrcoefficientinaductof200mlnheightfbr

aco-angUlarpattemisshowninFig.4.5(a)Thelocalheattransfercoefficientslowlydecreases

inboththeupstreamanddownstrcamregion,whileatthefinnedregionaperiodicdistribution

appearswhichisindependentofvelocity・Thedistributionfbrthezigzagpatternissimilartothat

oftheco-angularpattem,asshowninFig、4.5(b),thoughwithsomedifferences・Forthezigzag

pattem,theheattransfercoefficientprofilenearthelowerpeaksappearsconcaveandshows

hi8hervaluesthanthatoftheco-angularpattem・Thepeakvaluesmtheupstreamreglonare

higherfbrtheco-angularpattemthanfbrthezigzagpatternThisisbecauseinthecaseoftheco‐

angularpattemtheflowtouchesbothsidesofthefinsstronglyandthencontinuessmoothly

whereasfbrthezigzagpattemtheUowstmnglytouchestheendwallandthefPontsideofthefin

whiletheothersideremainsuntouchedThus,theextendedsurfaceismoreeffectiveinthecase

oftheco-angularpatternfbraflatplateboundarylayer・Fig.4.5(c)showsthedistributionofthe

heattransfbrcoefficientfbrthezigzagpatteminanalTowduct・Inthisfiguretheupperpeak

valuesarefbundtobethehighestbecausetheupperwallofthenalmwductcausestheflowto

strikctheendwallandthefinmorestlDnglyDatafbrtheco-angularpatternfbrthenalrowduct

isnotshownbutthedistlibutionwasalmostthesameasthatfbrtallduct・I、Fig.4.5(a)-(c),

themaximumheattransfercoefYicientshowssomediscrepancyatsomestreamwisevelocities

duetosmalldeflectionsofthethermocouplesfromthecenterline.

28

13050

伽Sll2

uO8士桿

000000

50505

22[昏一副]潔昌

-4‐20246810121416

X/L

(a)Co-angularpattemHd=200mm

Oo0000

5o505

22[乢訊目一図]×二

-4-20246810121416

X/L

(b)Zigzagpatiem,Hd=200mm

000000

50505

22[乢引日へヨ]〆呂

-4‐20246810121416

X/L

(c)ZigzagpattemHd=20mm

Fig4SVariationoflocalheattransfercoefYicientwithvelocityalongcenteriinefbrHT=10mm

29

4.3Detailedheattransferanalysis

DetailedheattransfercoeffIcientdistributionsattheendwallsurfacesfbrrectangularfinsof

bothco-angularandzigzagpatternsfbraflatplateboundary(tallducOandnaITowductfloware

shownmFigs、4.6-4.9.AsshowninFigs、4.6(a)and47(a),theheattransfercoefficiemvalueis

higharoundthefinrowsfbrbothpatterns・Thesehigherheattransferregionsarethecombination

ofextendedsulfaceeffbctandvortexeffect,Atflatplateboundarylayer,Leintallductcase,

infraredimageviewoftheco-angularpattemshowsthediffbrenceofheattransfervaluaAt

narrowductcase,co-angularpattemexpenenceshigherheattransfbrthanthatoftallductcase・

Thisdifferenceisapparentlyshownbothatthefinbaseandendwallsurface・Becauseupperwall

ofthenarrowductmfluencestheflowbehaviorandasaresultflowstrikesthefinsurfaceaswell

asdownwashtheendwallmorestronglySoheattransfercoefficiemvalueishi甑eratfinbase

andattheendwalLOntheotherhandupperwallofthetallductcouldnothavemuchinfluence

ontheflowbehavior,sotheHowdidnotcontactthefinsurfaceandendwallasstronglyas

nalTowductAsaresultcomparativelylowerheattransfercoeffIciemvaluesareobservedatflat

platewithco-angularpattem、Sametotheco-angularpattemzigzagpattemexpenencesthe

effectofductheiglltonheattransfbrasviewedbytheinhFaredimagewithzigzagpattem、

CompanngvaluesofAJrbetweenthetwopatter、sshowsthatthehigherheattmnsferregions

increasesfbrzigzagpattern・Intheco-angularpattern,thehorseshoevortexisresponsiblefbrthe

enhancementoftheheattransfbraroundthefins・Theheattransferintheregionbetweenfinsin

thespanwisedirectionisalsoenhancedduetolateralmixing、Inthezigzagpattem,thehorseshoe

vortexaswellasthevortexgeneratedbythesidetopandCorneredgesstronglytouchesthe

altematelyangledfinsurfacesandendwaU,whichsignificantlyenhancestheheattransfer・Next

wewilldiscussmoredetailgraphicalpresentationoftheheattransfercoefficientfbrthedifferent

finpattem、

Figs、4.6(b)and47(b)showtheheattransferdistributionalongthecenterlineandmidlme,

30

AirHow

3mrow 4111 6t11Sth

ヴヴゲザググ

霞LPg-

-Wh12K1-0I

140曰~

鴨田0.0 -120

-100

-I8IOl-1.0

Eニト60

ロ 2 4*6X/L

(a〕

00000

50505

2211

厩日彦]ゴ

ocente「line

●mIdllne

、 2 4*6X/L

(b)

X聯/L=00511.522533.54

1-0

鵜一OCN

-10

■百■■■ F百■■■ ■苗■■■ |■君■■■ ■■■■■ ■君■■■ l宙■■■■ JBm■■ 蛍■■■■

]MVWinzK]

(c)

100300

Fig46Detailedheattransfercoefficientdistributionsaroundtherepresentativeflnsofco-

angularpatternattbeendwallinaflatplateboundarylayerfbrReL=L27xlO4,Br=10mm.(a)Infiaredimage.(b)Centerlineandmidlinedistributionsand(c)Spanwisedistributions.

31

W1m2K-140

1-12o

割-100-80

--60

、P!グ

ダダ

Airflow

5lh3rdrow 4111 6t11

[w/m2K]=し140

一■一旬一■j

PlPP

b-■■ユ

ダーーヂ舌鋲

、10

、已囚鶉

0.0 120

100

80

60

1-0

ロ 2 4*X几

(a)

00000

50505

2211

口や日雇邑郵

centenine

midline

○⑥

ID 2 4 圖

X/L

(b〕

X7L 40.51 15 225=0

3’祠

3国旨ご皀冒冒冒ヨョョ剴冒〕皀冒冒冒則

1.0

曰一国十斗 0.0

10

anロ■ ■■■■■ H■■■■F■■■■ IF、■■ F■■■■

100300MWm2K]

(c)

Fig47Detailedheattransfiercoefficientdistributionsaroundtherepresentativefinsofzigzag

patternattheendwallinafIatplateboundarylayerfbrReL=LZ7xIO4,H「=10mm.(a)Infiaredimage.(b)Centerlineandmidlinedistributionand(c)Spanwisedistribution

32

1000

h肛料烟相即釦

要|叫一川二

鱒==唇

座、輿

、!

Forbothpattems,thecellterlinedistributionisperiodicandthepcakindicatesthehWalueatthe

fincenter、HeattransferdistributionsalongstI℃amwiseandspanwisewithvalyingvclocitywercalso

fbundperiodicalrBgardlessoffinpattemandveIocityintheprwiousexperimentalworkoflslamet

alPOO61AroundthethirdrowfinsthedistributionsshowhighervaluesofLfbllowedbya

subsequentdeclineinthedownsn℃amregion,ThcsIopeofthedeclincisgJ℃aterfbrtheco-anguIar

patternthanfbrthezigzagpattem・Themidlinedistribution,showingtheendwallheattrHnsfbr,is

aImostflatandisnearlyhalfthemaximumvalueltisaIsonotablethatthcslopcofthedeclineis

againhigherfbrtheco-angularpattem・T11clesserslopefbrthczigZagpattemmightbeduetothe

vortexthatstmmgIyattachestothefarthestrowfin

Figs、4.6(c)and4.7(c)showthespanwisedistributionfbrbothpattems・Thet1℃、dsofthe

distributionsaresimilar,butthevaluesofhzaredifYierent・Atr/Z=0,2and4,Le、atthecenterof

eachfinIDw,periodicdistributionsappear・Attheupsb『Bamsidefinsthelowerpeakandhigluerpeak

valuesarChighcrfbrtheco-angularpattem,butatthedownst1℃amsidefinsthezigzagpatbernexhibit

highervalues・Atr/Z=u5and25,thcdistributionstendtowardsbeingflatwhileatr7Z=land3,

theybecomenearlycompletelyHaLImmediatelybefbrethefins,i,eatr/Z=l5amd3、5,the

distributionsagainbecomeperiodic・Figs、4.8and49showthedistributionsfbrnarmwductHow,A

comparisonbetweenFigs、4.8(a)and4.9(a)identificsthediffe歴、tshapesofthehcattmnsferproflIe・

Imhecaseofthcco-angularpattern,thelowerheattransferrcgionsa1℃compamtiveIylargeand

hysterisisshaped,whilefbrthezigzagpattern,theIowerheattmnsfbr1℃gionsa1℃compamtively

smaUwithadeltashape・ThehoTseshoevortexesaroundthefinfbrbothpatternsobservedfbrtheoil

HImflowagTcewiththeobservedhigherheattmnsfbrr℃gionaroundthefinintheinfraMimages、

ThelevelofheattlnnsfeTincrcascsinanalTowductcomparedtoafIatplatebecausethcupperwaU

induccsthcflowvortcxtoattachtotheendwalIandfinsurfhcemo”strongly、Largehigherheat

transferregionsaroundeachfinrowareobservedfbrbothpattems・Figs、4.8(b)and4.9(b)showthe

distributionaloH1gthecenterlineandmidline,Thoughthepattcmsofthcdistributionsaresimilarto

thosefbrthefIatplatecase'んrisgrCaterandthercisnosignificantdecIine、

33

Airflow

3rdrow 401 Stb 6t]]

hヴーグ

ゲ・餌

諄||伊

伊毎 [W/mzK]1-0

陽1010]『房事| ̄曰

篝白00 -160● ̄牙一

鰹)尾}-1ZID

-10

と=←80

4*6X/L

ロ 2

(a)

Ocenterline

00000

50505

2211

[閏略逗芦]〆昌

4*6X几

H 図

(b)

X率/L=00511.522.533.54

1.0

鵜已CO田

-1-0

100300

hz「Wm2K]

に)

Fig48DetailedheattransfbrcoefficientdistributionsaroundtherepresentativefInsofco-angularpattemattheendwallinaductflowfiorRc=2.34×104,舟=10mm.(a)Inffaredimage.(b)Centerlineandmidlinedistributionand(c)Spanwisedistribution.

34

Airflow

3rdrow 4111 5111 6ul

,倭財p鷺倭■P■

ヂロ●弾!

10[Wノm2Iq言壽1-200

旨00 -160

-120-1-0

皀邑半80

ID 4*6X/L

(a)

ocenterline

00000

50505

2211

[図、日一彦]×畠

midline

夢i`是凝汽

ロ 2 4*6X/L

(b)

X7L=00511.522533.54

1.0

驫己CO■

-1.0

qnu Huu F酌■■Ⅱ凹凹 ロ■■ Hmu ロ■■ uZuu ロ凹凹

100300hz[VWm2K]

(c〕

Fig.49DetailedheattransfercoefHcientdistrlbutionsaroundtherepresentativennsof

zigzagpatternattheendwallinaductflowfbrRc=2.34xlO4,Bi=10mm.(a)InfTaredimage.(b)Centerlineandmidlinedistributionand(c)Spanwisedistribution.

35

T11elowerpeakpmfilesareconvexfbrtheco-angularpattem,whileincontrasttheprofileisflat

fbrthezigzagpattemandthelowerpeaksarecomparativelyhigher・Themidlinedistributionis

neadystraightfbrbothpatternsbuttheAWaluesaregreaterfbrthezigzagpattern・Figs、48(c)

and49(c)showthespanwisedistributionfbrbothpatternsThcdistributionisalmostperiodic

exceptatr/Z=land3Boththelowerandhigherpeakprofilesarecomparativelymoreconvex

fbrtheco-angularpattern,whilefbrthezigzagpatterntheprofilesarehigherandsomewhatflat.

4.4.Area-averagedheattransfer

Thearea-averagedheattransfbrcoefficientsattheendwall,finbaseandtheoverall

surfacesoftherepresentativethird,fburth,fifihandsixthrowfinsweremeasuredfiDminffared

lmages・Heattransmissionfiomtheoverallsurfhceisthetotalheattransferf、mthefinsurface

andtheendwallwithoutthefins・Againheattransferratefromthefinsurfaceisequaltotheheat

transfbrfiomfinbase・Sotheareaaveragedheattransfercanbecalculatedusingthefbllowing

equation,Eq、4.3.

伽…F-4L恥瑞脇…AOM目,12〃(43)

where'4.…/listheoverallsurftlceareaincludingthefinbaseand蜘and鋤`wallarethesurface

areasofthefinbaseandendwall,respectively、Therelationshipbetweenthearea-averaged

NusseltnumberandtheReynoldsnumberisshowninFig4.10.Thearea-averagedNusselt

numberisrepresentedbythecurvefittedlines,A11thedataftl11smoothlyonthecurvefittedlmes

andcanbewellrePresentedbythefbllowingeqUation,Eq、4.4.

ハノ1M=CRG0.7. (4.4)

ValuesfbrcfbrdifferentductheightsandfinpattemsarelistedinTableLItisfbundthatthe

zigzagpatternhashighercvalues`Fig.4.10(a)showsthevariationoftheNusseltnumberwith

theReynoldsnumberattheendwallandtheoverallsurfacefbrbothpatternsfbranarrOwduct,

36

10098765

'二

23456789

104 105Re

(a)Area-averagedNusseltnumberattheoverallsurfaceandtheendwa,,asafimctionoftheductReynoldsnumberfbrHb=20mm.

100

ざ函

104 ReL

(b)Area-averagedNusseltnumberattheoverallsurfaceandtheendwallasafimctionoftheReynoldsnumberbasedonfinlengthfbrHa=200mm.

Fig.4.10RelationshipbetweenNusseltnumberandReynoldsnumber

37

TablelCoefIicientofheattransfercorrelationattallductandnarrowductfbrco-angularandzigzagpattern

MノーcReo7FinPatternDuctHeight(nm) C

endwalloverall

Co-angularZigzag

Co-angular

ZigZag

20

20

200

200

0.151

0.17

0.096

0.100

0169

0.187

0.113

0.108

wheretheNusseltnumberisarrangedbyducthydraulicdiameter・Forallcases,theNusselt

numberincreaseswithReynoldsnumber・CO、sideringtheoverallheattransfbr,thezigzag

patternshowsahighervaluethantheco-angularpattem・Asnotedpreviously,thisisduetothe

factthatfbrthezigzagsettingthelongitudinalvortexstrikestheendwallandthefinsurfacemore

stronglyuptothefarthestfinrow.Comparingtheendwallheattransfer,thedifferenceintheheat

transfbrbetweentheco-angularandzigzagpattemsismorethanthedifferenceintheoverall

surfacearea,indicatingthattheendwallheattransferismoresigniflcamfbrthezigzagpattern

whiletheextendedsurface(fin)effectissignificantfbrtheco-angularpattern、Theoverallheat

transfbrisfbundtobeenhancedbymorethanfburtimesthesmoothsurfacevalue・

ThevariationintlleNusseltnumberwithReynoldsnumberattheflatplateboundary

layerisshowninFi94.10(b),withtheNusseltnumberalTangedbyfinlength、Theoverallheat

transferenhancememfbrbothfinpattemsisnearlythesamethoughthecoefficientcfbrthe

zigzagpatternissomewhathigher・Theendwallheattransferfbrthetwofinpattemsisfbund

similartoo.

Theheattransferffomasmoothsurfacewasestimatedasfbllows:Theheattransfer

CoefficientswerefirstcalculatedfromtheEq.(4.1)fbrtheHatplateboundarylayerwithinthe

rangeX=0.28m-0.36m,correspondingtothelengthbetweenthethirdandfIfihrows.

形。i`0。…ノw過ム“O28

(4.5)

38

TheseheattransfercoefflcientswerethenreplacedbythemeanNusseltnumberbased

onfinlengthandcanberepresemedbythefbllowingequation:

jVjJL=O0138ReLq8. (46)

Theoverallheattransferwasthencomparedandfbundtobemorethanthreetimesthesmooth

surfacevalue・Hence,itwasfbundthatheattransferisimprovedwiththeuseoffins,Azigzag

PatternfbrHli=20mmwasfbundtobemosteffectivefbrheattransferenhancement.

4.5FlowvisualizationbydyeUowinwaterChannel

Inordertodifferentiatetheflowbehavioroftheco-angularandzigzagpattern,dyeflow

inwaterchannelwasobservedatlowerReynoldsnumber・ThedyeHowpattemsfbrtheco-

angularandzigzagpatternsareshowninFig.4.11.Inthecaseoftheco-angularpattem,thedye

UowstagnatesinffontofthefIrstrowfInandfblmsahorseShoevortexsulToundingthefin,At

therearofthefin,thevortexrollsupandrisestojomtheflowseparatedfmmtheupstream

portionofthefin,whereitthenshowslongitudmalbehavior,Astllefinsaresetatanangle,edge

effbctsareobserved、Thecomeredgescauseturbulenceandenhancenowmixingintheinterfin

regionalongthestreamwisedirectionThemainvortexflowsabovethefinsasshowninFi9.

411(a),touchingthetopofthefinsandthesidewall,Thehorseshoevortexaroundtheco‐

angularpattemissostrongthatthelongitudmalvortexcannotcomacttheinnerportionofthe

horseshoevortexandthevicinityoftheendwallexceptfbrthebothsidewallsofthefins.It

causesheattransfbrenhancememfromthesurftlce、

InthecaseofthezigzagpattemshowninFi9.4.11(b),alongimdinalvortexgeneratedby

theHrstfInmwtouchestheffontofthesecondrowfinandattachestotheendwallaroundthefin

asthehorseshoevortexthatappearsisnotstrong・Duetothealtematedirectionsofthefins,the

flowdirectionischangedandthelongitudinalvortexstrikestheendwallbetweenthesecondand

39

thirdrowfIns、Theinterfinregioninthespanwisedirectionatthethirdrowiscontactedbythe

mainvortexBeyondthisrow,theHowadvancesandtouchesthefbllowingfinandtheendwall・

Wenotethattheflowattachesstronglytobothsidesofthefinibrtheco-angularpattern,while

化rthezigzagpatterntheffontsideistouchedbytheflowstronglybutthebacksideissolIly

touchedonly・Therefbre,heattransfiBrfiFomtheHI1shouldbesignificantintheco-angularcase,

whileheattransflerfiDmtheendwallshouldbehigberillthecaseofthezigzagpattern,aswillbe

describedlater

Waterflow

Rolledupvortex

Horseshoevortex

I1U-IIlI1lIIIIIUIUII ’1111

0.O

Mainvortex(、.v、)

20 40 6.0

X几

(a〕

Waterflow

可も一

鞭UP■

ylll…剰

戸<夛只 -==

=髭-1p

鰹露讓愛l學i學邑i雪ごi§霊露I1IUIIUIlllUU11 11

00 20 40 6.0

X/L

(b)

Fig.4.llFlowvisualizationinawaterchannelaroundshortrectangularfmof(a)co-angular,(b)zigzagpatternwithHi-lOmm,PR=ZandRe=1350.

40

4.6.Frictionfactor

lnordertocalculateftictionfactor,wefirstmeasuredthepressuredropdistribution・

Fig.4.12showsthehictionfMorobtainedffomEq.(3.1)inananDwduct、Inthetallduct,a

hydrodynamicboundarylayerdoesnotfUllydevelop・Thefiictionftuctorfbrlargescale

protrusionpositionedinsurfaceshowsalmostconstantregardlessoftheReynoldsnumberand

thehctionfactorvaluesfbrbothpattemsarelargerduetotllelargescalevortexfbrmedbythe

existingprotrusionsthantheskinfiictionfbrasmoothductwithoutfinsfbrMlydeveloped

mrbulentflow・Astheflowfbrthezigzagpattemhasmorecontactwiththefinsurfhceand

endwallandconseqUentlyalargerdragfbrceoccursthanfbrtheco-angularpattemAsaresult

thefiictionfhctor,/issomewhathigilerfbrthezigzagpatternthanthatofco-angularpattem.

01Cco-angular

恋zlgzag

864

、、

一一、一一一2

‐1/4

f=O3164Re

0.01

104 2 3456

Re

Fig.4.12Frictionfactorvs、ReynoldsnumberinananFowductfbrco-angularandzigzag

pattemofHイー10mm

41

4.7Summary

Afterperfbnningthisinvestigationwecanconcludeasfbllows:

LTheinclinationanglehasagreatinfluenceontheheattransferenhancement・Amongthe

inclinationanglesofO・'20.and25.,anangleof20・appearsoptimumfbrenhancementin

thisexpenment、

2.Thefifictionfactorsfbrbothpatternswerelargercomparedwiththeskinhdctiononthe

smoothsurfncefbrafUllydevelopedmrbulentnow・Thefrictionftlctorvaluewasfbundtobe

almostconstantandlargerfbrazigzagpatternofflnsthanfbraco-angularpattern、

3.Indyeflow,stronglongitudinalvortexesappearedthattouchtheendwallneartheinterfin

space・Inthecaseofthezigzagpattem,onesideofthefinwasalsocontactedbythevortex・

Thoughacornervortexalsotouchesthesidewallofthefin,thehorseshoevortexwasnotas

clearlyobservedIncontrast,alongimdinalvortexisalsoobservedfbrtheco-angularpattern,

whichtouchesthefinsurfnceaswellaslightlycontactingtheendwalLAhorseshoevortexis

alsoclearlyobservedinffontofthefins、

4.Companngarraysofco-angularandzigzagpattems,thelaterismoreeffectivefbrheat

transfbrenhancementinthecaseofnalTowductflow・Theaverageheattransfercoefficient

fbrazigzagpatternismorethanfburtimeshigherthanthatofwithoutfins・TheNusselt

numberincreaseswithReynoldsnumbertothe0.7uIpowerfbrbothpatternsinanaIrowduct

aswellasfbraflatplateboundarylayer.

42