Structure I Lecture20

download Structure I Lecture20

of 8

Transcript of Structure I Lecture20

  • 8/20/2019 Structure I Lecture20

    1/18

    6.06.0 ELASTIC DEFLECTION OF BEAMS ELASTIC DEFLECTION OF BEAMS 

    6.1 Introduction

    6.2 Double-Integration Method

    6.3 Examples

    6.4 Moment Area Method

    6. Examples

  • 8/20/2019 Structure I Lecture20

    2/18

    Introductionx! !

    "

    Elastic cur#e

    $he de%lection is measured %rom the original neutral axis to the neutral axis o% the

    de%ormed beam.

    $he displacement " is de%ined as the de%lection o% the beam.

    It ma" be necessar" to determine the de%lection " %or e#er" #alue o% x along the

    beam. $his relation ma" be &ritten in the %orm o% an e'uation &hich is %re'uentl"

    called the e'uation o% the de%lection cur#e (or elastic cur#e) o% the beam

    Importance o% *eam De%lections

     A designer should be able to determine de%lections+ i.e.

    In building codes "max ,beam/300

     Anal"ing staticall" indeterminate beams in#ol#e the use o% #arious de%ormation relationships.

  • 8/20/2019 Structure I Lecture20

    3/18

    Methods o% Determining *eam De%lections

    a) Double-Integration Method

    b) Moment-Area Method

    c) Elastic Energ" Methods

    d) Method o% singularit" %unctions

  • 8/20/2019 Structure I Lecture20

    4/18

     Double-Integration Method$he de%lection cur#e o% the bent beam is   M 

    dx

     yd  EI    =

    2

    2

    In order to obtain "+ abo#e e'uation needs to be integrated t&ice.

    "

    ρ

    adius o%

    cur#ature"

    x

    )(Curvature1

    κ ==ρ

    ⇒ρ

    = EI 

     M  EI  M 

     An expression %or the cur#ature at an" point along the cur#e representing the

    de%ormed beam is readil" a#ailable %rom di%%erential calculus. $he exact %ormula

    %or the cur#ature is

    2

    32

    2

    2

    1

     

     

     

     

     +

    =κ 

    dx

    dy

    dx

     yd 

    smallisdx

    dy2

    2

    dx

     yd =κ ∴   M 

    dx

     yd  EI    =

    2

    2

  • 8/20/2019 Structure I Lecture20

    5/18

    The Integration Procedure

    Integrating once "ields to slope d"/dx at an" point in the beam.

    Integrating t&ice "ields to de%lection " %or an" #alue o% x.

    $he bending moment M must be expressed as a %unction o% the coordinate xbe%ore the integration

    Di%%erential e'uation is 2nd order+ the solution must contain t&o constants o%

    integration. $he" must be e#aluated at no&n de%lection and slope points(i.e. at a simple support de%lection is ero+ at a built in support both slope

    and de%lection are ero)

  • 8/20/2019 Structure I Lecture20

    6/18

    Sign Convention

    !ositi#e *ending egati#e *ending

    Assumptions and Limitations

    De%lections caused b" shearing action negligibl" small compared to bending

    De%lections are small compared to the cross-sectional dimensions o% the beam

     All portions o% the beam are acting in the elastic range

    *eam is straight prior to the application o% loads

  • 8/20/2019 Structure I Lecture20

    7/18

    Examples x 

    x

    "

    !

    !

    !

     Px PL M    +−=

     M dx

     yd  EI    =2

    2

    5 x   Px PLdx

     yd  EI    +−=

    2

    2

    Integrating once   1

    2

    2c

     x P  PLx

    dx

    dy EI    ++−=

    5 x 0   ( ) ( )  ( ) 0

    2

    0000 11

    2

    =⇒++−=⇒=   cc P  PL EI dx

    dy

    Integrating t&ice2

    32

    62c

     x P 

     PLx EIy   ++−=

    5 x 0   ( ) ( )  ( )

    06

    00200

    22

    32

    =⇒++−=⇒=   cc P  PL

     EI  y

    62

    32  x P 

     PLx EIy   +−=

    5 x " "max

     EI 

     PL y

     PL L P 

     L PL EIy

    3662

    3

    max

    332

    max   −=⇒−=+−=

     EI 

     PL

    3

    3

    max =∆

  • 8/20/2019 Structure I Lecture20

    8/18

     x x

    "

    ( ) 22

     x LW 

     M    −−=

     M dx

     yd  EI    =2

    2

    5 x   ( )2

    2

    2

    2 x L

    dx

     yd  EI    −−=

    Integrating once ( ) 13

    32c x LW 

    dxdy EI    +−=

    5 x 0   ( )  ( )

    63

    0

    200

    3

    11

    3WL

    cc LW 

     EI dx

    dy−=⇒+

    −=⇒=

    W   per unit length

    2

    2WL

    ( )66

    33   WL

     x LW 

    dx

    dy EI    −−=∴

  • 8/20/2019 Structure I Lecture20

    9/18

    ( )

    24624

    434   WL

     xWL

     x LW 

     EIy   +−−−=

    Max. occurs 5 x

     EI 

    WL y

    WLWL LW  EIy

    88246

    4

    max

    444

    max   −=⇒−=+−=

     EI 

    WL

    8

    4

    max =∆

    Integrating t&ice  ( )

    2

    34

    646c x

    WL x LW  EIy   +−

    −−=

    5 x 0   ( )   ( ) ( )24

    064

    0

    600

    4

    22

    34 WLccWL LW  EI  y   =⇒+−−−=⇒=

  • 8/20/2019 Structure I Lecture20

    10/18

    Example

    x

    " x 

    2

    WL

    2

    WL

    22

     xWx x

    WL M    −=

    22

    2

    2

    2  xW  x

    WL

    dx

     yd  EI    −=

    Integrating   1

    32

    3222c

     xW  xWL

    dx

    dy EI    +−=

    7ince the beam is s"mmetric   02

    @   ==dx

    dy L x

    ( )   ⇒+   

      

    −   

      

    ==   1

    32

    3

    2

    22

    2

    20

    2@   c

     LW 

     LWL

     EI  L

     x24

    3

    1

    WLc   −=

    2464

    332   WL x

    W  x

    WL

    dx

    dy EI    −−=∴

  • 8/20/2019 Structure I Lecture20

    11/18

    Integrating2

    343

    244634c x

    WL xW  xWL EIy   +−−=

    5 x 0 " 0   ( )   ( ) ( ) ( ) 2343

    0244

    0

    63

    0

    40   cWLW WL EI    +−−=⇒   02 =⇒   c

     xWL

     xW 

     xWL

     EIy

    242412

    343 −−=∴

    Max. occurs 5 x /2384

    5   4

    max

    WL EIy   −=

     EI WL

    3845

      4

    max =∆

  • 8/20/2019 Structure I Lecture20

    12/18

    Example"

    20for

    22

    2  L x x

     P 

    dx

     yd  EI   

  • 8/20/2019 Structure I Lecture20

    13/18

    Integrating2

    23

    1634c x

     PL x P  EIy   +−=

    5 x 0 " 0   ( )   ( ) ( ) 223

    0163

    0

    40   c PL P  EI    +−=⇒   02 =⇒   c

     x PL

     x P 

     EIy

    1612

    23 −=∴

    Max. occurs 5 x /248

    3

    max

     PL EIy   −=

     EI  PL48

    3

    max =∆

  • 8/20/2019 Structure I Lecture20

    14/18

    Moment-Area MethodFirst Moment –Area Theorem

    $ a n g e n t  a t   A∆

    The first moment are theorem states that8 $he angle bet&een the

    tangents at A and * is e'ual to the

    area o% the bending moment diagram

    bet&een these t&o points+ di#ided b"

    the product EI.

    ∫ =θ B

     A

    dx EI 

     M 

    $he second moment area theorem states that8 $he #ertical distance o% point * on a de%lection

    cur#e %rom the tangent dra&n to the cur#e at A is e'ual to the moment &ith respect to the #ertical

    through * o% the area o% the bending diagram bet&een A and *+ di#ided b" the product EI.

    dx EI 

     Mx B

     A∫ =∆

     A*

    ρ

      $ a n g e n

     t  a t  *

    θ

     x dx 

    ds

    θ=ρ⇒θρ=

    ρ=

    dsd ds

     EI  M  dxwithdsreplacesdeflectiolateralsmallisitds

     EI 

     M d   =θ

    dx EI 

     M d dx

     EI 

     M d 

     B

     A

    ∫ ∫ =θ=θ=θ  !ivewill!ite!rati   ∫ =∆⇒=θ B

     A

    dx EI 

     Mxdx

     EI 

     Mx xd 

    M

  • 8/20/2019 Structure I Lecture20

    15/18

    The Moment Area Procedure

    1. $he reactions o% the beam are determined

    2. An approximate de%lection cur#e is dra&n. $his cur#e must be consistent &ith

    the no&n conditions at the supports+ such as ero slope or ero de%lection

    3. $he bending moment diagram is dra&n %or the beam. 9onstruct M/EI diagram

    4. 9on#enient points A and * are selected and a tangent is dra&n to the assumed

    de%lection cur#e at one o% these points+ sa" A

    . $he de%lection o% point * %rom the tangent at A is then calculated b" the secondmoment area theorem

    Comparison of Moment Area and Double Integration Methods

    I% the de%lection o% onl" a single point o% a beam is desired+ the moment-area

    method is usuall" more con#enient than the double integration method.

    I% the e'uation o% the de%lection cur#e o% the entire beam is desired the

    double integration method is pre%erable.

    Assumptions and Limitations

    7ame assumptions as Double Integration Method holds.

  • 8/20/2019 Structure I Lecture20

    16/18

    Examples

    !

    !

    !

     A

    *

    ?

    $angent at A

    $angent at *

    θ

    !M

    ( )

    33

    2

    2

    3 PL L

     PL L

     EI    −= 

     

     

     

     −=∆ EI 

     PL

    3

    3

    −=∆

    ( ) PL L

     EI    −=θ2   EI 

     PL

    2

    2

    −=θ

  • 8/20/2019 Structure I Lecture20

    17/18

    2

    2

    WL

    $angent A

     A   W   per unit length

    *

      !

    2

    2WL

     x

     LWL

     A23

    1   2=

     L x 4

    3

    =

    84

    3

    23

    4

    2  WL L L

    W  L EI    −=          −=∆  EI 

    WL

    8

    4

    −=∆

  • 8/20/2019 Structure I Lecture20

    18/18

    Example

    a!

    a!

    ! !

    aa L

    −2

    !a

    $angent A

     A ∆ :

    a Paa

    aa L

    a L

     Pa EI 3

    2

    2242+ 

      

       +−   

       −=∆

    322

    32448a

     P a La La L Pa   +  

     

      

     −−+=

    −=−= 3

    3332

    432468   L

    a La PL Pa PaL

    −=∆

    3

    33 43

    24   L

    a

     L

    a

     EI 

     PL