STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA...

123
Sede Amministrativa: Università degli Studi di Padova Dipartimento di BIOLOGIA SCUOLA DI DOTTORATO DI RICERCA IN : BIOTECNOLOGIE E BIOSCIENZE INDIRIZZO: BIOTECNOLOGIE CICLO: XXIV STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA TOPOISOMERASE IB: INTERATION WITH SUPERCOILED DNA AND THE ANTITUMOUR DRUG CAMPTOTHECIN Direttore della Scuola : Ch.mo Prof. GIUSEPPE ZANOTTI Coordinatore d’indirizzo: Ch.mo Prof. GIORGIO VALLE Supervisore :Ch.mo Prof. PIETRO BENEDETTI Dottorando : STEFANIA RODIO

Transcript of STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA...

Page 1: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di BIOLOGIA

SCUOLA DI DOTTORATO DI RICERCA IN : BIOTECNOLOGIE E

BIOSCIENZE

INDIRIZZO: BIOTECNOLOGIE

CICLO: XXIV

STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA TOPOISOMERASE IB:

INTERATION WITH SUPERCOILED DNA AND THE ANTITUMOUR DRUG

CAMPTOTHECIN

Direttore della Scuola : Ch.mo Prof. GIUSEPPE ZANOTTI

Coordinatore d’indirizzo: Ch.mo Prof. GIORGIO VALLE

Supervisore :Ch.mo Prof. PIETRO BENEDETTI

Dottorando : STEFANIA RODIO

Page 2: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

ABSTRACT

DNATopoisomerasesareessentialsenzymesinbiologicalprocessinvolving

therelaxationofthesuperhelicaltensionoftheDNAmolecules.HumanDNA

topoisomerase I (hTop1p) is a monomeric conserved enzyme of 91 KDa,

subdividedintofourdomains:theN‐terminal; thecoreconstitutedbythree

subdomains;theC‐terminaldomaincontainingthecatalyticresidueTyr723;

thelinkerconnectingthecorewiththeC‐terminaldomain,locatingtheactive

site inthecatalyticpocket,andcharacterized bytwoprotrudingcoiledcoil

α‐helices.DNArelaxationoccuredwithamechanismofDNAstrandrotation

inamultiplestepprocesswhere the5’‐OHend is free torotatearoundthe

intact strand. Two conformational changes are involved in this dynamic

process: the enzyme binding the DNA through an open shape, then closed

clamp that completely embraces the DNA. No external energy source

occurred,butarisesfromthereleaseofthesuperhelicaltension.Inaddition

hTop1pisofgreat interestsinceisthecellulartargetoftheantitumordrug

camptothecin (CPT). The reversible binding of the drug to the covalent

complex DNA‐Top1p brings to lethality due to religation inhibition and

double strand breaks formation in a S‐phase dependentmanner. Different

data supported the “controll rotation mechanism” to explain how this

enzyme can relax both positevely and negatevely supercoiled substrates.

First of all crystal structures [17] of human Top1 with a 22 bp

oligonucleotide reported no sufficient space inside the clamp for a free

rotation. Moreover a mutant isoform of the protein with 2 cysteines

produced opposetely to the lips domains, locked the clamp through a

disulfidebridgeandreportedthatanopeningconformationwasnotrequired

for the relaxation activity [21] [135]. Also single‐molecule experiments

suggested that friction and torque are necessary for the relaxationprocess

and the number of supercoils removed per cleavage‐religation cycle is

strictlydependentfromthenumberofsupercoilsoftheDNAsubstrate.The

aimofthisprojectisfocusedonthecontributeofkeyresidueslocatedalthe

levelofthehingeandinvolvedinthecontrolrotationmechanismduringDNA

relaxation.InmyexperimentsSaccharomycescerevisiaestrainswereusedas

a model organism to investigate a series of topoisomerase IB mutants:

Page 3: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

Pro431Gly; Arg434Ala; Arg434Cys; Trp205Cys. These substitutions are

interesting because of their position in the enzyme three‐dimensional

structure.Theflexiblehinge(429‐436residues)facilitatingclampopeningby

a stretchingorbendingmotionpivoting aroundPro‐431 and the cluster of

largearomaticresiduesaroundthetopofthehinge,probablyareinvolvedin

controllingthemovementsoftheα‐helixandtheproperclosingoftheclamp.

In2005SariandAndricioaeisimulationanalysesreportedthepossiblerole

of the lips for therelaxationof thepositivesupercoilsand thestrechtingof

the hinge for the negative supercoils removal. Yeast strains lacking for

endogenoustopoisomerase IgeneweretransformedwithYCpGAL1‐hTOP1,

YCpGAL1‐hTOP1Pro431Gly, YCpGAL1‐hTOP1Arg434Cys, YCpGAL1‐

hTOP1Arg434Ala, YCpGAL1‐hTOP1Trp205Cys plasmids and viability was

verified in a drug yeast sensitivity assay. Transformants were spotted in

presenceandabsenceofcamptothecinatdifferentconcentrations.Moreover

CPT sensitivity for each mutant was analyzed through measures of the

stabilityof thecovalent complex formation.Resultsarecongruentsandare

alsosupportedbyFrohlichandKnudsendata,in2007,suggestingarolefor

the Trp‐205 and surrounding residues in the control of strand rotation

duringnegativebutnotpositive supercoiled removal, and reportedamore

CPTsensitivityduringrelaxationofpositivelyversusnegatevelysupercoils.

EKY3 strains expressing htop1W205Cp showed a partial resistance

phenotype, and top1R434A, top1R434Cmutants are not sensitive to lower

drug dose (0.01<ug/ml<0.5). Processivity and distributivity of the catalytic

activity for purified proteins was also tested at low (50mM), optimal

(150mM)andhigh(500and1000mM)saltconcentrationwithbothnegative

andpositivesupercoils.ThisallowedrevealingmutantbehaviorsanditsDNA

affinityunderstressednon‐physiologicalconditions.Thetop1R434Amutant

showed an interesting relaxation activity also in presence of high salt

concentrationupto1000mMKClandreportedafasterabilityinrealeasing

positevely than negatevely supercoiled if compared to the wild‐type and

other mutants. The association/dissociation is rate limiting for DNA

relaxationbutthemutationR434showedresidueastrongeraffinityforDNA.

Thisdatawasobtainedbytheabilityofthemutanttorelaxtwotopologically

Page 4: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

different DNAs in a two step relaxation experiment. Dynamic modeling

simulation analyses for the top1R434Amutant in comparisonwith theWT

enzyme was performed to better understand the real contribute of the

proteindomainsinthemechanismofsupercoilsrelaxation.

Page 5: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart
Page 6: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

RIASSUNTO

LeDNA topoisomerasi sonoenzimi essenziali in tutti i processi biologici in

cui è necessario un riarrangiamento topologico della doppia elica. La DNA

topoisomerasi IB umana (hTop1p) è una proteina monomerica di 91KDa,

caratterizzatada4domini:unoN‐terminale;uno“core”costituitoasuavolta

da3subdomini;unC‐terminalecontenenteilresiduocataliticoinposizione

Tyr723eunaregionelinkercostituitada2α‐elichesporgentiecheconnette

ildominiocoreconilC‐terminale.IlmeccanismodirilassamentodelDNAè

un processo multiplo attraverso il quale un filamento di DNA con

un’estremità libera al 5’‐OH è in grado di ruotare intorno a quello rimasto

intatto. L’enzima lega la doppia elica dapprima assumendo una

conformazioneaperta,esuccessivamentesirichiudeattornoalsubstrato,in

questomodo l’energia necessaria per la reazione di topoisomerizzazione è

fornitadallosrotolamentodellasuperelicaeilrilasciodienergiatorsionale.

hTop1p è anche target specifico di un farmaco antitumorale noto come

camptotecina(CPT).IllegamereversibiletraCPTeilcomplessoDNA‐enzima

è dipendente dalla fase S del ciclo cellulare e porta ad apoptosi in seguito

all’inibizionedellafasediriligazioneeallaformazionediframmentiadoppio

filamento (noti comeDSBsdouble strandbreaks). Ilmeccanismochespiega

comequestoenzimasia ingradodi rilassaresia superavvolgimentipositivi

che negativi è definito “meccanismo di controllo della rotazione” e vi sono

diversi dati a suo supporto. La struttura cristallografica della hTop1p in

complessoconunframmentodiDNAdi22pb,ottenutanel1998daStewarte

i suoi collaboratori ha evidenziato che non vi è spazio sufficiente per una

rotazione libera all’interno della “tasca enzimatica”. Inoltre mediante un

mutante della hTop1p con 2 residui terminali delle regioni delle “lips”

sostituiti da 2 cisteine in modo da ottenere un ponte disolfuro, è stato

possibile bloccare l’enzima nella conformazione chiusa e dimostrare

comunque l’attività di rilassamento da parte della proteina [21] [135]. Vi

sono inoltre esperimenti di “single‐molecule” che evidenziano come il

numero di superavvolgimenti rimossi per ciclo di taglio e riligazione sia

direttamenteproporzionalealnumerodiavvolgimentidelDNAsubstratoe

che durante la topoisomerizzazione si registrano attriti e forze rotatorie

Page 7: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

derivantidalmeccanismodirotazionedelDNAduranteilsuorilassamento.

Lo scopo di questo progetto di ricerca verte sull’indagine di residui chiave

localizzati nella regione hinge (residui 429‐436) e coinvolti in tale

meccanismo. Negli esperimenti è stato utilizzato l’organismo modello

Saccharomyces cerevisiae, nel quale sono state introdotte le seguenti

mutazioni: Pro431Gly; Arg434Ala; Arg434Cys; Trp205Cys. Tali sostituzioni

risultano di grande interesse per quanto concerne la struttura

tridimensionale: il residuo431caratterizzatodaunaprolina si è ipotizzato

esserecoinvoltoinmovimentiflessoriedistretchingdell’hingeattraversocui

l’enzima medierebbe l’apertura/chiusura e l’interazione con i residui

aromaticisituatinelsuointorno.SarieAndricioaeinel2005attraversostudi

di dinamicamolecolare evidenziarono il contributo della regione delle lips

nel rilassamento dei superavvolgimenti positivi, mentre riportarono uno

stretchingdell’hingeperquellinegativi.Dapprimasonostatiutilizzaticeppi

dilievitodeletidellatopoisomerasiIendogenapertrasfettareiplasmidicon

all’interno la sequenza di espressione per la hTop1p mutata ed è stata

analizzatalacapacitàdiformarecolonienonchélalorovitalitàinpresenzadi

camptotecina a diverse concentrazioni. La sensibilità al farmaco è stata

inoltreanalizzatamediantesaggiodiequilibriotaglio‐riligazioneevalutando

la formazione dei complessi di taglio per ciascun mutante in presenza e

assenzadicamptotecina.Irisultatisisonorivelaticongruenticonquantogià

riportatonel2007dallaboratoriodiKnudsen,secondocuiilresiduoTrp205

e l’intorno aromatico regolano il meccanismo di rotazione durante il

rilassamento di superavvolgimenti negativi e riportando una maggior

sensibilitàalfarmacodurantelarimozionedisubstratipositivipiuttostoche

del segno opposto. Il mutante htop1W205Cp nei miei esperimenti ha

mostrato un fenotipo parzialmente resistente mentre per i mutanti

top1R434Ae top1R434Csièriportataunamaggiorsensibilitàecapacitàdi

formare colonie a dosi inferiori a 0.5ug/ml. Per ciascuna proteina è stata

misurata la sua attività catalitica nel rilassare superavvolgimenti positivi e

negativi,incondizionidiprocessivitàedistributivitàaforzaionicabassa(50

mM), a 150mM (condizione ottimale) e a forza ionica elevata (500mMe

1000mM). Inquestomodoè statopossibile valutare l’affinitàdi legamedi

Page 8: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

ciascunmutanteperilDNAedevidenziareaspettibiochimicifunzionalilegati

allamutazione specifica.Perquanto riguarda ilmutante top1R434Aè stata

riportataattivitàcataliticaadalteconcentrazionisaline,finoa1000mMKCl,

ed è stata misurata una velocità maggiore nel rilassare substrati positivi

piuttosto che negativi, e in ogni caso più performanti sia rispetto l’enzima

wild type che gli altri mutanti. La sostituzione dell’arginina (R434) con

un’alaninahamiglioratol’affinitàdilegameperilDNAdell’enzimaequestoè

stato ancor più evidenziato da saggi di rilassamento in cui top1R434A

mostravacapacitàdi rilassamento, abasseealte forze ioniche,didueDNA

topologicamentediversi,macontemporaneamentepresentinellamisceladi

reazione.L’enzimaèperciòingradodistaccarsieriassociarsiadunanuova

molecola di DNA. Inoltre tramite analisi di modelling molecolare è stato

possibile indagare il contributo realedeidiversidominidellaproteinawild

typeaconfrontoconquellamutatanelresiduoR434,duranteilprocessodi

topoisomerizzazione.

Page 9: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart
Page 10: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

CONTENTS1.Introduction11.1DNATOPOLOGY11.2DNAtopoisomerases51.2.1Classificationoftopoisomerases51.2.2TypeIenzymes61.2.3TypeIIenzymes81.3HumanDNATopoisomeraseI91.3.1HtopIBstructureinsight111.3.2Thetopoisomerizationprocess141.4Reversegyrase181.5Topoisomerasesbiologicalfunctions201.6OtherHumantopoisomeraseIcontributesincell241.7TopoisomeraseIinhibitors251.7.1MechanismofresistancetocamptothecinandDNAdamage271.8top1mutantsintheyeastmodelorganism341.9Distinctmechanismforpositiveandnegativerelaxation362.Aimoftheproject413.MaterialsandMethods453.1Media453.2Buffers463.3Drugs473.4Yeaststrains473.5.Plasmids473.6Sitedirectmutagenesis493.6.1Procedures493.6.2Preparationofchemo‐competentbacteria503.7Transformationoftheultracompetentcells51

Page 11: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

3.8Plasmidsextractionandenzymaticdigestion523.9YeaststraintransfectionwithYCpplasmids:lithiumacetatemethod523.10Invivoviabilityassay:spottest533.11Whatman®�P11phosphocelluloseresinpreparationandactivation543.12HumanDNAtopoisomerasepurificationfromyeast553.12.1BRADFORDTEST573.13Ammoniumsulphatepurificationprocedure573.14Affinitychromatographyprocedure583.15SDS‐PolyacrylamideElectrophoresisGel(SDS‐PAGE)583.16Colloidalcoomassiestaining593.17Westernblot603.18Generationofpositively supercoiledplasmids:ReverseGyrase activityassay613.192Dgelinthetopoisomersanalysis623.20DNArelaxationassay643.21DNATop1pInvitroactivityassay653.22DNAcleavageassays663.23Timecourseactivityassay683.24DoubleDNAtopoisomerizationassay683.25MolecularDynamicssimulations(MD)694.Results714.1ExpressionandpurificationofhTop1p,htop1P431G,htop1R434A,htop1R434C,htop1W205C714.2Colloidalcoumassiestainingandwesternblotanalysis714.3Invivodrugyeastsensitivityassay724.4DNACleavageAssay74

Page 12: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

4.52Dgelassay:positiveandnegativesupercoiledplasmids764.6Invitroactivityassay774.7Invitroactivityassayathighionicstrenghtcondition794.8Timecourseactivityassay824.8.1Timecourseactivityassaywithexcessofproteins834.8.2Timecourseactivityassaywithlimitedamountofproteins844.9DoubleDNArelaxationactivity854.10MolecularDynamicssimulations(MD)885DiscussionandConclusions916References95

Page 13: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart
Page 14: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart
Page 15: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

1

1. INTRODUCTION

1.1DNATOPOLOGY

DNA in all organisms iswell described in a supercoiled state. Supercoiling

literallymeansthecoilingofacoil,imaginganaxisasalinedownthecenter

ofthemoleculebetweenhelicalcurvesofthetwostrands,soreferingtothe

coilingoftheaxisofthedoublehelixinspace[1].

DNA metabolism such as DNA synthesis, recombination and transcription

generatestorsionalstressresultinginaunderwindingoroverwindingofthe

double helix. A covalently closed double‐strand DNA (dsDNA) is the most

frequent shape in bacterial cells where the two strands are linked. In

eukaryotic cells genomes are linear DNA molecules, but the overall

organizationishighlycomplexandthechromosomesareorganizedinlarge

loops that can be considered as circular DNA domains that behave as

bacterialchromosomes,fromatopologypointofview.

The major storage form of supercoiling is solenoidal or toroidal (fig. 1.1.1

down).ThetermtoroidalcomesfromimagingDNAaswindingaboutatorus

(doughnutshapesurface).

Its shape is generated by the interaction on the surface with proteins to

whichitisbound.IneukaryoticcellsthisDNAstructurewindsnucleosomes,

facilitatingthepackinginsidethecells.

Thesecondformistheplectonemicorinterwoundone(fig.1.1.1up),resulting

fromthesupertwistingofthedoublehelixarounditsaxis.

Fig.1.1.1:Plectonemic(up)versussolenoidal(down)DNAsupercoils.Inthiscaseboth molecules are negatevely supercoiled and arise from costrained DNA, asindicatedbybluearrows.[2]

Page 16: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

2

InprokaryoticcellsnoregularDNApackaginghasbeen identifiedas in the

case of eukaryotic chromatin condensation, but half of the supercoiled

remainscostrainedbybindingproteins[3][4][5][6].

DNA supercoiling obeys to themathematical rules of topology for ribbons.

Glaubiger and Hearst in 1967 introduced the mathematical concept of a

linkingnumber(Lk)describingthesupercoiledDNA[7].ThenWhitein1969

formulated mathematically the “space curves concept” but the linking

numberwasdefinetelyparametrizedinthe“Fullerequation”(seeEq.1Fuller

1971):

[Eq.1]

Thetwist(Tw)representesthenumberofbasepairsperhelixturnrelatedto

the localwinding of the DNA helix. This parameter strictly correlateswith

temperatureandionicconditionsandsummerizethetotaltwistofthespace

curvesabout the central axis.Thewrite (Wr)describeshow theaxisof the

DNA passes through space depending on the supercoiling of the DNA. The

write is refering to the global winding of the DNA considering the central

axis. Each cross of DNA axis with itself give rise to a number +1 or ‐1

assegnedtothewrithe(figure1.1.2)accordingtothe“right‐handrule”.

Fig.1.1.2Definitionofwrithe.CircularDNAdoublestrandshowedasaribbona)negativenodewithWr=‐1andb)positivenodewithWr=+1

The linking number is amathematical quantity and it’s no altered by DNA

distortionsorbreakingtooneorbothstrands,isone‐halfthesumofsigned

crossingofDNAsinglestrands(fig.1.1.3).

Page 17: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

3

Figure1.1.3:ClosedcircularDNAandtopologya)conventionforDNAcrossings,aleft‐handedcrossingiscountedasnegativeandaright‐handedcrossingiscountedas positive. b) conversion of relaxed DNA into a negatively and positivelysupercoiledDNA.A linear DNA in which the ends can rotate freely represents the lowest

energyformofthemoleculeandwhenexistsinacovalentlyclosedmolecule

the relaxed DNA has nowrithe (fig. 1.1.3 b). As a conseguence the linking

numberresultsequaltothetwist.

Linking number can be calculated according to its surface and orientation.

When stressed, the entire double helix leads to a change in the number of

base pairs per helix turn in a closed circular DNA and eventually produce

regularspatialdeformation.TheaxisofthedoublestrandDNAthenformsa

helixofahigherordercalledthesuperhelixorsupercoiled.

Because the linking number is a costant for each topologically closedDNA

domain,thewrithemustchangesaccordingtothetwistcompensationofthe

doublehelix. Innegatively supercoiledDNA reductionof linkingnumber is

duetothenegativewritheresultinginright‐handedinterwoundsupercoils.

Left‐handed interwound supercoils are generated by positive writhe

producingpositivelysupercoiledandanincreasedlinkingnumber.

Lkoindicatesabsenceoftorsionalstress.

Page 18: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

4

Lk is defined as the number of times the helix axis crosses the spanning

surfaceoftheribbon.ByconventionLkofaclosedcircularDNAformedbya

right‐handeddoublehelixispositive,otherwiseisnegative.

Thehelicalrepeatisabout10,5bpperhelicalturnsolinkingnumbercanalso

beendefinedas(equation2):

[Eq.2]

WhereNisthenumberofbasepairsintheDNAmolecule.

Following,theDNAtopologycanbesubdividedin:

‐relaxedDNAifLk=Lk0,Wr=0andLk=Tw;

‐ negatevely supercoiled DNA if Lk < Lk0 or underwound becouse each

helicalturnscontainsmorebasepairsthan10,5asintherelaxedform;

‐positevelysupercoiledDNAifLk>Lkooroverwound;

thelinkingdifference(ΔLk)canbedefinedas(equation3):

[Eq.3]

TheΔLk is themostuseddescriptorof supercoilingandallows todescribe

alsothesuperhelixdensity(σ)asfollow(equation4):

[Eq.4]

Superhelixdensityisalenght‐indipendentdescriptorandiseasilymeasured

inaexperimentallywaybecouseofLkochangesaccordingtoconditionssuch

as temperature [8] [9], ionic strenght [8] and kind of DNA ligand

concentration[10].

Page 19: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

5

ΔLk,σ,togetherwithWrandNthenumberofsuperhelicalturnsaroundthe

superhelix axis, all are the most commonly descriptors of topological and

geometricpropertiesofDNA.

Topological properties remain costant under continous deformations as

conformational changes resulting from thermal motion or the binding of

proteins,RNAordrugs.Whilediscontinousdeformationsarethoseproduced

by strand breakage mediated by nucleases or other physical forces. The

torsional stress frequently occured during biological processes thereby

removal of supercoils becomes a limiting step, unable to proceed in its

absence.Theenzymologyofsupercoilingwasoriginally investigatedbyJ.C.

Wang,discoveringamemberofaclassofenzymescapabletointroduceand

removesupercoils,theseenzymeswerecalledDNAtopoisomerases[11].

1.2DNAtopoisomerases

DNA topoisomerases were first isolated for their ability to relax closed

circular,negatevelysupercoiledDNA.Thiswasclearbecauseofthechanging

inthetopologicalpropertyandthepersistingrelaxedstructureoftheclosed

DNAaftertheproteinremoval.

Topoisomerases emerging interest, beside the discovery of their essential

biological functions isdue to thewidevarietyofdrugs,bothantimicrobials

andantitumor,identifiedintheserecentyearsandusedcurrentlyinclinical

treatment.

1.2.1Classificationoftopoisomerases

Topoisomerasescanbedividedaccordingbothstructuralconsiderationsand

mechanism of action. Nevertheless all kind of topoisomerases catalyze the

interconversionoftopologicalstatesofDNAloopsbybreakingandrejoining

DNAstrandsandDNAcleavage ismediatedby the formationofa transient

phosphodiesterbondbetweenatyrosineresiduelocatedintheproteinthat

remainattachedattheendsofthebrokenstrand.

Page 20: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

6

TypeIenzymescleaveoneDNAstrandwhiletypeIIcleavebothstrandsofa

dsDNA. Indeed type I subfamily is further distinguished in type IA, if the

proteinattachesto5’phosphate,ortypeIBifthisoccurstoa3’phosphate.

Type II enzymes act in different manner, they need ATP to catalyze the

topoisomerizzationprocess andwere subdiveded in type IIA and type IIB

aftertherecentdiscoveryofanoveltypeIIenzymeoftheSulfolobusshibatae,

ahyperthermophilicarcheanorganism.

Following in table 1.2.1 the various subfamilies of both prokaryotic and

eukaryotictopoisomerasesarereported.

Table1.2.1:Classificationandcharacteristicsoftopoisomerases

Besidesthosetopoisomeraseslistedintable1.2.1,ithasalsobeendescribed

a number of viral encoded topoisomerases, as the vaccinia virus type IB

topoisomerase and plasmid‐encoded type IA in Gram‐negative as well as

Gram‐positivebacterialgenera[12]buttheirfunctionsremainsunclear.

1.2.2TypeIenzymes

TypeIAtopoisomerasessharecommonsproperties:theyareallmonomeric

enzymes with the only exception for the reverse gyrase Methanopyrus

kandleri [13]; requireMg(II) and an exposed single stranded region in the

Page 21: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

7

DNA substrate for the relaxaction activity. They catalyzed the cleavage

reactionbycovalentlyattachedoneoftheDNAendstotheenzymethrougha

5’phosphodiesterbond to theactive site tyrosine, andarecapable to relax

plasmidcontainingnegativesupercoilsbutnotpositive[13].InsidethetypeI

subfamily,enzymescanbealsodivideddependingthenegativesupercoiling

degreepreferredasDNAsubstrate:eukaryotic topoisomerasesIIIrequirea

hypernegatively supercoiling, others distinguished DNA catenation or

decatenation. The mechanism of DNA relaxation for typeI enzymes was

definedas“enzyme­bridgingmodel”andsuggestedbythecrystalstructureof

theE.colienzyme(figure1.2.2.1).

Fig. 1.2.2.1: Type I E. coli topoisomerase I structure a) and its possiblemechanismofDNArelaxationb).E.colistructure (aa32‐509,pdbentry1ECL) isrepresentedbydomainIinred,IIinblue,IIIingreenandIVinorange.ThetwoDNAstrandsareshownindarkgrayandthemechanismofactionischaracterizedbytheconformational change between DNA and enzyme opening and closing structure[13].

Crystal structure of a 67KDaN‐terminal fragment ofE.coli topoisomerase I

showeda toroidalshapeandcorrespondingto thecleavage/strandpassage

domain. This allows to suppose a multiple step process as shown in fig.

1.2.2.1bwhereasinglestrandofDNAwascleaved(fig.1.2.2.1bstepaand

b),thenenzymekeepingbothDNAendsatthebreakingsites(fig.1.2.2.1step

c),bridgesthegappassingaroundtheintactstrand.Thentheclampclosure

occured (fig. 1.2.2.1 b step d) and religation of the cleaved strand is

permetted. Finally to ensure the dissociation between DNA and enzyme,

Page 22: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

8

protein shouldbeopeningandclosingagain (fig.1.2.2.1b stepeand f).As

already explained, no ATP is needed as external energy source, but the

driving forcederives fromnegative supercoiling relaxationmechanismand

protein‐DNAinteractions.

1.2.3TypeIIenzymes

Type II enzymes catalyze the topoisomerization process by binding both

strandsofDNAandcleavingtheopposingstrands.Thecovalentattachment

is ensured by a pair of catalytic active tyrosines attacking dsDNA and

performingaphosphotyrosinelinkagewith5’ends.Linkingnumberchanges

in steps of two because of the changing in the supercoiling substrate.

Subfamily II despite to type I enzymes need ATP hydrolysis as external

energy source. TheATPhydrolysis is used to inducemajor conformational

changesintheenzymestructuretoallowthestrandpassage.

Type II subclasses have similar structures with flexible regions linking

catalyticdomains,but type IIAenzymes(fig.1.2.3.1a)arecharacterizedby

two inter‐connected rings and type IIB (fig. 1.2.3.1 b) show a single clamp

shape.Infigure1.2.3.1cisreportedthehypotheticmodeloftheDNAstrand‐

passagereaction[14]inbothtypeIIsubclasses.

Tobetterunderstandthemechanismofaction,thismodelimaginesdsDNAas

two segments, the intact double helix or T‐segment in green and the G‐

segmentinredcostitutingakindofagate(figure1.2.3.1c).Enzymesactsas

a clamp capturing and releasing T‐segment passing trought the G‐segment

permanently linked to theDNAcleavage/religationdomain.ATPhydrolysis

allowstheconformationalchangesintheproteinstructureandthereleaseof

the T‐segment in the solvent. This model was recently confirmed by

crystallographicstudiesinbacterialtypeIIenzymes[14].

The mechanism of type II protein is manifest in several topological

transformationsincludingcatenationanddecatenationandtherelaxationof

positiveornegativesupercoiledDNA[15].

Page 23: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

9

Fig. 1.2.3.1 Type II topoisomerases and mechanism of action: the schematicstructure of typeIIA and type IIB are shown in figure a) and b) respectevely. Insection c) the topoisomerization process is presented trought the strand‐passagemodelinwhichthemovementofT‐segmentingreenismediatedbythetransitionintheG‐segment gate in red. In orange and cyan are respectevely shown theN‐ringandtheC‐ring[14].

1.3HumanDNATopoisomeraseI

BelongingtotypeIBsubfamily,humanDNAtopoisomeraseI(figure1.3.1)is

oneofthebestknownamongthesixhumantopoisomerases.

Page 24: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

10

Figure 1.3.1: HumanDNA topoisomerase I structure.Enzyme (light grey)wasstructuredtogetherwitha22pbDNAfragment,doublehelixareshowedinblueandred.ThefigurewaspreparedusingthePyMolMoleculargraphicssystem.Pdbentry1A36(aa636‐640aremissing).

Inthelastfewyearsseveralcrystallographicstructureshavebeenproduced

and all are obtained in a co‐crystals with a 22 base pairs DNA fragment:

enzyme constituted by the C‐terminal and the core domains (pdb entries

1A31 and 1A35), or the structure including the linker in non‐covalent

complexwithDNAasshowninfigure1.3.1(pdbentries1A36and1EJ9).

Theenzymestructurewasalsosolvedinaternarycomplexwithinhibitorsin

pdbentries1SC7,1SEUand1T8I.

Themostcompletecrystalstructureremainsthatshowingaa201toaa765.

AllavailablestructureslackintheN‐terminaldomainbecauseofitsdifficulty

incrystallization, ithasbeenproposedthat thisportion ishigh flexibleand

notsostableforcrystalformation.

Crystalstructuretogetherwithlimitedproteolysisanalyses,conservationof

sequences and hydrodynamic properties, allowed to identify the human

topoisomerase I as a 91‐KDa monomeric enzyme [765 aminoacids]

constitutedbyfourstructuraldomains(fig.1.3.2):theC‐terminal,thelinker,

thecoreandtheN‐terminal.

Page 25: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

11

Figure 1.3.2: Crystal structure of 70KDa form of human topoisomerase Icomplexedwith22bpDNAfragment.CoredomainissubdividedinsubdomainI(yellow),subdomainII(blue)andsubdomainIII(red).Moreoverlinkerdomainisshown in orange and the C‐terminal is in green [16]. Intact DNA strand isrepresented in cyan andat the levelof thecleavagesiteother strand is shown inmagentaupstreamandpinkdownstream.

1.3.1HtopIBstructureinsight

‐TheN­terminal isa24KDadomain(Met1‐Ile215),poorlyconservedand

protease‐sensitive, is considered highly charged because of its 72% of

charged and 90% polar residues. This region has no defined spatial

organization[17]andsuggestingtobeunstructuredinthefinalfoldedform

of the protein. It also contains five nuclear localization signals (NLS) [18]

contributing to the interactionwithnuclearproteins asnucleolin [19]. The

mostcompletestructuredomainisthatIle215toGly201residues.Indeedin

vitro study has been demonstrated that DNA relaxation occurs also in its

absence [20] [21], yet it has been implicated in mediating protein

interactions in vivo without modify Top1 protein binding of DNA [21].

Howeverprotein interactionswith thisdomainhavebeenreported toalter

theintracellularlocalizationoftheenzyme[22].

TheN‐terminalincombinationwiththelinkerdomainaffectsproteinclamp

dynamics[21].

Page 26: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

12

‐Thecore(Ile215‐Ala635)isabout54KDaconserveddomain, isaglobular

regionsubdividedintothreesubdomains,theIandIIcostitutethesocalled

“upper lobe” or “cap” of the protein,moreover the III togetherwith the C‐

terminal domain compose the “lower lobe”. Thus the three‐dimensional

structurerevealedabi‐lobedproteinasaclampopeningandclosingaround

theDNAsubstrate.Theopposite facesof thedoublehelixare implicated in

thebindingbuttheupperlobehasnodirectinteraction,whilethelowerone

containsthecatalyticresidues involvingtheDNAphosphategroups. Indeed

thecapdomaincontainstwohelices(302‐339aa)protudingfromthemain

bodyoftheprotein,posetivelychargedandpoisingintheDNAmajorgroove

asav‐shapedmotif,called“nose‐cone”.

Moreoverthetwolobesarelinkedbyalongα‐helix,calledhingeandonthe

otherhandtwoloopsfromLys369toGlu497calledlipsinteractthroughsix

aminoacidsandonesaltbridge.

Structuraldata[17]shownthatregionfromTrp204toGly214interactswith

several residues at the level of subdomain I, the C‐terminal and the hinge

portionofsubdomainIIIproducinganhydrofobicaminoacidcluster(Trp205,

Trp206,Trp441,Trp754,fig.1.3.1.1).

Fig.1.3.1.1:HydrofobicclusterbetweenN­terminaldomain(yellow), thecoredomain(green)andC­terminaldomain(blue).ThetopofthehingecontributestotheopeningandclosingoftheclamparoundtheDNA,imageadaptedfrom[23].

Page 27: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

13

ThissuggeststheresiduePro431atthetopofthehinge,mediatestheclamps

movements thanks to the strechting or the bending of the flexibleα‐helix

[24].Oppositelylipscontacteachothersduringclosedclampconformationat

residuesLys369‐Gly497,Asp366‐Asn500[25]andwithasaltbridgeArg364‐

Asp533[26].

‐ The C­terminal domain (Gln713‐Phe765) 6,3KDa highly conserved,

contains the catalytically active Tyr723. Protein‐DNA interactions in this

regionoccurfivebasepairsupstreamthecleavagesite5’‐3’directionofthe

scissilestrand.

Five conserved residues Arg488, Lys532, Arg590, His632 and Tyr723 are

involved in the cleavage reaction: excepted Tyr723 performing the

nucleophilic attack by its O‐4 oxigen, others four amino acids allocate the

scissilephosphateenteringintheDNAminorgroove(fig.1.3.1.2).

Then a phosphodiester link is generated between the tyrosine and the 3’

phosphaterealeasinga5’hydroxyl.

Fig. 1.3.1.2: Active site residues representation The scissile and intact strandsare shown in yellow and light gray respectevely. The active site residues Arg488,Arg590andHis632wererepresentedinwhiteandredorinwhiteandgreen(Tyr‐723‐Phe).Lys532inredisshownmakingthehydrogenbondwithO2,inmagenta,ofthecytosinebaseinthescissile‐1positionoftheC‐Gbasepairinginminorgroove.Thefigureisadaptedfrom[24].

Page 28: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

14

‐ The linker domain (Pro636‐Lys712) 7KDa posetively charged and

proteasesensitive is constituedby twoα‐helicesconnectedbyashort turn

forming an anti‐parallel coiled‐coil structure and links together the C‐

terminalwiththecoredomain.Ninelysineandarginineresiduescomposed

the side in front of theDNA helix, but linker contactsDNA only two times

withLys650andArg708[17].Lackingofthisdomainithasbeenreportedto

bringthetopoisomerizationequilibriumtothereligationandtoanincreased

rate[27]oradecreasedone[28].Moreoverhasbeenreportedthatmutation

of Ala653Pro changes in the cleavage/religation equilibrium and confers

resistance to camptothecin (CPT) [29], [30]. Furthermore following

molecular dynamics simulation study of double mutation Ala653Pro‐

Thr718Ala showed flexibility of the linker and a strong influence to the

catalyticsiteaccordingtoCPTresistanceandactivitymaintenance[31].

Human topoisomerase IB has also structural similarity with a family of

tyrosinerecombinaseallowingtobetterunderstanditscatalyticreaction.

1.3.2Thetopoisomerizationprocess

As already explained by crystallographic data in the topoisomerization

process only onebase‐specific, enzyme‐DNA interactionoccurs, involving a

hydrogen bond between Lys532 and O‐2 atom of the preferred

thymine/cytosineresidue.Evenifthereactionisknowntobeamultiplestep

processinwhichtwotransesterificationreactionsleadtothecleavageandto

the religation reactions, mechanistic details of DNA relaxation for human

TopoIBstillremainsunclear.

Crystallographic data highlighted a possible role to a water molecule in

activatingbaseofthecatalyticTyr[32].

To date, two different models have been proposed for the catalytic

mechanism,themostattractiveisthe“controlledrotation”(figure1.3.2.1)

[33].

Page 29: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

15

ThisterminologywasfirstusedbyChampouxandcoworkersandindicatesa

costrained mechanism, based on the tension energy derived from the

supercoilingsubstrateanddrivingtherotationofthebrokenstrandaround

the intact one. Binding event involved the surface and the charge

complementationbetweenDNAandproteininanoncovalentmanner,thus

anopeningconformationhastobethepreliminarystate.

Then the active site residues reached the right position performing the

cleavagethroughthenucleophilicattacktothescissilephosphate.

Nowenzymeiscovalentlyattachedtothe3’endoftheDNAasshowninthe

figure1.3.2.1andreleasinga5’hydroxyl.Thecovalentintermediatehasbeen

formedandcontrolledrotationoftheDNAdownstreamthebreakforoneor

morecyclesoccuredtoreleasethesuperhelicaltension.

The release of the Tyr723 from the end of the DNA allows the religation

reactionandDNAmoleculewithadifferentlinkingnumberisgenerated.

Page 30: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

16

Fig. 1.3.2.1 The controlled rotation model for human topo I catalysis: DNAsubstrateshowninred,first,noncovalentlybindtheenzyme(representedwithtwocolours indicating the upper in cyan and lower lobe in magenta), then cleavagereaction produces intermediate of the reaction during which controlled rotationmovementsoccuredinordertoreleasesuperhelicitytension.ReligationstepfinallyreleasetheDNAmoleculewithareducedsuperhelicity(lightgrey)andtheenzymearereadyforanewrelaxationcycle[33].

Page 31: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

17

Co‐crystalstructuresoftopoisomeraseIboundtoDNAreportednosufficient

spaceforafreeDNArotation,thecapandthelinkerdomainshouldinteract

oneormoretimeinordertoallowtherotationmechanism[33].Indeedthe

initial open conformational state is facilitated by a hinge‐bending motion

located at the top oh the hinge between subdomains I and III, residues

Pro431 and Lys452, while the closure state brings together the opposable

lipsofcoresubdomainsIandIII.

The alternative model proposed for the relaxation is the “free rotation”

mechanism. In thiscaseanadditionalopeningof theclampishypothesized

after the DNA cleavage, but this also needs the domain flexibility [34].

Elegant experiments of real‐time single‐molecule (figure 1.3.2.2) showed

that human topoisomerase IB releases the superhelical tension trought a

pivotingmechanismbetweenenzymeclampandrotatingDNA[35].

Fig.1.3.2.2:Real­timesinglemoleculeanalysesdsDNAiscovalentlyattachedtoaparamagnetic bead (in red) at one strand, and to a glass surface on the other.Topoisomerasefromlefttorightfollowtherelaxationprocess,beginningfromanoncovalently link, then binds the DNA resulting in the supercoil removal and lastrelegates theDNAmolecule. Thedistancebetween the bead and the glass surfacewasmeasuredatthebeginandattheendofthereaction(ΔLk)andthiswasdirectlylinkedtothesupercoilremoved.Thefigureisadaptedfrom[35].

Theapproachgivesavalue,ofthetwistingandstretchingmovementsofthe

rotating DNA, proportional to the supercoil removal. One DNA strand is

anchoredtoaglasssurface,whiletheotherwasattachedtoaparamagnetic

Page 32: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

18

bead(1‐4.5µmindiameter).Amagnetpositionatedabovetheapparatus is

necessarytocontrolandrotatethebeadsintherightorientation,according

tothestretchandtwistoftheDNAmolecules.Duringthetopoisomerization

process,cleavageandreligationreleasesuperhelicaltension,andthisbegan

proportionaltothechangingoftheheightofthebeadsfromtheglasssurface.

This measured value, increases as the number of the removed supercoils.

Enzymecannotrelaxesall thesupercoils inasinglecleavageandreligation

event, but friction and torque drive the DNA rotation following an

exponential distribution. This was the first evidence supporting the

controlledrotationmodel.

InadditionhasbeenreportedthatasaltbridgebetweenLys369andGlu497

contributes to close the enzyme around the DNA [17] and this was also

confirmed by mutation in cysteine of His367 and Ala499, respectevely

locatedeachtooneopposablelips,thatcovalentlyclosetheclamp.Allthese

featuressuggestthatthefreerotationmodelisquiteimpossibleconsidering

thestericclashesbetweenDNAstrandrotationandproteinstructure.

1.4Reversegyrase

In1984KikuchiandAsaidescribedanewtopoisomerase,withtheabilityto

introducepositivelysupercoils intoDNAmoleculesandnamedthisenzyme

reversegyrase. It’sa largeproteinofabout1050‐2000amino‐acidresidues

withtwodistinctdomains,aC‐terminaltypeIAtopoisomerasemoduleandan

N‐terminal region containing conserved sequences of the SF2 family

helicases‐like[36].AsSF2 familyalsoreversegyrasesequencescontainthe

ATP‐binding domain thus the ATP hydrolysis is essential for the positive

supercoiled relaxation [37]. The C‐terminal domain have 30% of sequence

identity with type IA topoisomerases. As in human topoisomerase I this

domain contains a conserved tyrosine residue required for the catalytic

activity. From sequence prediction analyses a zinc‐finger domain has been

reportedintheN‐terminaldomain[38].

Its relevance was claryfied when highly positive supercoiled DNA were

observedinahyperthermophilicvirus,theSulfolobusshibataeVirus1(SSV1)

Page 33: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

19

[39]. Reverse gyrase activity was identified in all hyperthermophilic

organism: inArchaea aswell as inBacteria [40] [41]. Since reverse gyrase

cleavesoneDNAstrandandtransientlyformsaphosphotyrosillinkwiththe

5’ end of the cleaved DNA strand is considered a type IA subfamily

topoisomerase[42].

The unique three‐dimensional structure known for this enzyme is fromA.

fulgidus (fig. 1.4.1), resolved bound and unbound to an ATP analog, non‐

hydrolysableanalog(ADPNP)[43].

Fig.1.4.1ReverseGyrasestructureofaArchaeoglobus fulgidus theC‐terminaldomainisshowninredandtheZn‐fingermotifinyellowatthefinalpartoftheN‐terminaldomainindark‐blue,figureadaptedfrom[43].

The twodistinctdomainswereanalyzed in theSulfolobusacidocaldarius in

separately manner [44]. The single C‐terminal domain is able, in an ATP‐

dependent reaction, to relax theDNAsubstrate,while theN‐terminalalone

doesn’t.

Page 34: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

20

Helicase‐like and topoisomerase domains are unique and specifically

cooperate to induce positive supercoils, if substitution of one of them

occured,nopositivesupercoilingaccumulationisobserved[44][45].

Indeedreversegyraseisathermophilicsensor,itsactivityintherelaxationof

supercoilsismaximalattemperaturesclosetothatoftheoptimalgrowthof

theorganismfromwhichitwaspurified[46].Forthehyperthermophiles is

reportedanoptimalgrowthtemperatureabove800C.

Thefunctionofthisenzymeinlifecellremainsstillunclearandit’spossible

toarguethatitcouldpreventDNAdenaturationanddegradationinducedby

high temperature. For sure, it has a certain role in hyperthermophiles

organisms inwhichDNAexists inpositively supercoiled state. Its ability to

stabilize genome seems to be the key for understanding its contribute in

livingcells.

1.5Topoisomerasesbiologicalfunctions

ControllingDNAsupercoilingisanessentialprocessinallcells,localchanges

or excessive supercoiling in the DNA template could impedemovement of

RNA or DNA polymerases. Human topoisomerase I resolves the torsional

stress associated in DNA replication, transcription and chromatin

condensation. It has been demonstrated that topoisomerase I is a nuclear

protein,enrichedinthenucleolus(figure1.5.1).

The N‐terminal domain contains nuclear localization signals allowing the

protein to localize in both subcellular compartments and moreover to

associatewithRNApolymeraseIholoenzyme[47].

Nucleus accumulation has been reported to be associated with rDNA

transcription, the central machinery for the nuclear organizer regions

(NORs).

Page 35: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

21

Fig. 1.5.1: Topoisomerase I localization and dynamic variation Enzymedominantly localizes in the nucleolus where associated processes with ribosomalDNA occured. Otherwise inhibition of trascription or drug treatment leads to arelocalizationoftopoisomeraseI,figureadaptedfrom[48].

The N‐terminal and the C‐terminal domains have been identified as the in

vivotopoisomeraseIactingportions,influencingthenucleolarre‐localization

of the enzyme and also contributing to the double cleavable complex

formation[49][50][51].

IthasbeendemonstratedbyChristensenandcollaborator(2004)thatDNA

topoisomerase I colocalizes with RNA polymerase if the N‐terminal is

present, during rRNA transcription at the level of fibrillar center of the

nucleolus,thenmigratesintheouterperimeterduringthedisruptionofthe

molecular transcription machinery. In addition they observed a dynamic

migrationoftheenzymefromthenucleoplasmandnucleolus.

StillremainsuncleariftheN‐terminaldomainisnecessaryforthenucleolar

localization of the topoisomerase I. In truncatedmutants (1‐190 residues)

enzymeaccumulatesinthenucleolus,contrasttoY723Fmutantsinwhicha

nucleusuniformdistributionisobserved[52].

Thesecontroversialresultssuggesttheprotein‐proteininteractionsasakey

rolefortheenzymelocalizationduringtranscriptionandDNAreplication,so

thehumanproteintransientlyassociated.

Page 36: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

22

InhumancellsithasbeenfoundthatcolocalizedwithRNApolymeraseI[47],

indeed theN‐terminal fragmentofhuman topoisomerase I colocalizedwith

RNApolymeraseIIinDrosophilamelanogaster[53].

ItiswellknownthathumantopoisomeraseIBsolvestopologicaltensionona

duplex DNA of both positive and negative signs, but it’s also strongly

associated with mRNA and rRNA transcription, DNA synthesis, repair and

recombinationthroughdistinctunclearmechanisms.

Genome‐wide analysis in yeast shows that topoisomerase I and II act

together in close proximity to a replication forks and are required for its

progression [54], and in addition has been reported that protein interacts

withthehumanlaminB2origininacell‐cycledependentmanner[55][56].

Moreover a number of factors has been demonstrated to interact with

topoisomerases in S.cerevisiae [57] and the large T antigen helicase from

Simian Virus 40 (SV40) directly interacts with Topo1 stimulating DNA

synthesis[58].

AllthesedatasuggeststhattopoisomeraseIisanintegralcomponentofthe

“ReplicationProgressionComplex”,thelargemacromolecularassemblywith

helicaseactivity.Ineukaryoticcellsfunctionalcouplingbetweenhelicaseand

topoisomerase I has been proposed [59] and in the case of papillomavirus

(PV)hasbeenreportedthebindingbeetweenE1helicaseandtheE2origin

bindingprotein,allowingtopoisomeraseactivityandorigin interaction[60]

[61].

During replication there is a continous separation of the parental DNA

strandsmediated by the helicase activity as reported in the upper part of

figure 1.5.2 as the replication fork proceeds DNA becomes overwound in

frontofitsandpositivesupercoilsaccumulate.

Topological variations are locally and transiently observed during

transcriptionduetotheseparationoftheduplexDNAstrands.Infrontofthe

“transcriptionmachinery”accumulatedpositivesupercoilsandthenegative

arelocalizedbehindit(lowerpartofthefigure1.5.2).

Page 37: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

23

Fig.1.5.2HumantopoisomeraseIduringreplicationandtranscription:duringreplication positive supercoils accumulate in front of the progressing replicationfork,whileinthetranscriptionprocesspositivesupercoilsaregeneratedaheadandnegative supercoils behind the RNA polymerase and associated proteins(transcriptionapparatus).Thefigurewasadaptedfrom[15].

Thismodelwasalsocalled“twinsupercoildomain”model[62][63].

In the replication process it has been reported an accumulation of DNA

strand breaks follow to treatmentwith the topoisomerase I inhibitor [64],

supportingthatenzymeactsinfrontofthereplicationforkredistributingthe

topologicalstrains.

In addition S.cerevisiae studies also demonstrated the contribution of DNA

topoisomerase IIα in thereplication fork [65], itsrolemayberelated to its

abilitytorelaxpositivelysupercoiledDNAfasterthannegative[66].

It could be possible that topoisomerase I needs a protein partner for the

interactionwithDNAtemplate[67].

It’salsoimportanttonoticethathumantopoisomeraseIBwasisolatedfrom

a mammalian multiprotein DNA replication complex containing PCNA,

proliferatingcellnuclearantigenintheWernersyndrome[68].

Forwhat concerns the transcription process, the topoisomers relaxation is

requiredfortheelongationstep[69],indeedithasbeenreportedthathuman

topoisomerase I activates gene containing TATA box in their promoter

Page 38: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

24

region, involving TATA‐box binding protein (TBP) and TATA‐binding

protein‐associatedfactors(TAFs)[70].

1.6OtherHumantopoisomeraseIcontributesincell

TopoisomeraseIBshowedalsokinaseactivity,contributingtotranscription

and splicing coordination [71]. In addition has been reported that

dephosphorylation of the enzyme leads to the inhibition of the relaxation

activity,thissuggestsapossibleroleoftheProteinKinaseC(PKC)andc‐Abl

tyrosinekinase[72][73].

A recombination activity has also been recognized according to the close

similarity between the conserved catalytic domain of the human

topoisomerase IB and that of the site‐specific recombinases. It has been

reported the ability of topoisomerases to insert and excise viral DNA into

cellularDNA[74][75].Sincetopoisomerizationissimilartothatcarriedout

byDNAstrandtransferase,ithasbeenfoundthatastrandtransferasecanact

as a topoisomerase and a topoisomerase can act as a DNA transferase,

generating“illegitimaterecombination”[76][77].

One exception from the topoisomerase reaction is that the DNA strand

transferaseattachsthe3’endofatransientlybrokenstrandtothe5’endof

another one broken end. Interestingly recombination also mediated the

lambdaprophageexcisionbythevacciniavirustopoisomeraseI.

Moreover inyeastacorrelationbetween increasedtopoisomerase Iactivity

andincreasedlevelsofillegitimaterecombinationithasbeenobserved[78].

Since the highly supercoiledDNA generated by replication or transcription

reactions could become substrate for recombination, hyper‐recombination

phenotypesmayarisefromthedeletionoftopoisomerases.

Eukaryotic DNA topoisomerase I has also been proposed to have a role in

chromosome condensation [15]. In yeast doublemutants trf4­top1 of DNA

topoisomeraseIandtheproductgeneofTRF4,aredefectiveinchromosome

Page 39: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

25

condensation, nuclear segregation thus suggesting a function of these

enzymesduringmitosis[79].

Variation in DNA topology during chromatin related process is consistent

with DNA topoisomerase mediating condensation or decondensation.

Recently condensins, ubiquitous ATP‐dependent protein complexes, were

identified for the requirement of DNA topoisomerase in chromosome

condensation[80].

1.7TopoisomeraseIinhibitors

DNA topoisomerases are the targets of many antimicrobial and anticancer

drugs. Topoisomerase I inhibitors can be divided into four classes:

camptothecin derivatives, polyheterocyclic aromatic inhibitors,

benzimidazolesandminorgrooveligands[81],DNAdamagingagents.These

drugscovalentlybindthereactionintermediate(enzymelinkedtotheDNA),

leadstogenerationofdoublestrandbreaksandDNAdamageduringS‐phase

of the cell cycle. The most selective inhibitor group for the human

topoisomeraseIBarethe“camptothecins”oralsocalledCPTderivatives.

Camptothecin,theleadercompound,wasoriginallyisolatedfromtheChinese

bushCamptothecaacuminatain1966.CPT,extractedfromthetreenativeof

China and Tibet,was used in traditional Chinesemedicine (Wall American

chimicasociety:WashingtonDC’93),andonlyin1985wasidentifiedasthe

unique target for the topoisomerase I [82]. Camptothecin is a lactone

compound(topleftofthefigure1.7.1)anditsextremelowsolubilitydisables

the parental administration, thus the sodium salt of camptothecin

carboxylatewasthefirsttobevalidatedforclinicaltreatment.

Since its controindications asmyelosuppression, diarrhea andhemorraghic

cystitis[83][84],asecondgenerationanalogswasformulated,thisincludes

the topotecan (TTC), (9‐(dimethylamino)methyl‐10‐hydroxy‐camptothecin)

and Irinotecan (CPT‐11), (7‐thyl‐10‐(4‐(1‐piperidino)‐1‐

piperidino)carbonyloxycamptothecin) (top right and bottom of the figure

1.7.1).

Page 40: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

26

Figure1.7.1:CamptothecinstructurestopleftisshownthecamptothecinCPT,toprightthetopotecanTTCandbottomirinotecanCPT‐11.Figureadaptedfrom[85].

Theequilibriumbetweenhydroxyacid(hydrolyzedAring)andlactonetype

is responsible for cytotoxicity, if this shifted versus the lactone forms [86].

Modifications of A and B rings with a 10 hydroxy camptothecin with

functional groups (phosphates, sulphates and carbamates) were

demonstrated to be tolerated andmorewater soluble [87]. The Irinotecan

(Camptosar Yacult Honsha KK), among carbamates, showed the

substitution of the 4‐(1‐piperidino)‐1‐piperidino carbonyloxy group at

position10oftheAringwithanethylgroupatposition7oftheBring.

In 1991 Tsujii and collaborators, demonstrated that the pharmacology

activity was exerted by its 10‐hydroxy metabolite (SN‐38) enzymatic

hydrolysis of carbamate was required. Topotecan (Hycamtin, Glaxo

SmithKline)wasproducedby substituting10hydroxycamptothecinwitha

positivelychargeddymethyl‐aminomethylgroupatposition9[88].

Today, topotecan and Irinotecan, are used clinically, in solid tumours

therapy, but there are limitations for the chimical instability of the

hydroxylactonering,multidrug‐resistanceanddose‐limitingside‐effects[89]

[85]. Indeed this family of anti‐cancer drugs showed also antiviral activity

[90]allowingactiveeffortsindeveloppingnewtopoisomeraseIinhibitors.

Page 41: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

27

1.7.1MechanismofresistancetocamptothecinandDNAdamage

Biochemical data suggests that CPT binds at interface beetween

topoisomerase I and DNA, inhibiting the religation step in the

cleavage/religationreaction(fig.1.7.1.1).

Figure 1.7.1.1: Camptothecin intercalation during cleavage/religationreaction.Thefigureadaptedfrom[48].

The drug directly binds the enzyme‐DNA complex producing a reversible

bond andpreventing the dissociation of the twomacromolecules. In figure

1.7.1.1a, thenucleophilicattack fromthecatalytic tyrosine(Tyr723)of the

humantopoisomeraeIproducingaTop1‐mediatedDNAbreakisshowed.

The resulting covalently Top1‐cleaved DNA intermediates are also defined

“cleavablecomplexes”andarenotdetectablebecauseofthefastreligation

step in normal condition [91]. There are a variety of exogenous and

endogenous factors thatmayalter the cleavage/religationequilibriumwith

an increase in the cleavable complexes formation and the religation

inhibition. A higlhy selective and specific agent are the anticancer drugs

camptothecins (fig. 1.7.1.1 b). Top1 cleavable complexes are normally

reversibles after camptothecin removal, and it has been reported that

exposureforlessthan1hourisrelativelynon‐cytotoxic[92][93].

Longexposure is required foreffective cell killingandcleavable complexes

wereconvertedinDNAdamagesbycellularmetabolism[91].

Page 42: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

28

CrystallographicstudiesoftopoisomeraseIwithandwithoutDNAsubstrate

(figure1.7.1.2)reportedmultipleinteractionsinboththecleavableandnon‐

cleavable complex [17]. The resolution of a co‐crystal structure of the

clinicallyapprovedCPTanalog, topotecan(Hycamtin)with theTop1‐DNA

complex by Staker and co‐workers in 2002 clarify these interactions. The

wholestructure(fig.1.7.1.2c)appearstomimicaDNAbasepairsallowedby

theunwindingoftheDNAandthetraslationdownstreamofthecleavagesite,

occupying the same space as +1 base pair in absence of the inhibitor (fig.

1.7.1.3aandenlargedviewinfig.1.7.1.3b).

Figure 1.7.1.2: TopI­DNA complex a), bound to topotecan b) and dsDNAinteractions with the drug (orange) were represented. Protein was shown ingreen,whenDNAisunboundiscouloredinyellowa)andc),whileisinbluewhenit’s bound with the topotecan b) and c). The binding pocket for drug‐DNAinteraction revealed 36 direct contacts and 6 others water mediated. The figureadaptedfrom[95].

Thebindingisgeneratedbyminimalproteinconformationalchangesandat

thephosphodiesterbondbetweenthe+1and‐1basepairsoftheuncleaved

strand [94]. Indeed the ternary complexes trapped by camptothecin (fig.

1.7.1.3) are located at the base pairs at a thymine to ‐1 position and at a

guanineatthe+1position.

Page 43: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

29

The intercalated conformation is stabilized by 36 direct contacts and 6

additionalwater‐mediatedprotein‐DNAinteractions.

Fig.1.7.1.3:a)TOP1ternarycomplexatthecleavagesiteandb)enlargedviewof the intercalation with camptothecin. Inhibitor is shown in green for almostcarbon atoms, and oxygen and nitrogen are respectevely in red and blue, enzymesurfaceinbrownanddsDNAinblue.ThecatalytictyrosineY723inmagentalinkedtoTOP1in‐1positionandthe5’‐OHendisreferredto+1asshowninb).The5’‐endof thenicked strand is occupiedby thedrug intercalated in the cleavage site. Theblue sticks represented base pairs closed to TOP1 cleavage site. The figure isadaptedfrom[96].

Thismodelexplainshowthedrugstoppedtherelegationprocess,theternary

complex(DNA‐TopoI‐drug)isshifted3.4Ådownstream,dislocating10Åfar

thefree5’‐OHgroupfromthephosphotyrosine.

Co‐crystalstructuresoftheternarycomplexeswithcamptothecinsanalogsas

indenoisoquinolines and indolocarbazole [94] [97] showed the intercalator

configuration between the ‐1 and +1 base pairs flanking the cleavage site,

moreoveronlythe20‐SCPTenantiomerisactive,alldatasuggestedastereo‐

specificbindingsiteforthedrug[96].

Ithasalsobeenreportedthatpointmutationsincamptothecin‐resistantcells

are localizedat the levelof residues involved inH‐bondsbeetwen thedrug

andtheenzyme[98].Analyzingthecrystalstructuresofthesecamptothecin‐

resistant enzymes was possible to argue that single point mutations don’t

interfere with the crystallization process and drug orientations were not

changed;moreover the lack of a singleH‐bond don’t preclude the binding,

suggestingaweakestdrugretentionfortheresistancemechanism[26][96].

Page 44: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

30

Camptothecincytotoxicityisreportedtobeprimarilyrelatedtoreplication‐

mediatedDNADAMAGEinbuddingyeastandinmosttumourcells[99][100]

[101].

Indeed microarray analysis showed dose dependent effects in the

transcriptional regulation. In the cell cycle a lower drug concentration

produces reversibile delay of G2 while a higher dose leads to an S‐phase

delayandG2arrest[102].

The drug cytotoxicity comes out from the collision of the replication

machineryattheforkwiththeTop1‐DNAcleavagecomplexes,ontheleading

strand[100][101][103],thussinglestrandDNAbreaksbecameirreversibile

doublestrandbreaks(DSBfigure1.7.1.4).

Replication proceed according to “replication run‐off” mechanism (figure

1.7.1.4),uptothe5’‐endoftheTop1‐cleavedDNA,andthe5’‐terminiofthe

DSBs are rapidly phosphorylated in vivo by the kinase activity of

polynucleotidekinasephosphatasePNKP[104][91].

In figure 1.7.1.4 d, has been represented a “suicide complex” or “dead‐end

covalent complex”, as the resultof theDNAdamage. It’s characterizedbya

covalently‐linkedTop1enzymeatthe3’‐endofthebreak,whilethe5’‐endof

the gap is associatedwith the complementary strand, exceptions from this

are the base lesions and single strand removal [91]. In nicked DNA a

staggereddoublestrandbreakrepresentsasuicidecomplex(fig.1.7.1.4d).

The collision has also been demonstrated because of the p53 expression

alterationandfortheNKkBactivationorphosphorylationofChk1andRPA,

otheressentialmolecolesintheDNArepairpathway.Apersistentinhibition

ofDNAsynthesisisobservedforupto8hoursafterCPTremoval,probably

duetoactivationofanS‐phasecheckpoint[105].

Page 45: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

31

Fig. 1.7.1.4 Schematic rappresentation of Top1mediatedDNA damage:Top1covalentlylinkedtothe3’endofthebrokenDNAisshowna).Theotherstrandisa5’‐OH(hydroxyl).Collisionbeetweenreplicationforkontheleadingstrand(inred)and camptothecin (black rectangular) generated cleavage complex (Top1‐DNA).Laggingstrandisrepresentedinblue.Redarrowalsoshowedtheproceedingofthereplicationmachineryb).Thenasuicidecomplexresultsfromasingle‐strandbreakonthesamestrandorontheoppositec).Formationofadouble‐strandbreakattwoTop1cleavagesitesoccuredd).Figurewaseditedfrom[91].

EvenifcheckpointactivationcouldpreventDNAdamagethereplicationfork

arrestsavoidtheriskofanothercollision.ItobviousthatDNArepairprocess

has to involve the removal of theTop1 covalent complex, the repair of the

doublestrandbreaksandreplicationforkhastorestart.

Severalmechanismshavebeenexplained:atyrosylDNAphosphodiesterase

(Tdp1)anda3’‐flapendonucleasescouldremovethetopoisomeraseI(figure

1.7.1.5).

Page 46: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

32

Figure 1.7.1.5 Top1 poison involving in the base exciption repair pathway:SuicidesubstratecanbeprocessedbyboththeTdp1oranendonuclease.AftertheTdp1action,anexonucleaseactivityisrequiredfortheDNAends.Ineithercasesapolynucleotidekinasephosphatase(PNKP)produces3’‐hydroxyland5’‐phosphateends. PNKP activity is exploited in complex with XRCC1, poly(ADP‐ribose)polymerase (PARP), β‐polymerase (Polβ) which estended and completed the gapandligaseIII(Lig3)bindingtheDNAendsThefigureisadaptedfrom[95].

Although Tdp1 produces a 3’‐phosphate end, then the removal of the

phosphate is required in the proceeding repair substrate. Thus a

polynucleotide kinase phosphatase (PNKP) activity is suggested for

processingthe3’phosphatelesions(figure1.7.1.5).

Moreover it has been observed after CPT treatment, 5’‐end of the DSBs

during replicating cells a rapidly phosphorylation occured [104]. In figure

1.7.1.5a,revisitedofthewell‐knownbaseexciptionrepair(BER)mechanism

isreportedfortheDSBsrepairmediatedbytopoI.Severaldatasuggeststhe

Page 47: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

33

contributeofPNKPinconcertwiththepoly(ADP‐ribose)polymerase(PARP)

complex which includes β‐polymerase (Polβ) and ligaseIII (Lig3). PARP

activityincreasedinCPT‐treatedcellsandinaCPT‐resistantcell‐line,indeed

Tdp1co‐immunoprecipitateswithXRCC1[106][107][108].PARPhasazinc

fingermotif allowing tobind both ssDNAanddsDNAbreaks,whileXRCC1

mayfunctionsasascaffold,noenzymaticactivityhasbeenreported,thusthe

Top1‐DNAadductwereprocessedbyPNKP,thenβ‐polymerasereplacesthe

missingDNAsegmentandLigIIIsealstheDNAends.

Anothermechanismastopoisomeraseabilitytoreligateanon‐homologous

DNA strandmediatedby a bear formation at the5’‐hydroxyl endhas been

reported[109].

Thenon‐homologousrecombinationwasfirstreportedfortheVacciniaTop1

[110] and to data Vaccinia Top1‐mediated DNA religation is commercially

usedforcloning(InvitrogenLifeTEchnology,Carlsbad,CA).

Indeed extensive DNA damage also followed by CPT treatment could also

activates apoptosis involving several biochemical changes leading to cell

death[111].

Several parameters controlling cellular sensitivity versus resistance to CPT

remainstillunclear,andthedifferentrateofthedrugaccumulationincellor

the level of the cleavage complexes are not strictly related [112].

Downstream events from the cleavable complex have been identified and

appeartobemoredependent.

The enzyme degradation confers cellular tolerance to CPT treatment and

contributestotherepairpathwayofTop1‐DNAadducts[95].MoreoverCPT

treatmentreducestheintracellularcontentofTop1inseveraltissueculture

cellssuggestingtobeDNAreplication‐indipendent[113][114][115].

CPT has been observed to induce specific down‐regulation of TOP1 via an

ubiquitin/26S proteasome pathway [114] and stimulates SUMO‐1

conjugation toTOP1[116] [117],moreover invariousculturecell lineshas

been observed a correlation between Top1 downregulation and CPT resi

stance [118]. TOP1 cellular localization, function and activity could be

modulated by SUMOylation and contribute to cellular response pathways

Page 48: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

34

[119].Christensenandcollaboratorsin2004demonstratedthatsumoylation

occuredontrappedtopoisomeraseI‐DNAintermediates.

Cellresistancetocamptothecinhasbeenreportedinbothyeastandhuman

cells and this involves several mechanisms in the drug uptake and its

regulation. The Multi‐Drug Resistance phenotype (MDR) cells reported a

reduction in thedrugactivity, theoverexpressionof theABCproteinMdr1

allowsthedrugefflux.Thusenergy‐dependent transportprocessesappears

tobedispansableforthedruguptake[120]evenifcamptothecinmetabolism

isnotwelldefinedyet.

1.8top1mutantsintheyeastmodelorganism

TOP1geneisnotessential inbuddingyeastSaccharomycescerevisiae[121],

thisfeatureisonlyoneofthemainadvantagesmakingthisorganismauseful

tool for genetic and biological studies on topoisomerases. It’s a unicellular

geneticallymodifiableeukaryoticanditsgenomeismadeof6000genesand

16 chromosome fully sequenced (SaccharomycesGenome Database [SGD]).

The extensive literature refering to gene functions allows investigations at

severalcellularlevels.S.cerevisiaehastwo,typeIandtypeIItopoisomerases,

thus yeast cells deleted TOP1 (top1Δ) are viable because of other DNA

topoisomerase IIcompensationactivity [121]. Inaddition type IIenzyme is

notCPTsensitiveandtop1strainshasbeenusedtodemonstratetheselective

targetofthedrugfortopoisomeraseI.Theyeastgenomecanstablymaintain

plasmidinloworhighcopynumber,respectevelyARS/CENand2µm‐based

vectors. These also allowed gene expression, because of the well‐

characterized costitutive or inducible promoters and the presence of

selectablemarkersensuringthemaintenanceinyeastcellsandinsequence

foramplificationinbacteria[122].“pGAL1”promoterisrepressedinmedia

containingdextrose,butinducedinpresenceofgalactoseathighlevels.The

yeast relatively high rate of homologous recombination, allows also site

specific integration of a DNA sequence in its genome. The introduction of

plasmid‐encodedyeastTOP1orhumanTOP1‐cDNA sequence restoresCPT

Page 49: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

35

sensitivityintop1Δyeastcells,theexpressionofacataliticallyactiveenzyme

isrequiredfordrugcitotoxicity[123][124][86].Isogenicstrainsofopposite

mating type could be separated and combinated after the meiotic aploide

products, allowing to identified unknown alterations in cellular processes

afterdrugtreatment,asurveyofisogenicstrainsdefectiveinaspecificrepair

pathwayprovideusefulinformationsasinthecaseofrad52Δyeaststrains.

Yeaststrainshavebeenused inspecificaminoacidsubstitutionanalyses in

thetopoisomeraseIreactionanddruginteraction.

In topoisomerase Ienzymethecoredomains involved in theactivesiteare

highly conserved between yeast and human, and N‐terminal domain, for

whichnostructureinformationsareavailable,divergedinsequence,butnot

inthebasicchargedresiduesandit’srequiredforthecatalyticactivity[34]

[125].Alsoforwhatconcernthelinkerdomains,bothformarerepresented

by two alphahelices, but are different in lenght and sequences. As already

reported,theenzymesurfacerelatedtoDNAinteractionsisthemainregion

whereCPTsensitiveaminoacidsubstitutionsoccured[17].Reducedenzyme

sensitivitytoCPTwasobservedinhumanTop1mutantinlinkerdomain[30]

according to the domain flexibility reported in binding topotecan from the

crystallograficdata.Severalmutationshavebeenidentifiedaroundtheactive

site tyrosine, both in human and yeast Top1, Top1Y723Fmutation abolish

the catalytic activity. Counterwise Top1N726S mutation showed CPT

resistancewithoutchangesintheactivity.

InTop1T722Amutant enzyme, acts as aCPTmimetic, reducing the rateof

DNAreligation,withoutanyobservedalterationinDNAbindingorcleavage

[126].

Other several mutations have been reported to affect camptothecin

citotoxicity in vitro, six residues localized in a cluster in the lip region,

Phe361Ser, Gly363Ser (also substitutions with Val and Cys showed same

effect),Arg364His,Glu418Lys,Gly503Ser,Asp533Glyleadtoresistance[26].

Asp533 mutation is the only for which is reported a direct DNA‐enzyme‐

topotecaninteractionfromcrystallographicdata.InadditionAsn722residue

is located adjacent to the catalytic Tyr723 and contribute to a water

mediated hydrogen bond with the drug in the ternary complex [127].

Page 50: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

36

Flexibility of the linker domain has been showed by Ala653Pro mutation,

whichleadstoanincreasedreligationrate,andCPTbindingisunpermitted

[30].OneinterestingmutationisrepresentedbyThr729Ala,alreadypointed

as resistant to the CPT analog, irinotecan, in a human lung cancer cell line

[128] and from crystallographic data could impacte the contact with

camptothecin because of its water‐mediation function. Benedetti and co‐

workersdemonstratedinyeastCPTresistance,whenthisresidueismutated

inGlu,LysorPro[129][130].

Single residue mutations can dramatically alter the Top1 enzymology and

drug sensitivity suggesting also to induce similar DNA lesions pathway as

CPT,accordingtotheincreasingstabilityofthecovalentcomplex.

1.9Distinctmechanismforpositiveandnegativerelaxation.

AsalreadyreportedhumantopoisomeraseIisabletorelaxsupercoilsofboth

signsandthedirectionofrotationwilldependonthesignofthesupercoilsto

beremovedaccordingtothecontrolledrotationmodel.

Real‐time dynamics, in a single molecule approach may facilitate the

understandingofpositivesupercoilsaccumulationandmechanism.Kosteret

al. in2007providedadirectdeterminationof the increased life‐timeof the

covalent ternary complex (DNA‐protein‐drug) using single molecules

magnetic twezers method. In addition it has been demonstrated that

topotecan interfereswith DNA uncoiling resulting in a better relaxation of

negativelysupercoiled thanpositively [131]. As reported twomodelshave

beenproposedforstrandpassageforthetopoisomerizationreactionintypeI

subfamily. The enzyme­bridging model in which enzyme stabilized a gate

throughthenickandthestrandrotationmodelinwhichoneendofthenickis

driven to rotate around the intact strand by the supercoiling free energy

[132].EnergyofthesupercoilsarenecessaryandallowedtheDNArotation

inadrivingtorquedependentmanner(fig.1.9.1).

Page 51: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

37

Fig. 1.9.1 a)DNA­hTop1 covalent complex, b)mechanism of relaxation ofnegativeandpositivesupercoils.Differentrotationisindicatedbythearrowsandtheflexiblehinge(representedwitharedlineconnectingupperandlowerlobe)bystrechtingandbendingmotionallowsopenedandclosedproteinconformation.Thefigureisadaptedfrom[132].

From Champoux and co‐workers crystallographic data, appears that when

theupperandlowerlobesareclosedtheybringtogetherthetwoopposable

lipslocalizedontheothersiderespecttothehingeregionfig.1.9.1[132].

The strand rotation model for both positive and negative supercoils is

explainedimagingthatproteinwidelyopensupitslips,whilegettinghinged

onthehingeside,andbindsthe incomingDNAduplex.Thenlipsareclosed

andcleavageofonestrandoccured.Theresultingcutallowstherotationof

the DNA duplex downstream of the nick. The number of time of rotation

correspond to the DNA linking number variation. Moreover if DNA is

overwound, rotation for relaxing positive supercoils occured, otherwise if

underwound thenegativeDNA substrate is preferred. Enzyme again opens

upthelipsafterreligationstepandtheproductofreactionisrealesedless‐

supercoiled.

The controlled rotationmodelprobably is driven by charge residues of the

nose‐cone and the linker flexibility that interacts electrostatically with the

downstreamDNAstrand.Theaccomodationoftheduplexinsidetheenzyme

structure should allow the rotation and requires high flexibility of the

structure.

Page 52: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

38

Sari and Andricioei simulations proposed that the removal of positive

supercoilsrequiresopeningofthelipsby10‐14Å,whileremovalofnegative

supercoils involves thehingeregionstretchingby12Å.Thehinge involved

amino‐acidsbeetweenLeu429andendswithLys436.

Thismodelproposes that theenzyme isnota symmetricalbolt around the

DNAmolecule, but depending from sense of rotation, the double helixwill

hits different residues. This observation is also based on two different

experimentsthatanalyzedstrandrotation.Residuesofthelipsregionwhere

substitutedbyopposingcysteines,tocovalentlyblocktheenzymeinaclosed

clampconformation.Whentheclampwastighterthestrandrotationwould

notoccurandoppositelywhenthetwocysteineswherepositionedtoforma

moreflexibleclamp,strandrotationcouldstilloccur.

The linker domain and the nose‐cone helices are also involved in the

relaxationofpositiveandnegativesubstraterespectevely.

Moreover crystallographic data of the human TOP1 in the region between

201 and 205 residues showed no interactions with the DNA substrate

nevertheless coordinates DNA rotation or clamp movement. In addition

several interactions between residues were reported, as the Trp‐203 and

Trp‐205withtheHis‐346andGly‐437atthelevelofthehinge[24].

Simulationanalysesof the203‐214residuesshowedasignificant flexibility

andacorrelatedmovementbetween203‐208aminoacidswiththehelix8in

core subdomail III; aN‐terminal portion in the linkerdomain; the catalytic

regionaroundtheTyr723and22‐23helicesoftheC‐terminaldomain[133].

Bjornsti and Dekker collaborators in 2007 demonstrated with the single

molecule approach that positive supercoils accumulate in yeast cells upon

CPT‐induced inhibition of topoisomerase I relaxation activity. Positive

supercoils accumulated during transcription and replication suggesting a

direct link with the CPT poisoning of the enzyme withouth altering its

catalytical activity [131].Thesedata togetherwithSari&Andricioei studies

suggestedadifferentdrugresponsesofthemutatedenzymeswhenrelaxing

positiveornegativesupercoils.Thesealsoreflecteddifferentmechanismof

strandrotationinordertoremovesupercoilsofoppositesign.

Page 53: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

39

SeveralmutationsatN‐terminalhuman topoisomerase Ihasbeen reported

tobemoresensitivetoCPTduringrelaxationofpositivelyversusnegatevely

supercoils [134]. In particolar human topoisomerase I enzymes reported

Trp205Glymutation,anddeletionof191‐206residuessuggestaroleforthe

Trp‐205 and surrounding residues in the control of strand rotation during

negativesupercoiledremoval,butnotpositive[134].Theabsenceof191‐206

residueallowstounderlinetheconstitutivelystretchedconformationofthe

hinge region leading to an uncontrolled clockwise strand rotation for

removingnegativesubstrate.AccordingtoSari&Andricioeimodelthehinge

region may have no relevant influences on the lips domain and the

involvementinthepositivesupercoiledrelaxation.

All these data suggest that a topology sensor could exist in this correlated

movementsbetweenthelinkerandtheN‐terminaldomainsresultinginthe

activesiterecruitment.Thechanging in theclampconformationappears to

bedrivenbytheTrp205hinge­pivotmechanism.

Page 54: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

40

Page 55: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

41

2.AIMOFTHEPROJECT

ThehumanDNAtopoisomeraseI(hTopoIB)playsakeyroleinDNAtopology

regulationassociatedwithtranscription,replicationandrecombination.This

enzymeintroduceatransientbreakinasinglestrandoftheDNAduplex,and

allows strand rotation at the site of DNA scission and the release of the

superhelical tension. InthiswayhTopoIBisabletorelaxbothnegativeand

positive supercoils, respectively before rejoining the cleaved DNA strand.

Human topoisomerase IB acts as a clamp around theDNA, performing the

openingandthentheclosureforthereleaseofthesubstrate.Thiscanoccur

thankstokeyresiduesintheproteinstructure.Todatethesefeaturesremain

unclear, even if 30 years are passed since the protein discovery. Themost

completecrystalstructureshowedtheenzymetogetherwitha22bpdsDNA

asabilobedmoleculewheredomainmovementsarenecessary tobindand

rotate the DNA. Recent studies suggested the N‐terminal domain to be

involved in controlling strand rotation together with the linker domain.

Other evidences based on Sari et Andricioaei data [132] gave informations

about thepossible role of the lips concerning the relaxationof thepositive

supercoils and about the strechting of the hinge for the negative DNA

substrate.TheenzymecouldwrapstheDNAfromonesidebringingtogether

theupper and lower lobe through the twoopposable lips andon theother

sidewiththehinge.

The crystal structure of the enzyme shows 14 residues located in the N‐

terminaldomainbutclosetothehingeregion,suggestingthattheseresidues

could interact with the subsequentα‐helix and in particular with the first

residue Pro431. Staker and collaborators crystallographic data [127] show

thatthisprolinecanactasapivotallowingthechanginginconformationof

theproteinfromanopentoaclosedstructure.

Inordertoinvestigatetheinvolvementofthehingeregionincontrollingthe

rotation,Pro431wassubstitutedbyaglycine(Gly).Thisaminoacidlacksina

side chain and is the smallest residue because of its two hydrogen

Page 56: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

42

substituents. Alteration of the catalityc activity after mutation was

investigated.

FurthermoreArg434residueislocatedatthetopofthehingeinproximityof

theTrp205(N‐terminaldomain)asreportedinfigure2.1.Indeedmolecular

modeling suggested mutations at 434 residue could also be crucial for

changingintheelectrostaticinterationswiththesurrondingandinparticular

withtheproximalTrp205.

Figure2.1:Top1structuretotheleftproteinisrepresentedtogetherwiththeDNAsubstrateandresiduesofinterestwerecolouredinred(trp205),blue(arg434)andyellow(pro431).Totherightazoomatthetopofthehingeregionandaminoacidsinteractionswereshowed.

The substitutions of Arg434with an alanine (R434A), andwith a cysteine

(R434C) are of great interest to valuate the change in the structure and

interactionwiththeDNAsubstrate.Furthermorethecysteinecouldperforme

a disulfide bond if an other cysteine locally occurred. Using the

Saccharomycescerevisiae theeffectof thesemutationswasanalyzed.Levels

of their catalytic activity were measured in vitro and sensitivity to the

camptothecininhibitorwasalsotested.relaxation.

Page 57: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

43

In order to valuate the contribute of the hinge and the suspected key

residues, relaxation activity of positive and negative supercoils of these

mutantswasalsoinvestigated.

The relaxation ability was performed at low and high ionic strength

condition, revealing interesting mutant behavior in non‐physiological

condition.

Page 58: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

44

Page 59: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

45

3.MATERIALSANDMETHODS3.1Media

All reported procedures are for 1 liter solutions and were autoclaved at

1210Cfor15minutesbeforeuse.

Ura­selectiveliquid/solidmedia

yeastnitrosebase:1.7g(noaminoacidandammoniumsulphateinside);

ammoniumsulphate:5.0g;

ura – drop out ( composition: adenine 4 g, tryptophan 4g, histidine 2g,

arginine2g,methionine2g,tyrosine3g, leucine6g, lysine3g,phenylalanine

5g,threonine20g,aspartate10g):0.7gr;

NaOH2N:1ml;

1MHepespH7.5:24ml(onlyinpresenceofcamptothecininthemixture);

Agar:20gonlyforsolidmedia;

Before use, sterile 20% sugar solutions (as reported in the procedures:

glucose,galactoseorraffinosewerepreparedwith20gofpowdersugar in

100mlofmilliQdH2Oandsterilizedbyfiltration)wereaddedtoafinal2%

concentration.

YPDdexliquid/solidmedia

BactoTMyeastextract:10g;

BactoTMpeptone:20g;

Glucose:20%w/v;

Agar:20gonlyforsolidmedia.

Luria­Bertani(LB)medium

BactoTMtryptone:10g;

DifcoTMyeastextract:5g;

NaCl:10g;

Agar:20gonlyforsolidmedia.

LB­ampmedium:4mlofampicillin(25mg/ml)wereaddedto1literofLB

medium.

Page 60: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

46

NZY+pH7.5

NZammine:10g;

DifcoTMyeastextract:5g;

NaCl:5g.

Beforeusewereadded:MgCl21M(12,5ml)

MgSO41M(12,5ml)

Glucose20%w/v(20ml)

3.2Buffers

10XTBEpH8.31litersolution

Tris:6,05g;

BoricAcid:3,9g;

EDTA:0,37g.

10XTE1litersolution

10mMTris‐HClpH7.5;

1mMEDTA.

Tris­HCl

0.5MTrispH6.8adjustedwithHCl;

or

3MTrispH8.9adjustedwithHCl.

1XTEEGpH7.51litersolution

1MTris:50ml;

0.5MEDTA:2ml;

0.5MEGTA:2ml;

100%glycerol:100ml;

NaOHtoadjustpH.

Page 61: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

47

10XG­BufferTopoisomerasereactionbuffer

20mMTrispH7.5;

0.1mMNa2EDTA;

10mMMgCl2;

50µg/mlacetylatedBSA.

3.3Drugs

Ampicillin(AMP)providedbySigmawasdissolvedin50%distilledwater,

50%absoluteetanoland25mg/mlaliquotswerestoredat‐200C.

Camptothecin (CPT) provided by Sigma was dissolved in DMSO and 4

mg/mlaliquotswerepreparedandstoredat‐200C.

3.4Yeaststrains

Saccharomyces cerevisiae strain EKY3 (MATα, ura3‐52, his3Δ200, leu2Δ1,

trpΔ63,top1::TRP1),wild‐typelikeyeaststrain.

UsedyeaststrainlacksoftheyeasttopoisomeraseIgene(yTOP1)allowingto

be trasformedwithanexpressionvectorcontainingan induciblepromoter.

In addition URA and TRP genes, involved in the uracil and tryptophan

metabolismrespectevely,aredeletedtoreachtwoselectivemarkers.

3.5.Plasmids

Yeast strain was transformed with inducible expression vector YCp,

containingthehumantopoisomeraseIgene(hTop1)underthecontrolofthe

GAL1 promoter. The gene was engineered at the N‐terminal with a 24

nucleotide sequence expressing a positevely charged octa‐peptide, called

Flagepitope:Asp‐Tyr‐Lys‐Asp‐Asp‐Asp‐Asp‐Lys(Sigma).

Theconstructallowedtheanalysisandpurificationoftheenzymetobemore

efficient.

Page 62: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

48

­YCpGAL1­flag­hTop1

Single copy plasmid YCpGAL1‐hTop1 [136] is a 12,000bp vector (fig.3.1)

carryingabacterialreplicationorigin(oriC),abacterialcellsgrowthselective

markerURA3(geneforuracilproduction),abacterialcellsgrowthselective

marker (Ampr, ampicillin resistance), a yeast replication origin (ARS,

AutonomousReplicatingSequence),ayeastderivativedcentromericsequence

(CEN4)andayeastinducibleexpressionpromoterGAL1(galactose).

Fig.3.1:YCpGAL1FlaghTop1Singlecopyplasmid12,000bp.

­pBS­SK

Plasmid lenght 3000 bp with a pUC origin, a lac promoter (817‐938), a

multiplecloningsite(653‐760)withaEcoRIrestrictionsiteandabacterial

cellsgrowthselectivemarker(Ampr,1976‐2833).

Fig.3.2:pBSplasmid3,000bp,MCSmultiplecloningsite653‐760bp,http://image.hudsonalpha.org/html/libs/pBluescriptIISK+map.pdf

Page 63: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

49

‐pAk3­1

negatively supercoiled plasmidDNA, above 2300 pb in lenght. It’s the pUC

plasmid engeneered with a sequence containing the preferential site of

bindingforthetopoisomerase.

3.6Sitedirectmutagenesis

MutationsatP431,R434andW205weregeneratedthroughtQuikChange

LightningSite‐DirectedMutagenesisKit(MMedical).Plasmidsreportedthe

insertion for the topoisomerase gene were subcloned into YCpGal1‐hTop1

plasmid,inafragmentwithBamHI–ClaIrestrictionsites.Alltheconstructs

used reported also the recognizable sequence: “ DYKDDDDK “, the epitope

don’t modify the enzyme activity and drug sensitivity both in vivo and in

vitro.

3.6.1Procedures(fig.3.3):

1) Mutant strand synthesis throught the performance of the thermal

cycling(denaturation,annealingoftheprimercontainingmutationof

interestandfinalextension);

2) Faster DpnI digestion of template (metilated sequence were

recognizedanddigested);

3) Transformation (ultracompetent cells XL10‐Gold allowed the repair

onthemutatedplasmid).

Fig.3.3:Sitedirectmutagenesisprocedurehttp://www.qcbio.com/stratagene/210518.pdf

Page 64: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

50

3.6.2Preparationofchemo­competentbacteria

Materials:

15mlfalcontubes;

E.coliXL10GoldUltracompetentcells(AgilentStratagene);

β­mercaptoethanol;

plasmidDNA;

NZY+broth;

LBAmpicillinagarplates.

Oligonucleotides cointaining interested mutations were synthesized

according the informations provided by the mutagenesis protocol kit.

Primers were obtained by Eurofins mwg (fig. 3.4):

https://ecom.mwgdna.com/services/home.tcl.

Mutationsatlevelofthehingeregion:Pro431Gly,Arg434Cys,Arg434Ala

MutationattheleveloftheN­terminaldomain:Trp205Cys

Theseareshownbelow:

Fig.3.4:Overviewofprimersequencesandresiduemutated.

Preparationofthesamplereactions:

10xreactionbuffer;

10‐100ngdsDNAtemplate;

Page 65: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

51

125ngoligonucleotideprimerFW;

125ngoligonucleotideprimerRW;

1µlofdNTPsmix;

1,5µlofQuikSolutionreagent;

dH2Otoafinalvolumeof50µl.

Finally1µlofQuikChangeLightningEnzymewasaddedtothemixture.

Thethermalcyclerwasperformedattheseparameters(tab.3.1):

Step Numberofcycles Temperature Time

Denaturation 1 950C 2min

950C 20sec

600C 10sec

Annealing 18

680C 30sec/Kb = 6

min

Extension 1 680C 5min

Tab.3.1:Thermalcycleparameters,plasmidlenghtconsideredwas12,000bp.

Attheendoftheamplificationprocess2µloftheprovidedDpnIrestriction

enzymeweredirectlyaddedtoeachamplificationreactionandincubatedfor

5 min at 370C, obtaining the digestion of the parental nonmutated

supercoileddsDNA.

3.7Transformationoftheultracompetentcells

All procedures were performed on ice. Firstly ultracompetent cells were

addedintoa15ml falcontube, then2µlofβ­mercaptoethanolweregently

addedandswirledfor2min.

DpnI­treated DNA from each sample was transfered and incubated for 30

min.

Thenthetubeswereheat‐pulsedina420Cwaterbathfor30sec,thisisthe

mostcriticalstep,andincubatedonicefor2min.

Page 66: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

52

Finally0,5mlofNZY+broth,pre‐heatedina420C waterbath ,wereadded

andincubatedfor1hourat370Cwithshakingat200rpm.

Anappropriatevolumeofthesamplewasplatedforeachtransformationon

LB‐ampicillinandincubatedforatleast16hoursat370C.

3.8Plasmidsextractionandenzymaticdigestion

MATERIALS:

LBliquidmedium;

Ampicillin25mg/ml;

DNAsplasmidofinterest;

QuiagenKitDNAextraction;

10XBufferEnzyme;

restrictionenzyme(BamHI‐EcoRI‐ClaI);

10XTBEbuffer:0.89MTris‐borate,20mMEDTA,pH8.0;

6X Loading Buffer: 30% Ficoll (type 400), 0,1% bromophenol blue, 0,1%

xylenecyanol;

gelelectrophoresisapparatus;

EthidiumBromide(EtBr):10mg/mldissolvedindH2O.

1)1colonyforsamplewaspickedandaddedto5mlLBplusampicillinliquid

mediumformorethen16hoursat370Cand220rpm.

2) The day after Dna extractionwas carried out with Quiagen Kit starting

fromgrowncellculture.

3) Then 500 ng obtained DNAs, were incubated with 10X enzyme buffer,

20u/µlenzymeanddH2Otoafinalvolumeof20µlfor30minat370C.

Then samples, treatedwith loading buffer,were loaded in 1% agarose gel.

ResultswereanalyzedwithUVtransilluminator.

3.9YeaststraintransfectionwithYCpplasmids:lithiumacetatemethod

MATERIALS:

10XTE(100mMTrispH7.5,10mMEDTA);

Page 67: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

53

1MLithiumacetate(LiOAc);

50%(w/v)PEG3350sterilizedandfiltrated;

Sigmasalmonsperm(10ng/µl);

YPD‐2%gluliquidmediumandplates;

YPD‐2%galliquidmediumandplates;

YCpplasmidscarryingtheinterestedmutation.

4‐5yeastcolonieswerepickedupandgrowninYPD2%gal liquidmedium

overnight at 300C. The day after O.D.600 wasmeasured, and if it wasmore

than1,itwasdilutedtoO.D.6000.7inYPD2%glu.Foreachtransfection10ml

ofcellculturewascalculatedandsetup.WhenreachingtheO.D.600inarange

0.9‐1.1,cellswerecentrifugedfor10minutesat2800rpm.Thesupernatant

was discarded and pellet resuspended in TE‐LiOAc solution (1/100 of the

originalculturevolume).

100 µl of cell suspension were aliquoted for each sample, then 100 ng

denaturatedsalmonspermDNAand1000ngplasmidDNAsofinterestwere

addedon.

Afteraresuspensionbypipetting,350µlofTE‐LiOAc‐40%PEGsolutionwere

added.Sampleswerethenincubatedbyslow‐shakingat240Cfor30minutes,

followingby420Cfor15minutes.

200µlofeachcellculturewerespreadonselectiveplatesandincubatedat

300Cuntiltheyeastcoloniesgrowth.

3.10Invivoviabilityassay:spottest

MATERIALS:

Transfectedyeastcells;

ura‐2%glucoseliquidmedium;

ura‐2%glucoseplates;

ura‐2%glucose platesaddedwithcamptothecin (concentration from0,01

µg/mlto5µg/ml);

ura‐2%galactoseplates;

Page 68: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

54

ura‐2%galactoseplateswithcamptothecin(concentrationfrom0,01µg/ml

to5µg/ml).

Single yeast strain transformant, previously transfected by lithium acetate

tratment with YCp construct containing the different mutated Top1 gene,

werepickedfromura‐2%glucoseplatesandgrownovernightin5mlofura‐

2%glucoseliquidmediumat300C.

TheseconddaycultureweredilutedtoanO.D.595valueof0.3.Three10‐fold

serial dilutions were calculated and for each yeast suspension 5 µl were

spottedontheselectedplates.

The number of cells forming colonies were scored following incubation at

300Cfor72hours.

3.11 Whatman P11 phosphocellulose resin preparation and

activation

MATERIALS:

1MK2HPO4;

0,5MKPO4addedwith1mMEDTApH7;

WhatmanP11phosphocelluloseresin;

1literBuchnerfunnel;

3MMfilterpaper.

Firstday:

250 grams of phosphocellulose resin were slowly poured into a 2 liters

graduated cylinder,where1,5 liters of 1mMEDTA werepreviously added

on.Mixedandincubatedovernightatroomtemperature.

Secondday:

Theresinwasslowlyresuspendedbyinvertingthecylinderandletsettlefor

5‐10minattimeandrepeateduntilgettingavisiblelayerinthelowerpartof

cylinder.Withavacuumpumptheupperlayercointainingfineparticlesand

waterysolventwasremoved.

Page 69: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

55

Thenfreshdistilledwaterwasaddedtotheresiduallowerlayer,mixedand

letsettleagain,thiswasrepeateduntilgettingaclearandhomogeneuslower

layer.

Whentheresinwasreadytouse,2layersof3MMfilterpaperwereprepared

andputon theBuchner funnel inserted ina4 litersvacuumflask, then the

resinwas added on, allowing through the vacuum filtration the clearing of

theliquidsuspension.

0,5MNaOHwasaddedintothefunnelandinordertoavoidthefilterpores

obstructions the suspension was stirred by hands. pH was constantly

mesuredandconstantlykepttovalue9addingNaOH.

Finallywascheckedonfilteredliquid,NaOHwasremovedandresinwaslet

settlefor5min.

Suspension was washed with distilled H2O once and then 0,5 M HCl was

added in order to get a pH solution above value of 3. Resuspension and

filtrationstepswererepeated.

After5minutesandonewashwithdistilledwater,K2HPO4wasadded and

finalpHof7hastobereached.

Finally the resinwaswashed two times and resuspended in 0,5MKPO4 –

1mMEDTApH7solution.

3.12HumanDNAtopoisomerasepurificationfromyeast

MATERIALS

CompleteProteaseInhibitorcocktail(Roche)1tabletin50mlofTEEG1X

buffer;

50XSodiumFluoride;

100XSodiumBisulfite;

Saturatedammoniumsulphatesolution;

1XTEEGbuffer;

S.cerevisiaeEKY3strain;

“oakridge”tubes;

2mlBioradPoly‐prepcolumns;

Glassbeads,acid‐washed,Sigma(diameter425‐600µm);

Page 70: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

56

ActivatedWhatmanP11phosphocelluloseresin;

Potassiumchloride;

Ammoniumsulphate;

Ura‐2%glucoseliquidmedium;

Ura‐raffinose2%liquidmedium;

20%(w/v)galactosesolution;

ProteinAssaysolutionBiorad;

BovineSerumAlbumin(BSA)Sigma10mg/ml.

Individual colonies (4‐6) of transformed EKY3 cells containing plasmid

encoding human Top1 protein (wild type andmutants isoforms) no more

than2weekoldweregrownin15mlofdropoutmediaovernightat300Cat

180rpm.

The day after cultures O.D.595 was measured and diluted 1:100 in ura‐

raffinose 2% medium and grown to an O.D.595 value of 0,8‐1. Incubated

overnightat300Cat180rpm.

Cellsweretheninducedbytheadditionof2%galactosew/v,for6‐8hours.

Then cultures were centrifuged for 15 min at 3,200 rpm at 40C and

precipitatedcellswerewashedwithdH2Oandcentrifugedagain.Thenpellets

wereresuspendedin1XTEEGbufferaddedwithaproteaseinhibitorcocktail

tablet(finalconcentration100µg/ml,Roche),50Xsodiumfluoride(NaF),

100X sodiumbisulfite (NaHSO3).2mlpergramof cellsof inhibitorcoctail

solutionwereused.Cellswerestoredat‐700C.

Cultureswerepoured intopre‐chilledandsterile250mlcentrifugebottles,

andglassbeadsforahalfvolumewereadded.Incoldroom,breakageofthe

cellswasmechanicallyperformedbyvortexingfor30sec,followedby30sec

of standingon ice toa totalof30min.Then tubeswere centrifuged for30

minat14,350rpmat40Callowingcellulardebrisprecipitation.

After the centrifugation, bottleswere placed on ice and supernatantswere

movedtocleantubes.ThosearethecrudeextractskeptfortheBradfordtest.

Page 71: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

57

3.12.1BRADFORDTEST

To measure total protein content of crude cell extract “Protein Assay

Solution”Bioradandbovineserumalbumin(BSA)Sigmaforthestandars

preparation, were used. The BSA standard concentrations interpolated the

sample concentrations. Five, 1ml solution, diluitions: 1mg/ml, 2mg/ml, 4

mg/ml, 6 mg/ml, 8 mg/ml, were prepared and the protein sample was

measuredafter1:5diluition.

Foreachstandardandaliquotofcrudeextract,1mlofdiluteddyewasadded

to the disposable cuvet, mixed and let settle at room temperature for 5

minutes.Forthecrudeextract2µlsamplewasaddedtothemixandO.D.595

wasdeterminedbyspectrophotometry.Totalproteinconcentrationforeach

samplewasmeasuredandabove6mg/mlpurificationcanproceed.

3.13Ammoniumsulphatepurificationprocedure

In order to reach a saturated solution of ammonium sulphate (80% w/v)

precipitationwasperformed.Foreachmlofsupernatantvolumepreviously

obtained, 0,516 g of ammonium sulphatewere added. The suspensionwas

rockedovernightincoldroom.

Thedayafter sampleswere centrifugedat15000 rpm,40C for30minutes.

Pellets obtained were resuspended in 1X TEEG added with the protease

inhibitorcocktailsolutioninaequalvolumetothatofthestartingextract.

Electricalconductivityforeachsamplewasmeasuredandcomparedtothat

ofa0,2MKCl1XTEEGsolution.

Inorder toreach thebindingof theprotein to theresin,conductivityvalue

must be lower or equal, otherwise the final volume was diluted with 1X

TEEGaddedwithproteaseinhibitorcocktailsolution.

Activatedresinwasequilibratedincoldroom,ina50mlfalcontubewith1M

KCl‐5XTEE–1Xglycerol,thenbufferwasremovedandanequalvolumeof

0,2MKCl1XTEEGwasadded.For2literofstartingyeastculture2mlofthe

resinwereused,pouredintocolumnandwashed5timeswith0,2MKCl1X

Page 72: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

58

TEEG. Then resinwas equilibratedwith 5 volumes of 0,2MKCl 1X TEEG

addedwithinhibitorsandwashedagain.

Samplewasnowloadedinthecolumn,elutionoccuredwithincreasingKCl‐

1XTEEGbuffer,from0,2‐0,4‐0,6‐0,8–1mMKCl.Fractionsfrom0,2to0,4

MKClwerecollectedin50mlFalcontubesandsamplesfrom0,6‐0,8to1M

KClwerealiquoted in2mlEppendorf tubes, ina1:1mixturewith100%

glycerol previously added. After homogenization, sampleswere stored at ‐

200C.

All fractions were tested with a relaxation activity assay as followed

describedandpositivesampleswerecollectedtogetheranddilutedwith1X

TEEGwithinhibitorsproteasesolutiontoobtainaconductivityclosetothat

of150mMKCl1XTEEGbuffer.

3.14AffinityChromatographyprocedure

Toavoidcontaminantsinpurifiedproteinssampleswereloadedonanti‐flag

column (3X FLAG PEPTIDE Sigma), the binding was ensured by the flag

peptidelocatedtotheN‐terminalofproteinstructureaspreviousdescribed.

The affinity chromatography procedure was performed in cold room, first

columnwassetupandadrainagetubewasattachedtocontroltheflowrate.

ThenavialofANTI‐FLAGM2(Sigma)affinitygelwassuspendedtomakea

uniformgelbeadsmixtureinthecolumn.thesamplepreviouslywashed,was

loaded onto the columnunder gravity flow and binding can occured. Then

washing the column, elution of 3X FLAG Fusion Proteins was carried on

throughthecompetitionwith100µg/ml3XFLAGPeptide(Sigma)diluted

in1XTEEG‐150mMKCl. Eluated sampleswere fractioned in1ml aliquots

addedwith100%glycerol.

3.15SDS­PolyacrylamideElectrophoresisGel(SDS­PAGE)

MATERIALS:

Biorad30%bisacrylamide/acrilamide(37.5:1);

1,5MpH6.8TrisHCl;

Page 73: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

59

1,5MpH8.8TrisHCl;

60%w/vSucroseSigma;

10%w/vSDSBioradsolution;

N,N,N’,N’‐Tetramethylethylenediamine(TEMEDBiorad);

100mg/mlAmmoniumPersulfate(Sigma>98%);

PromegaBroadrangeproteinmarker;

4Xsamplebuffer(composition:20%SDS;bromophenolbluetraces;125mM

TrisHClpH6,8;50mMDTT);

10XRUNNINGBUFFER:(250mMTris,250mMGlycine,1%SDS).

10%acrilamidegelswerepreparedasreportedinthetable3.2:

2gels Runninggel Stackinggel

DistilledH2O 3,19ml 2,58ml

30%bisacrylamide/

acrilamide

2,76ml 433µl

1,5MpH8.8TrisHCl 2,5ml

1,5MpH6.8TrisHCl 1ml

10%w/vSDS 50µl 20µl

60%w/vSucrose 1,5ml

APS100mg/ml 100µl 40µl

Temed 4µl 4µl

Totalvolume(ml) 10ml 4ml

Tab.3.2:schematicprocedurefor10%acrilamidegels

The samplemigrationwas performed at 100 volts in the stacking and150

voltsintherunningofthegel.

3.16Colloidalcoomassiestaining

www.jove.com/index/details.stp?ID=1431[137]

STAININGSOLUTION:

Coomassiesolution:

0.02%(w/v)CBBG‐250;

Page 74: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

60

5%(w/v)aluminumsulfate‐(14‐18)‐hydrate;

10%(v/v)ethanol(96%);

2%(v/v)orthophosphoricacid(85%).

Aluminium sulfatewas dissolved inMilli‐Qwater, then ethanolwas added

andCBBG‐250mixedtothesolution.Whencompletelydissolvedphosphoric

acidwasadded,allowingCoomassiemolecoleaggregatingintotheircolloidal

state.

FinallyMilli‐Qwaterwasaddedtothedesideredvolume.

DESTAININGSOLUTION:

10%(v/v)ethanol(96%);

2%(v/v)orthophosphoricacid(85%);

Aftertheremovalofthegelfromtheglassoftheelectrophoreticapparatus,

thiswaswashedthreetimeswithMilli‐Qwaterfor5minutesonahorizontal

shaker.

ThenCoomassie solutionwasshakedandputon thegelovernightat room

temperature.

After the staining procedure Coomassie was removed and gel was rinsed

twicewithMilli‐Qwater.

Destainingsolutionwasaddedonthegelandletformorethen4hours.

3.17Westernblot

MATERIALS:

polyacrylamidegel;

3MMWhatmanpaper;

transferapparatus;

nitrocellulosemembraneAmersham;

1Xtransferbuffer(reagentsneededfor2Lt:28,8gglycine,6,04gTrisbase,

200mlmethanol100%,1,6LdH2O);

1XTBS(50mMpH7.6Tris,150mMNaCl);

PonceauSsolutionSigma;

Page 75: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

61

TBS‐Tween20(50mMpH7.6Tris,150mMNaCl,0,1%v/vSigmaTween

20);

3%milksolutionFlukabiochemika(1,5gskimmilkpowderin50mlTBS);

ANTI‐FLAGM2‐AlkalinePhosphataseConjugateSigma(1mg/ml);

Sodiumazide;

BCIP/NBT‐blueliquidsubstratesystemSigma.

Nitrocellulose membrane and six 3MM Whatman sheets were cut to

completely cover the gel surface. All components were soaked in the 1X

transferbufferpreviouslyputintoabasin.Thetransferapparatuswasmade

upofonesponge, three3MMsheets, thenthenitrocellulosemembrane, the

gel, the other three 3MM sheets and finally an other sponge. The transfer

processwas carried out at 300mA for 1 hour. At the end of the transfer,

nitrocellulosemembranewasincubatedwithPonceauSsolutioninorderto

directly visualizeproteinson themembrane. If theblot successfully occurs

membranewasfirstlywasheddockingina3%milksolutionformorethen1

hourandafter3x15minTBS‐TWEEN20washeswasincubatedinM2ANTI‐

FLAG antibody solution ( 1:200 dilution in TBS‐Tween 20. Added with

antibacterialagentsodiumazide)overnightat40C.Thedayafter,3x15min

TBS‐TWEEN20washeswereappliedtomembrane,thenBCIP/NBTsolution

was added on. BCIP/NBT contains 5‐Bromo‐4‐Chloro‐3‐Indolyl sodium

Phosphate (BCIP), the substrate for alkaline phosphatase and Nitro‐Blue

Tetrazolium (NBT) chloride, allowing hydrolization of BCIP and the

visualizationofdarkblueprecipitate.Theseprecipitatesappearat the level

of the FLAG epitope located at the N‐terminal domain of the human

topoisomeraseIprotein.

3.18 Generation of positively supercoiled plasmids: Reverse Gyrase

activityassay

Materials:

plasmidofinterest(200ng);

Page 76: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

62

reverse gyrase buffer (composition: 35mM Tris‐HCl pH 7.0; 0.1 mM

Na2EDTA;30mMMgCl2;2mMDTT;1mMATP);

purified reverse gyrase (40‐100 ng and kindly provided by Valenti A.,

CiaramellaM.CNRNAPLES).

Allreagentswereaddedtoafinal20µlofmixtureandincubatedat700Cfor

5 min. Reaction was stopped by adding 20% SDS. For the control sample

plasmidaloneandplasmidwithreversegyrasebutwithouthATPwereused.

The reaction products were analyzed by bidimensional agarose gel

electrophoresis(2Dgels)figure3.5,withethidiumbromide(0.01µg/ml)in

the second dimension. After both electrophoresis, gels were stained with

ethidiumbromide (1µg/ml), and samplewerequantified and visualizedby

UVlightwithaChemi‐docapparatus(Bio‐Rad,Hercules,CA.USA)

Fig. 3.5 Diagram of 2D gels: 1) migration of a negative supercoiled (‐SC) andnicked forms of the plasmid substrate, 2) negatevely to relaxed topoisomers, 3)migrationofnegative(leftside)andpositive(rightside)topoisomers,4)migrationofonlypositivetopoisomers.[138]

As shown in figure 3.5, reverse gyrase has the ability to induce positive

supercoilingfromlessnegativetohighlypositive.Aftertheincubationofthe

reversegyrasewithanegatevelysupercoiledplasmidDNA,topoisomerswith

anincreasedlinkingnumberwereproduced(fig.3.53).

3.192Dgelinthetopoisomersanalysis

MATERIALS

10XTBE(108grTris;55grBoricAcid;40mlEDTA0,5MpH8.0);

EtidiumBromide(EtBr1mg/ml);

Page 77: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

63

Electrophoresisapparatus;

Two‐dimensional agarose gel electrophoresis are consisted by two steps

electrophoresis carried out in orthogonal directions in a single agarose gel

(fig.3.6).

Fig. 3.6 Separation of supercoiled topoisomers by 2­D gel Topoisomersrepresented by dotswere electrophoresed in two dimensions as indicated by thearrows[139].

This assay allowed to analyze the real overall shape of a supercoiledDNA,

becouse of the addition of intercalating as ethidium bromide, altering the

shapeoftheDNAandtheelectrophoreticmobilityofsingletopoisomers. In

the second dimension ethidium bromidewas added to the electrophoresis

bufferinducingpositivelymigrationtobefasterthannegativelysupercoiled

topoisomers.

Productswereanalyzedby2Dgelelectrophoresisin1,2%agarosein1XTBE

buffer at room temperature. Gel was runwith no intercalators in the first

dimension and 10 ng/ml ethidium bromide in the second. First dimension

wascarriedoutat25mAfor16hours,thengelwassoakedfor1hourindark

withelectrophoresisbuffertreatedwithethidiumbromide(10ng/ml).

Thisbufferwasusedfortheseconddimensionelectrophoresisat60mAfor4

hours, in dark condition. Then gel was stained for 1 hour in ethidium

bromide(10mg/ml)anddestainedindistilledwaterbeforevisualizationat

theChemidocapparatus.

Page 78: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

64

3.20DNArelaxationassay

To evaluate protein activity for each aliquot, DNA relaxation assays were

performed. The topoisomerization process (fig. 3.7) is visualized in an

agarose‐gel electrophoresis, allowing to separateDNAmolecoleonbasis of

sizeandshape.

Figure 3.7: DNA relaxation assay. From the right, different shape of DNA arevisualized at electronmicroscopy and on agarose gel electrophoresis. Supercoiledplasmidmigrates faster than relaxed. If DNA is incubated with an active enzymetopoisomerswereproducedasreportedinleftsideofthefigure.

According to their nature, supercoiled DNA topoisomers migrate faster

comparedto linearDNAorrelaxedDNA.WhensupercoiledplasmidDNAis

incubatedwithanactiveeukaryoticDNAtopoisomeraseI,DNAtopoisomers

weregenerated.

MATERIALS:

negativelysupercoiledplasmidDNAs;

10XTBEbuffer:0.89MTris‐borate,20mMEDTA,pH8.0;

6X Loading Buffer : 30% Ficoll (type 400), 0,1% bromophenol blue, 0,1%

xylenecyanol;

gelelectrophoresisapparatus;

EtBr:10mg/mldissolvedindH2O.

1% agarose solutionwas prepared, and before casting the gel the solution

wasslowlycooled.Thegelwassetandafteritspolymerization,thecombwas

Page 79: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

65

removedandinserted inthegelelectrophoresisapparatuswith1XTBE.6X

loadingbufferwasadded toDNAsampleandafter the loadingavoltageof

140voltsfor5hourswasset.Abufferrecirculationwithaperistalticpump

allowedauniformandmorestablemigration.

Gelwasstainedin1‐2LdH2Ocontaining0.5µg/mlEthBrfor30minutes,and

destainedfor20minutesindH2OtoimprovevisualizationoftheDNAbands.

EtBrstainedDNAwasvisualizeddirectlywithaUVtransilluminator.

3.21DNATop1pInvitroactivityassay

MATERIALS:

10XTopoisomerasereactionbuffer;

1‐2MKCltoafinalKClconcentrationofinterest;

positevely/negatevelyDNAplasmidsubstrate(300ng);

purifiedtopoisomeraseenzyme;

dH2O

96‐wellsplate;

Phenol:Chloroform:Isoamyl Alcohol 25:24:1 saturated with 10mM Tris

pH8.0,1mMEDTASigma.

All reagentsexcepted theenzymewereadded in thereactionmixand27µl

for each samplewere aliquoted.Then3µl of thepreviouslydilutedprotein

were added and incubated at 370C for 1 hour. Each fraction was already

diluted1:2glycerolafterpurificationstepandsameconcentrationwasused

inthisinvitroassay.

Then sampleswere treatedwith 1:1w/v phenol:chloroform then vortexed

for 30 seconds and centrifuged for 3min at 14000 rpm. The visible lower

phase of each sample was discarded bymicro‐pipetting. To the remaining

volumesamples6Xloadingbufferwereadded,thenloadedina1%agarose

gelandrunin2XTBEfor4hoursat140volts.

Page 80: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

66

3.22DNACleavageassays

MATERIALS:

pBlueScriptAK3‐1;

AseI(5µl,10U/µl,NewEnglandBiolabs);

NEBuffer3:100mMNaCl,50mMTris‐HCl,10mMMgCl2,1mMditiotreitol

pH7,9;

SspI(5µl,10U/µl,NewEnglandBiolabs);

NE Buffer SspI: 100 mM NaCl, 50 mM Tris‐HCl, 10 mM MgCl2, 0,025%

TritonX‐100pH7.5;

T7DNApolymerase(13U/µlSequenasefromUSB);

Acrylamidesolution:40%acrilamide:bis‐acrylamide;

10%ammoniumpersulfate;

10XTBEbuffer;

6X Loading buffer: 30% Ficoll ( type 400), 0,1% bromophenol blue, 0.1%

xylenecyanol;

3MNH4OAc;

100%Ethanol;

Deoxyribonucleotides:100mMsolutionsofdCTP,dGTP,dTTP;

α32P‐dATP;

Phenol:Chloroform:Isoamyl Alcohol 25:24:1 saturated with 10mM Tris

pH8.0,1mMEDTASigma;

10XG‐Buffer:20mMTris,pH7,5,10mMMgCl2,0,1mMEDTA,50mMKCl,

50µg/mlgelatine;

10%SDS;

ProteinaseK:20mg/mlindH2O;

DMSOSigmaAldrich;

Camptothecin:4mg/mldissolvedinDMSO;

Samplebuffer:38%formamide,8mMEDTA,2mg/mlbromophenolblue,2

mg/mlxylenecyanol;

Acrylamyde/Ureagelmix:7,6%acrylamide,0,4%bis‐acrylamide,7MUrea,

0,1MTris‐Borate,pH8,2mMEDTA;

Fixer:10%aceticacid,10%methanol.

Page 81: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

67

Linearsubstratepreparation

10µgofpBlueScriptAK3‐1plasmidwasdigestedbyAseIenzymefor120min

at37oC,inbufferNE3solution.Thenendsweretreatedwith10unitsofT7

Sequenase,1,25mMnucleotides,50µCiof32P‐dATPfor15minutesat370C.

DNA was processed with an equal volume of phenol:chloroform and

precipitatedwith1/10volumeof3Msodiumacetateand3volumesof100%

ethanolovernightat‐200C.

After centrifugation at 14000 rpm for 30minutes, pelletwaswashedwith

70%ethanol.

When it was dry, 43 µl of dH2O, 5 µl of 10X NE buffer SspI, 2 µl of SspI

enzymewere added and resuspended. Incubationwas set at 370C for 120

min.

DNAwasthenprecipitatedovernightandpelletagainresuspendedin30µl

gelloadingbufferanddH2O.

DNA was loaded in 5% non denaturing polyacrylamide gel and

electrophoresedin1XTBEat300Voltsfor2,5hours.

Radiolabeledbandcorresponding toa900bp fragmentswasextractedand

incubated with 1 ml of 3M sodium acetate at 370C in gently shaking

overnight.ThenDNAwasprecipitedovernightandpelletwasresuspendedin

dH2Otoafinalconcentrationabout50000cpm/µlmeasuredbyβ‐counter.

Cleavagereaction

DNAcleavagereactionwaspreparedwithDNAtopoisomeraseImixedwith

single‐endlabelledDNAsubstrate(5000cpm)and5µl10XGbufferina50µl

finalvolume.Rectionswereperformedat50mMKClinpresenceofDMSOor

50 µM CPT. Proteins were treated with DTT 10 mM before adding the

substrate.Incubationofthereactionswassetto370Cfor30minandstopped

at750Cfor10minwith5µlof10%SDStotrapthecovalentcomplex.1µlof

proteinaseK(5mg/ml)wereaddedtoallowdigestionofcovalentlyattached

protein with an incubation at 370C for 15 min. Then DNA was ethanol

precipitated,pelletwasthendissolvedin200µlof1XTEbufferandrepeated

oncetheprecipitation.

Page 82: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

68

Finallypelletwas resuspended in6µl of the formamide containing sample

buffer and incubatedat950C for5min todenature theDNA fragment [29]

[140][141].

DNA cleavage products were resolved in a 8% denaturing polyacrylamide

gel,runat100Wattsfor1,5handvisualizedwithaPhosphorImager.

3.23Timecourseactivityassay

MATERIALS:

negatively/positivelysupercoiledplasmidDNAs;

10XTBEbuffer:0.89MTris‐borate,20mMEDTA,pH8.0;

6X Loading Buffer: 30% Ficoll (type 400), 0,1% bromophenol blue, 0,1%

xylenecyanol;

agelelectrophoresisapparatus;

EtBr:10mg/mldissolvedindH2O.

A reactionmixwasprepared considering27µl for each sample reaction. In

order DNA of interest 300ng, KCl in proper concentration to reach the

interested salt condition, topoisomerase 1X reaction buffer, dH2O were

added. Finally equal concentration of enzymes, 3µl in volume for each

reaction,weresuspended.Theassaywascarriedoutat370C,30µlaliquots

were produced at 15”‐ 30”seconds– 1’ – 2’‐ 4’‐8’‐16’‐30’ minutes. The

reactionswerestoppedbyaddingSDS2,5%w/v.Sampleswerethenloaded

on2%agarosegel[142]andanalyzed.

3.24DoubleDNAtopoisomerizationassay

MATERIALS:

10XTopoisomerasereactionbuffer;

1‐2MKCltoafinalKClconcentrationofinterest;

300ngnegatevely/positevelysupercoiledDNAplasmids;

dH2Otoafinalvolumeof30µl;

Page 83: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

69

6X Loading Buffer: 30% Ficoll (type 400), 0,1% bromophenol blue, 0,1%

xylenecyanol;

10%SDS;

EtBr:10mg/mldissolvedindH2O.

Similarlytoinvitroactivityassay,reactionmixwereprepared,andincubated

at370Cfor30min.Thenhalfvolumealiquotwastaken,300ngofadifferent

DNA plasmid were added to the rest of the sample volume. Second step

reactionwasincubatedat370Cforother30min.Allreactionswerestopped

by theadditionof2,5%SDSand1Xsample loadingbuffer.Finally, samples

wereloadedon2%agarosegelsandanalyzedafterincubationinEtBr.

3.25MolecularDynamicssimulations(MD)

ThestartingcoordinateswereextractedfromthoseofDNAtopoisomeraseI

obtained from x‐ray diffraction (PDB entry 1A36) [17]. The spatial

environment and stereochemical regularization of the structures were

produced by the Powell minimization method implemented in the SYBYL

program(Tripos Inc., St.Louis,MO).Themutantwasobtainedbychanging

theresidueR‐434 intoalanine.Modelswerebuilt formutantandwildtype

and the molecular mechanics were carried out on a Silicon Graphics O2

R5000SCusingtheversion6.2oftheSYBYLprogram.Thesystemtopology

was generated using the AMBER leap module and the AMBER95 all atom

force field. The system was simulated in periodic boundary conditions, a

cutoff radius of 9Å for the non‐bonded interactions was used and the

neighborpairlistwasupdatedevery10steps.Electrostaticinteractionswere

calculatedwiththeParticleMeshEwaldmethod.TheSHAKEalgorithmwas

usedtoconstrainallbondlengthsinvolvinghydrogenatoms[149].Tobetter

quantify the mobility of the mutated residue, MD conformations were

superimposed over the three‐dimensional structure of the DNA‐Top1

covalentcomplex.

Page 84: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

70

Page 85: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

71

4.RESULTS4.1ExpressionandpurificationofhTop1p,htop1P431G,htop1R434A,

htop1R434C,htop1W205C.

ProteinswerepurifiedfromgalactoseinducedEKY3cells,transformedwith

YCpGAL1‐TOP1, YCpGAL1‐top1P431G, YCpGAL1‐top1R434A, YCpGAL1‐

top1R434CandYCpGAL1‐top1W205C.

The specific activity was measured for each sample with a plasmid DNA

relaxationassay.Theresultsareshowninfigure4.1.

Fig.4.1:Relaxationassayofyeastcellextracts.Controlsample(lane1),hTop1p(lane2–3),htop1P431G(lane4‐5‐6),htop1R434A(lane7‐8),htop1R434C(lane9‐10‐11),htop1W205C(lane12‐13).

Norelaxationactivitywasassociatedinlane1‐8‐9‐10‐11‐12‐13.Asexpected

the control sample (lane 1) indicates the DNA substrate and no enzyme is

addedinthereactionmix,whilerelaxationactivitywasobservedinlane2‐5‐

6‐7 and in a lowermanner in sample3 and4.Aliquots showingmaximum

abilitytorelaxtheDNAsubstratewereselectedandanalyzedbySDS‐PAGE

andWesternBlotprocedures.

4.2Colloidalcoumassiestainingandwesternblotanalysis

AfterproteinpurificationsthebiochemicalfeaturesofhTop1p,andmutants

htop1P434G,htop1R434Awereanalyzedwitha10%SDSpolyacrylamidegel

andproteinsvisualizedbycolloidalcoomassiestaining(Fig.4.2).

Page 86: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

72

Fig.4.2: Equal amounts of wild type hTop1p (lane1), and mutants htop1P434G(lane2), htop1R434A (lane3) were analyzed by SDS‐PAGE and visualized bycolloidal coumassie staining a) and western blot analysis b). The marker (M) isrepresentendattherightofthefigure.As reported a single band is shown for each sample at the expected size,

approximately90KDaasindicatedbythemarker.

These results were also confirmed with Western Blot analysis using the

specific antibody recognizing the FLAG epitope engeneered in the human

topoIvectorandreportinghighpurifiedenzymes.

4.3Invivodrugyeastsensitivityassay

In order to reach informations about viability and CPT citotoxicity, hTOP1,

htop1P431G,htop1R434Aandhtop1R434Cproteinswereexpressedinyeast

strains top1Δ (EKY3)under the induciblepromoterofgalactoseGAL1ona

singlecopyARS/CENplasmid(fig.4.3a),asalsoreported in“materialsand

methods”. EKY3 yeast strain, deleted of the endogenous topoisomerase, is

CPTresistant[141],thereforeexpressionofexogenousenzymeisnecessary

tovaluateCPTsensitivity.

As shown in figure 4.3 b‐c yeast cells expressing each of the DNA

topoisomeraseconstructwereviablewhenplatedintoselectivesolidmedia

added with 2% dextrose. In this condition there was no expression of

exogenousDNA topoisomerase. Inpresenceofgalactose in selectivemedia,

Page 87: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

73

Gal1promotorinducedtheexpressionofdifferentTop1pmutants.Thewild

type grewnormally on control plates and showed lethalitywhen plated in

presenceofCPT(inallconcentrationsusedb‐c).Tyr723mutantmutatedto

Phe(Y723F)exhibitedaslowgrowingphenotype(fig.4.3b)andCPThadno

effectonthesecells.ProteincanonlybindtheTop1‐DNAbutisdefectivein

DNAcleavage.Probablytheoverexpressionoftheinactiveproteininterferes

with the biological process. Furthermore YCP50 the vector control, and

T729EaknownCPTresistant[129]mutantsareusedaspositivecontrol(fig.

4.3 b). EKY3 strains expressing htop1W205C showed a partial resistance

phenotype to the drug while mutations at P431 and R434 reported a not

viablephenotypeinpresenceof0,5‐1µg/mlCPT.

Fig.4.3:InvivodrugyeastsensitivityassayExponentialculturesofEKY3(top1Δ)cells transformedwithYCpGAL1‐hTOP1 plasmid a) andwith vector control YCp50,YCpGAL1­htop1Pro431Gly, hTop1Arg434Ala, hTop1Arg434Cys andhTop1Trp205Cys, YCpGAL1­htop1Tyr723Phe [a known slow grow mutant] andYCpGAL1­htop1Tyr723Glu [a known positive control mutant for CPT resistant] b)were serially10‐folddilutedand spottedontoSC‐uracilplates supplementedwithdextrose (Dex) or galactose (Gal) and as indicated CPT concentration (high drugdose).c)AnalteredCPTsensitivitywasshownbyhtop1W205CandR434mutantswhen expressed in yeast in presence of low CPT doseCell viability was assessedfollowingincubationat300C

Page 88: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

74

To further investigate these first results, the effect of the expressionof the

singlemutatedproteins(P431G,R434A,R434C,W205C)oncellviabilityand

CPTcitotoxicitywereassayedatlower0,5µg/mldrugdoses.Asreportedin

figure4.3c,substitutionsatR434A,R434C,W205Cshowedavitalphenotype

andacamptothecinresistancetoconcentrationbelow0,1µg/mlCPT.While

expressionofhtop1P431Gproteinconfirmedalethalphenotypeinpresence

ofthedrugalsoatlowerCPTconcentrations(fig.4.3b‐c).

SinglemutationatR434substitutedby thealaninecould interferewith the

correct closure of the enzyme, modifying the right positioning around the

DNAandorpertubatingtheCPTinterationinthepocketstructure.

4.4DNACleavageAssay

Investigating CPT sensitivity for each mutant, the stability of the covalent

complexformationwasanalyzed(fig.4.4).

Fig.4.4DNAcleavageassay:Top1cleavesthesinglestrandoftheDNAbyformingareversibilephosphotyrosyl linkage.CPT inhibits theresolutionof thisTop1‐DNAcomplex,increasingthestabilityofthesecovalentintermediates.

Page 89: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

75

EqualconcentrationsofhTop1p,htop1P431G,htop1R434A,htop1R434Cand

htop1W205Cproteinswere incubatedwithasingle900bp32P‐end‐labeled

DNA fragment in absence or presence of CPT for 30 minutes at 370C(Fig.

4.4.1). Then reactions were stopped by addition of 1% SDS allowing the

trappingof thecleavablecomplexes.CleavedDNAfragmentswereresolved

in adenaturingpolyacrylamide gel as reported in “matherials andmetods”

section.

Fig. 4.4.1: DNA Cleavage Assay Equal concentrations and activities of purified

hTop1 proteins were incubated with a single 3’ 32P‐end‐labeled 900 pb DNA

fragment, in presence of the inhibitor DMSO or 50 μM CPT. Reactions were

incubated for 10 min at 37 0C and stopped with 1 SDS % to trap the covalent

complex, then DNA cleavage product were resolved in 8% denaturing

polyacrilamide gel and visualizedwith a PhosphorImager. C indicates the control

samplewithnoenzymeinthereaction.Theasteriskreportedthepositionofahigh

affinitycleavagesite.

Page 90: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

76

Therefore, cleaved DNA fragments distribution give information about the

contributionofasinglemutationonthecovalentenzyme‐DNAintermediates

and if or not was CPT induced. When hTop1 protein was incubated in

absenceofCPT,nocleavageofthelabeledDNAstrandwasdetected

However, when the same protein was exposed to the drug, a dramatic

increaseincleavedDNAfragmentswasobserved.Sameresultwasreported

forhtop1P431Gsuggesting that thismutant isnot resistant toCPT invitro.

Forwhatconcernshtop1R434A,htop1R434Candhtop1W205Cadecreasing

incovalentcomplexformationswereobservedinpresenceofthedrug.The

extent of cleavage correlates with in vivo drug resistance of the R434 and

W205mutants,showingareductionofcleavablecomplexformation.

Mutationsanalyzedat thehingeregionareresponsible for thealteration in

thebindingoftheproteinwiththeDNAanddruginteraction.

4.52Dgelassay:positiveandnegativesupercoiledplasmids.

Positive supercoiled DNA substrates were generated and assayed for next

experiments.As already reported in “Materials andMethods” anenzymatic

approachwasusedtoobtainpositivesupercoils.

Tocomparetherelaxationofpositivelyandnegatevelysupercoiledplasmids

bypurifiedproteinsofinteresta2Dgelassaywascarriedonasreportedin

figure4.5.

Fig. 4.5: 2D gel assay of a 3000 Kbp DNA plasmid. Topoisomers wereelectrophoresedwithoutintercalatorduringfirstdimension(1Dleftside)andwithalowintercalatorconcentrationduringtheseconddimension(2Drightsideofthefigure). The intercalator in 2D differently separated negative topoisomers frompositiveonesasshowedbypinkarrows.

Page 91: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

77

PositivelysubstratewaspreparedbyincubatingnegativelypBSplasmidwith

reverse gyrase, where negatively supercoiled substrate was obtained by

Escherichia coli expression and purification, organism that naturally

maintains all DNA in an under‐wound state. 2D gel allowed to appreciate

different topoisomers of a negative or a positive substrate, as reported in

“materials and methods”. The intercalator ethidium bromide used in an

appropriateconcentrationintheseconddimensionreducedthetwistofthe

DNA (untwist the duplex) and consequently altered the gel velocity of

supercoiled topoisomers. The intercalator binds with different affinity the

negative and positive topoisomers. In particolar positive supercoiled

topoisomersbindethidiumbromidewithlessefficiencyrespectthenegative

ones. The different binding properties induce the separation of the two‐

topoisomerspeciesthatmigrateintheseconddimensionasanarc.

In figure 4.5 both supercoiled DNA species are shown. During the

experimental setup 300 ng of both supercoiled PBS DNAs were

spectrophotometrically measured and digested with HindIII, therefore

linearizedinordertomakesurethatequalamountsofsubstrateswereused.

Furthermore positively supercoiled plasmids bound ethidium bromide less

efficientlyandwerelessstainedthannegativelysubstrate.

4.6Invitroactivityassay

hTop1p activity was assayed in DNA relaxation catalyzed reaction. Equal

concentrations of purified hTop1, htop1P434G, htop1R434A, htop1R434C

and htop1W205C proteinswere incubatedwith negatevely (fig. 4.6 a) and

positevely (fig. 4.6 b) supercoiled PBS plasmid DNA at the indicated KCl

concentrations.

The different ionic strenght conditions allowed to performe the relaxation

assayandevaluatingtheaffinityrateofeachmutantforthedoublehelix.

It’swell‐knownthathighsaltconcentrationinhibitstopoisomerasecatalyzed

relaxationbyreducingthebindingwiththeDNA.

Page 92: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

78

Reactionswereincubatedat370Cfor30minutesandstoppedwith1%SDS.

Resultingproductswereresolvedin1%agarosegelasreportedinthefigure

4.5, stained with ethidium bromide and visualized with a BioRad Gel doc

system.

Fig.4.6: In vitro activity assay Limited amount of purified hTop1p,hTop1Pro431Gly, hTop1Arg434Ala, hTop1Arg434Cys and hTop1Trp205Cys wereserially 10‐fold diluted and incubated in DNA relaxation assays with 300 ngnegativelysupercoiledplasmidDNAa)andpositivelysupercoiledplasmidDNAb)atdifferentionicstrenght(from50to200mMKCl).Followingincubationat37°Cfor30min,thereactionproductswereresolvedin1%agarosegelsandvisualizedafterstainingwithethidiumbromide.Cindicatesnoenzymecontrol.

Page 93: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

79

Thereforetoinvestigateifmutationscouldalterthecatalyticreactionofthe

enzyme the specific activity was tested 10‐fold serially diluted. For what

concernsnegativesupercoiledDNAsubstrate(fig.4.6a),wild‐typeenzymeas

expected shows the optimal activity at 150mM KCl, while a reduction is

detectableforhtop1R434A,htop1R434Candhtop1W205C.Samebehaviour

wasobservedforhtop1R434Aatlowersaltconcentration(50mMKCl)while

no relaxation activity is detected for htop1P431G, htop1R434C and

htop1W205Catall.

At high ionic strenght condition (200mMKCl) htop1R434A protein is the

only showing the higher relaxation activity, the supercoiled amount

decreasedalsoat1/10dilution.

Theseresultssuggestadifferenceinactivitywhenalanineorcysteine,were

usedassubstitutionofR434.

Incubation with positive supercoiled PBS plasmid DNA showed that wild‐

typeenzymeconfirmedisoptimumrelaxationactivityat150mMKCl,butif

comparedtohtop1R434Aprotein,ahigherrelaxationactivityisreported.

Similarbehaviourwasdetectedat100mMKCl,1/100diluted,whereR434A

mutationenhanceditsrelaxationactivity.

Atlowerionicstrenght(50mMKCl)htop1pR434Arelaxedbetterthanwild‐

type,thiswassupportedby1/10dilutionresults.Nosignificantactivitywas

detected for other mutants at the same salt condition. At higher ionic

strenght(200mMKCl)theonlyrelaxationactivitywasreportedforhTOP1p,

htop1P431G and htop1R434A proteins, in this case mutants showed an

increasedcatalyticactivity.

4.7Invitroactivityassayathighionicstrenghtcondition

InordertoassesstheconditioninwhichmutantsrelaxsupercoiledDNA,in

figure4.7isreportedtheinvitroactivityrelaxationforthemostinteresting,

htop1P431G and htop1R434 proteins compared with the wild type. This

assaywascarriedonalsoat250mMKCl.

AsalreadyreportedmutationatR434positionwithanalanineaffected the

relaxation activity more than wild‐type and htop1P431G protein, and in a

Page 94: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

80

widerrangeofKClconcentration.Dashedredlineinthefigure4.7showeda

costant relaxation activity from 150 mM to 250 mM KCl, after incubation

withbothnegative(fig.4.7a)andpositive(fig.4.7b)DNAsubstrate.Instead

relaxationactivityofwild‐typeproteinwasappreciateduntil200mMKCl.

Fig.4.7: In vitro activity assay of purified hTop1p, hTop1Pro431Gly,hTop1Arg434Ala,serially10‐folddiluteda)b), incubatedinDNArelaxationassayswithnegativelysupercoiledplasmidDNAa)andpositivelysupercoiledplasmidDNAb)ThereactionsweretestedinpresenceoftheindicatedKCl.Followingincubationat 37°C for 30 min, the reaction products were resolved in 1% agarose gels andvisualized after staining with ethidium bromide. C indicates no enzyme control.DashedlinesinredshowthecontinuedhTop1Arg434AlaactivityinrelaxingDNA.

Supportedbytheseresults,thesaltconcentrationusedintheinvitroactivity

assay,wasextendeduntil1000mM,asreportedinfigure4.7.1.

Page 95: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

81

Fig.4.7.1: Relaxation activity of htop1R434A at high ionic strenght conditionwithpositive(leftside)andnegative(rightsideofthefigure)supercoiledDNA.Purifiedprotein,serially10‐folddilutedwastestedinpresenceoftheindicatedKClconcentrations in a range from200mM to 1000mM. Following incubation at 37°Cfor30min, thereactionproductswereresolved in1%agarosegelsandvisualizedafterstainingwithethidiumbromide.Cindicatesnoenzymecontrol.

Positively and negatively supercoiled DNAs were incubated with equal

amount of the purified htop1R434A protein and compared. The ionic

strength range from 200 mM to 1000 mM KCl was used as a variable

condition in the reactionmixture. Relaxation activitywas observable in all

experiments in 1/1 enzyme dilutions, both for negative and positive

substrates. All control samples represented the supercoiled plasmid DNA

wherenoenzymeincubationoccured.

Thesameassaywasalsoperformedwith5‐folddilutedproteins,comparing

htop1R434A with htop1R434C enzyme activities at high ionic strength

conditions(fig.4.7.2).

This allowed to investigate the crucial role of themutated residue and the

specificity deriving from the alanine or cysteine amino acid at the 434

position.

Page 96: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

82

Fig.4.7.2: Comparison between relaxation activity of htop1R434A andhtop1R434C. Purified proteins, 5‐fold diluted were tested in presence of theindicatedKClconcentrationsfrom500mMto1000mMwithnegativelysupercoiledDNA (SC‐). Following incubation at 37°C for 30 min, the reaction products wereresolvedin1%agarosegelsandvisualizedafterstainingwithethidiumbromide.Cindicatesnoenzymecontrol.

4.8Timecourseactivityassay

Inordertoapprecciatedifferencesinthecatalyticprocessforbothwild‐type

andmutant proteins, a time course activity assaywas performed. At fixed

times:15 ,30seconds,1,2,4,8,16minutesreactionswerestoppedbythe

addition of 1% SDS. This assay is similar to the in vitro activity one,

supercoiledplasmidDNAwasincubatedwithenzymeat370C,thenaliquots

werecollectedattheindicatedtimes.

ExperimentwassetupincubatingbothexcessandlimitedamountofhTop1

proteininthereaction(fig.4.8).

TimecourseassaywascarriedoninoptimalKClcondition(150mM)ina4‐

molarexcessofDNAsubstrate (limitedamountofprotein), and in4‐molar

excessofprotein(limitedamountofDNA).

Asexpectedinpresenceofproteinexcess,wild‐typeenzymeperformedthe

completerelaxation,oneormoreenzymeswereprobablyboundtoasingle

DNAmolecule.

SamebehaviourisobservableforbothnegativeandpositivesubstrateDNA,

15secondsweresufficienttorelaxsupercoils.

Page 97: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

83

Fig.4.8:Timecourseinvitroactivity,excessandlimitedamountofpurifiedwild‐typeenzymewasusedtosetuptheassay.Reactionswereincubatedwithnegatively(SC‐) and positively (SC+) supercoiled DNA at 37 OC and then stopped at theindicatedtimesatthetop.

In excess of plasmid DNA, hTop1 protein relaxed the negative substrate

almost to completion after 1 minute, and after 2 minutes in presence of

positivesupercoiledDNA.

Thissuggeststhatassociation/dissociationoftheenzymeistheratelimiting

step of the relaxation. In this condition it’s possible to appreciate enzyme

activity:dissociatingfromarelaxedplasmidandbindinganewsupercoiled

substrate.

4.8.1Timecourseactivityassaywithexcessofproteins

Theactivityofpurifiedenzymesatshortertimeswasalsoreportedforother

mutantsinproteinexcess.

Asreportedinfigure4.8.1hTop1p,htop1P431G,htop1R434A,htop1R434C,

htop1W205Cproteinswereincubatedwithnegativesupercoils(SC‐)and150

mMKClat370Candanalyzedafterstoppingreactionsatindicatedtimes.

Page 98: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

84

Fig.4.8.1:Timecourserelaxationassaywithexcessofproteins.Purifiedwild‐type, htop1P431G, htop1R434A, htop1R434C and htop1W205C proteins weretested and collected at fixed time as reported up of the figure. C representes thecontrol for the reactionswherenoenzyme incubationoccurs.DNArelaxationwasasseyed in a 4‐molar excess of protein and incubated with PBS negatively (SC‐)supercoiledDNA.

Inthisconditiontheenzymedissociationratefromthesubstrateisnolonger

the limiting stepbetween thewild type andmutants.OnlyhTop1p relaxed

completely supercoiled DNA after 30 seconds. Moreover, among purified

mutants the most active was htop1R434A, after 8 minutes performed the

complete relaxation, but then, also htop1P431G showed same activity.

Instead less activity was observed for htop1R434C and htop1W205C

proteins,whichdidn’treachthesupercoiledrelaxationalsoafter60minutes

(fig.4.8.1).

4.8.2Timecourseactivityassaywithlimitedamountofproteins

Limited amount of hTop1, htop1P431G and htop1R434A proteins were

incubatedwithnegatevely (SC‐) andpositevely (SC+) supercoiledwith150

mMKCl,at370Casreportedinfigure4.8.2.

Page 99: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

85

Figure 4.8.2: Time course relaxation assaywith limited amount of proteins.Purifiedwild‐type,htop1P431Gandhtop1R434Aproteinsweretestedandcollectedatfixedtimeasreportedupofthefigure.Crepresentesthecontrolforthereaction,where no enzyme incubation occurs. DNA relaxation was followed in a 4‐molarexcessofPBSnegatively(SC‐)andpositively(SC+)supercoiledDNA.

As demonstrated, the association/dissociation is rate limiting for DNA

relaxationand ispossible toappreciate thedisappearing in thesupercoiled

during time. htop1R43A protein is faster in realeasing supercoiled, after 2

minutes isabletocompleterelaxationofnegatevelysupercoiledifcompare

to thewild typeandmutantwith theprolineresidue.Themutantobtained

fromR434Asubstitution, showedalsoa fasterability inrelaxingpositevely

thannegatevelysupercoiledDNAifcomparedtootherenzymesasreported

in figure 4.8.2. After 30 seconds the complete relaxation of positevely

substratewasobserved.

4.9DoubleDNArelaxationactivity

It has been demonstrated that hTop1p activity exhibited a salt optimum

around150mManddeviationsfromthissuggestanincreasedordecreased

(if>150mMKCl)DNAbindingaffinity.

Page 100: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

86

Neverthelesshtop1R434Aproteinexhibiteda relaxationactivity inawider

range of KCl concentration, from 150mM to 1000mM. In order to better

understandhowhtop1R434Aproteincatalyzestherelaxationactivityalsoat

highsaltconcentration,adoubleDNAassaywasperformedasdescribed in

“materials and methods”. The in vitro activity assay was modified by the

additionofasecondsteptotheprocess.

FirstproteinwasincubatedwithAK31,supercoiledplasmidDNAfor30min

at370C, thenanhalfaliquotwascollectedandstopped.Then, totherestof

themixtureanappropriateamountofPBSsupercoiledDNAwasaddedand

incubatedforother30minat370C(fig.4.9‐1).

Thiswasalsoassayedforwild‐typeproteinandinreversablecondition:first

PBS then Ak31 DNA substrate were added for the incubation (fig.4.9‐2),

moreovernegative (Fig4.9 a) andpositive (fig. 4.9 b) supercoiledDNA for

bothassayswasalsotested.Processivityanddistributivityforbothenzymes

weretestedatlow(50mM),optimal(150mM)andhigh(500and1000mM)

saltconcentration,asreportedinfigure4.9.

Asexpectedwildtypeshowedprocessivebehaviourat150mM,distributive

at50mMandnorelaxationactivitywasobservedat500mMand1000mM

KCl. Otherwise htop1R434A protein showed to be distributive starting at

50mMKClandbecomingmoreprocessivityassaltconcentration increased.

Thiswas supported by the visible and continous relaxation activity during

the two steps reaction. The addition of the second DNA substrate even if

Ak31orPBSforfirst,didn’tinterferewiththetopoisomerasemutantactivity,

suggestingdifferentwayinwhichinteractionwithDNAcouldoccured.

AthighsaltconditionandinthesecondstepofincubationandbothDNAsare

present in the mixture, the activity appeared very processive and no

supercoiledwasdetected.Moreoverwhenpositivelysupercoiledsubstrates

were used, no appreciable differences were observed compared with the

negativeplasmidDNAs.

Page 101: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

87

Fig.4.9: Double DNA relaxation activity: purified hTop1p and hTop1Arg434AlawereincubatedintwostepsDNArelaxationassayswithtwonegativelysupercoiledplasmidsDNA a) andpositively supercoiled plasmidsDNAb) at the indicatedKClconcentration. First three columns indicate control DNAwith no enzyme for eachreaction,AstandsforAK31,PforPBSandAPwhenbothDNAswereused.1)Firststep:reactionswereincubatedwithAK31,followingincubationat37°Cfor30minaliquotswerecollected.Secondstep:additiontothereactionofanequalamountofDNA PBS and incubation at 37°C for 30 min. 2) The addition of two DNA werereversed,firstlyPBS,thenAK31wereused.Thereactionproductswereresolvedin1%agarosegelsandvisualizedafterstainingwithethidiumbromide.DashedlinesinredshowthecontinuedhTop1Arg434AlaactivityinrelaxingDNA.

Inadditiontotheseresults,thisexperimentwasalsotestedwithanegative

andapositivesupercoiledsubstratemixedtogetherinthereaction(fig.4.9.1

b)andcomparedwiththepreviousresults(fig.4.9.1a).Datawereshownat

lowandhighsaltconditions.

Page 102: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

88

Fig.4.9.1: Comparison beetween double DNA relaxation activity with negatevelysupercoiled DNA substrate a) and the same procedure reaction using firstly anegatively DNA supercoiled then a positively one, as indicated b) Assays werereportedat50and1000mMKClandinreversablecondition.AstandsforAK31,Pfor PBS and (‐) when negatively supercoiled DNA and (+) when positivelysupercoiledDNAwereused.C indicatesnoenzymecontrol.Thereactionproductswere resolved in 1% agarose gels and visualized after staining with ethidiumbromide. Dashed line in red shows the continued hTop1Arg434Ala activity inrelaxingDNA.

Nodifferenceswereobservablefortherelaxationactivity,theswitchfroma

negative to apositive supercoiled, and theopposite reaction, didn’t change

theresults.

Wild‐type protein relaxed supercoiled DNA only at 50 mM of salt

concentration, while mutant interacted with all kind of substrates and

conditions.

4.10MolecularDynamicssimulations(MD)Inorder to investigate thepossible structuralpropertiesunderlinedby the

experimentaldatafortheR434Amutation,asimulativeapproachewasalso

performed. Since the overall structure is maintained through‐out the

simulationtime,thesecondarystructuresofeachaminoacidresidueforboth

wildtypeandhtop1R434Aproteinwereobtainedandfullymaintained(fig.

4.10).

Page 103: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

89

Fig.4.10HTop1pandhtop1R434Asecondarystructuresasafunctionoftime.SecondarystructuresforWildtype(leftside)andmutatedhtop1R434A(rightside)proteins are reported.α‐helix, 3.10 helix, random coil,β‐sheet, turn andbend arerepresented in blue, grey, white, red, yellow, green respectively, as shown. Blackarrowsindicaterelevantvariationsbetweenproteindomains.

Asreportedinthefigure4.10ispossibletovisualizeseveralvariations(black

arrows) between the two secondary structures. These are observed at the

leveloftheN‐terminaldomain(around700residue),butalsoaround540–

434 positions and below 300 residues. Moreover root mean square

fluctuations (rmsf) as a function of residuewasmeasured, and revealing a

different behaviour for wild type and mutated protein (fig. 4.10.1). This

method allows to valuate the conformational space visited by each residue

duringtime.

Page 104: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

90

Fig.4.10.1Rootmeansquarefluctuations(rmsf)asafunctionofresiduesWildtype and htop1R434A proteins are represented in black and red respectively.Arrowsindicatethemostimportantdeviationsbetweenthetwosamples.

ThemutatedproteinshoweddifferencesaroundtheN‐terminaldomain(214

residue); the subdomain I (319‐330 residues) and the subdomain III (512‐

525residues)ifcomparedtothewildtype.

The simulation model also showed a large conformational change in the

"nose cone" region and on the tip of the linker domain. This is quite

interestingsince these tworegionsaresupposed toregulate thevelocityof

DNArelaxation.

Page 105: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

91

5.DISCUSSIONANDCONCLUSIONS

DNA topoisomerases arenot only fascinating examples of natural selection

but also important tools for clinical therapy [149]. Thanks to their action

differenttopologicalstateofDNAmoleculearecontrolled.

The analysis presented in this work has been focused on this direction,

investigatingfunctionalandstructuralcontributeofsomeresidueslocatedin

theflexiblehinge(429‐436residues)regionandsurroundingdomains.Single

mutated proteins (P431G, R434A, R434C, W205C) were studied, it has

already been reported interactions between the Trp‐205 and His‐346 and

Gly‐437 at the level of the hinge [24]. Moreover according to Sari and

Andricioei analyses, in 2005, the strechting movements of this region

reportedacontributetothenegativesupercoilsrelaxation.Carryingonthein

vitro time course activity assay hTopIBmutantswere incubatedwith both

positive and negative supercoiled and a stronger affinity of R434A and

P431G mutants for positive substrate was reported if compared to the

negative supercoils relaxation. The reactions were performed considering

theassociation/dissociationasratelimitingforreactionandlimitedamounts

of proteins were used. Other mutants (W205C and R434C) didn’t show a

better performance in relaxing DNA than the wild type enzyme, probably

affinityinbindingDNAwasaffectedduetomutations.

What iswell‐known from crystal structures analyses of hTopoIB bound to

DNAisthattherearenosufficientspaceforafreeDNArotationanddifferent

domains have to interacted one or more time, thus high flexibility of the

structure is required to allow DNA binding and the strand rotation. The

aminoacidic substitution of arginine with an alanine supposed to bemore

smoothlyandelongationoftheα‐helixofthehingecouldoccured.Moreover

aglycinemutatinginaprolineincreasedthestrechtingandflexibilityinthe

region where is located. Experiments were conducted in a range of ionic

strenght, assuring a folded protein during the in vitro topoisomerizzation

Page 106: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

92

processandvaluatingtherateofaffinityfortheDNAsubstrate.Whatiswell‐

know from literature is that an optimal salt concentration for wild‐type

purified protein is 150 mM KCl, in this condition a distributive catalyzed

reactionisobserved,whileatbothhigher(>150mMKCl)andlower(50mM

KCl) ionic strenght the processivity of the event can be appreciated. As

expected intheexperimentsshown,wild‐typeexerts themostrelaxationat

150mM KCl, and this was also reported for htop1P431G, htop1R434C and

htop1W205Cmutants,thentheiractivitiesstoppedat250mMKCl.Duringa

processive reaction, protein is capable to completely relax the substrate

withoutdissociating from it.Theresultsare inagreementwith thisbut the

onlyexception isobserved forhtop1R434Amutant that still relax tohigher

250 mM of salt concentration. The high salt concentration should inhibits

topoisomerase catalytic activity, buthtop1R434A relaxed both positive and

negative supercoils in a range from 50mM to 1000mM of ionic strenght.

Investigatingdistinctstrandrotationmechanismsforbothsupercoiledsigns,

htop1R43A protein reported a faster ability in releasing positive substrate

than negative compared to the wild‐type and other mutants. Indeed

htop1P431Gmutantshowedapreferentialactivityforpositivethannegative

DNAmolecule.ForbothmutationR434AandP431Gthedifferentaffinityfor

positive than negative substrate has to be identified in the structural

modifications occured at the hinge level. Other mutations showing a

decreasedintheabilitytobindDNA,confirmthekeyroleofthe434and431

residues in the strand rotation mechanism. The greater affinity for DNA

molecule has been investigated with a multiple assay, where purified

htop1R434Aproteinwas firstly incubated for30minuteswitha typeDNA,

thenhalf an aliquotwas collectedand to the rest of the tubemix a second

DNA smallest in size was added and incubation stopped again after 30

minutes. A visible and continous relaxation activity during the two step

reactionswasreported.ThissuggeststhatR434Amutantisabletodissociate

from the first DNA and to bind the new one, added in the mixture, no

Page 107: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

93

supercoiledsubstratewasdetectedinallreactionsanalyzed.

Since human DNA topoisomerase IB is also a specific target of the most

clinically use, chemoterapeutic agent, thesemutantswere also investigated

forthecytotoxicmechanismmediatedbycamptothecin(CPT).

From one side the cleavage equilibrium assay, in presence of 50mM CPT,

suggests a clear camptothecin resistance of the htop1W205C protein, and

same pattern of cleavable complex formations was observed for wild‐type

and htop1P431G mutant, but on the other hand both mutations at 434

residue showed a decreasing in the cleavable complex if compared to the

wild‐type. It could be hypothesized that positions R434 and W205 are

stronglyaffectedby thedrug interaction, thus in vivoanalyses carryed ina

wide range of camptothecin concentrations, from 5 µg/ml to 0.01 µg/ml

allowed to investigate the functional poisoning of the human DNA

topoisomeraseIB.Interestinglywild‐typeandPro431Glymutatedyeastcells

showed a lethal phenotype after drug treathment, while mutated protein

reportingW205C,R434AandR434Csubstitutions,reportedaCPTresistance

to very low doses, below 0.1 µg/ml. These data were supported by the

cleavage equilibrium results where the camptothecin resistance was

apprecciatedfortheR434AandW205Cmutatedresidues.Fromagenetically

backgrounds,fromtumorcellstoyeaststrainsdeletedforsuchaimportant

checkpoint or DNA repair pathway, it has been reported any kind of

predition correlated betweenTop1protein levels anddrug response [149]

but camptothecin resistance observed in vivo viability assay for mutated

htop1R434A andhtop1W205C is strictly in agreementwith singlemolecule

experiments in yeast provided the Top1 positive supercoils accumulation

afterdrugtreathment.Moreoverit'ssupportedbytheabilityofhtop1R434A

mutanttorelaxfasterpositivesubstrate.Indeedmodelingsimulationanalysesindicatedalongrangecommunications

betweendifferent topoisomerasedomains.The singlemutation reportedat

R434 residue altered the linker domain and nose cone helices when a

Page 108: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

94

dynamic simulation is performed. The secondary structure data confirmed

thislong‐effectcommunicationduetostructuralchangingsatthelevelofkey

proteinregionduringDNArotation.

Fartoconsiderthemolecularsimulationadefinedtridimentionalstructure,

itisquiteinterestingtoobservethatthemajorconformationalchangesoccur

in the two region that are supposed to be very important in the control of

strandrotation.ThebiochemicaldataoftheR434Amutantsuchashighionic

strengthoptimumand the ability to relax fasterposituve supercoils, are in

reasonableagreementwiththealteredstructures.

All these data suggest that the hinge region could be indeed a topological

sensorcorrelatingthelinkerwiththeN‐terminaldomainsduringthestrand

rotationmechanism.

Page 109: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

95

6.REFERENCES

[1] Boles TC, White JH, Cozzarelli NR. Structure of plectonemicallysupecoiledDNA.(1990)JMolBiol.Jun20;213(4):931‐51;[2] Mirkin SM. DNA Topology: Fundamentals. (2001) Nature PublishingGroup,www.els.net;[3]Bliska JB,CozzarelliNR.Useofsite‐specificrecombinationasaprobeofDNAstructureandmetabolisminvivo(1987)JMolBiolMar20;194(2):205‐18;[4]ZachariasW,JawoskiA,LarsonJE,WellsRD.TheB‐toZ‐DNAequilibriuminvivo ispertubedbybiologicalprocesses. (1988)ProcNatlAcadSciU.S.A.Oct;85(19):7069‐73;[5]McClellan JA,BoublikovaP,PalecekE,LilleyDM.Superhelical torsion incellularDNArespondsdirectlytoenvironmentalandgeneticfactors.(1990)ProcNatlAcadSciU.S.ANov;87(21):8373‐7;[6] Dayn A, Malkhosyan S, duzhy D, Lyamichev V, Panchenko Y, Mirkin S.Formation of (dA‐dT)n cruciforms in Escherichia coli cells under differentenvironmentalconditions.(1991)J.Bacteriol.Apr;173(8):2658‐64;[7]GlaubigerD,Hearst JE.EffectofsuperhelicalstructureonthesecondarystructureofDNArings(1967)Biopolymers.5(8):691‐6;[8]WangJC.VariationoftheaveragerotationangleoftheDNAhelixandthesuperhelicalturnsofcovalentlyclosedcycliclambdaDNA.(1969)JMolBiol.Jul14;43(1):25‐39;[9] DepewDE,Wang JC. Conformational fluctuations of DNA helix. (1975).ProcNatlAcadSciU.S.A.Nov;72(11):4275‐9;[10]KellerW.Determinationof thenumberof superhelical turns insimianvirus 40 DNA by gel electrophoresis. (1975) Proc Natl Acad Sci U.S.A.Dec;72(12):4876‐80;[11] Wang JC Interaction between DNA and an Escherichia coli proteinomega(1971)JMolBiolFeb14;55(3):523‐33;[12]BidnenkoV,EhrlichSD,JanniereLInvivorelationsbetweenpAMbeta1‐encodedtypeItopoisomeraseandplasmidreplication(1998)MolMicrobiolJun;28(5):1005‐16;[13]Champoux JJ.DNAtopoisomerases: structure, functionandmechanism(2001).AnnuRevBiochem70:369‐413;[14]TimsitY.LocalsensingofglobalDNAtopology:fromcrossovergeometry

Page 110: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

96

to type II topoisomerase processivity. (2011). Nucleic Acids Res. Nov1;39(20):8665‐76;[15]WangJC.CellularrolesofDNAtopoisomerases:amolecularperspective.(2002).NatRev.Mol.Cell.Biol.Jun;3(6):430‐40;[16]RedinboMR,ChampouxJJ,HolWG.StructuralinsightintothefunctionoftypeIBtopoisomerases.(1999),JMolBiol292(3):685‐96;[17]RedinboMR,StewartL,KuhnP,ChampouxJJ,HolWG.CrystalstructuresofhumantopoisomeraseIincovalentandnoncovalentcomplexeswithDNA.(1998).Science279(5356):1504‐13;[18]MoYY,WangC,BeckWT.Anovelnuclear localizationsignal inhumanDNAtopoisomeraseI(2000).JBiolChem275(52):41107‐13;[19]BhartiAK,OlsonMO,KufeDW,RubinEH. Identificationof anucleolinbindingsiteinhumantopoisomeraseI(1996).JBiolChem271(4):1993‐7;[20]StewartL,IretonGC,ParkerLH,MaddenKR,ChampouxJJ.Biochemicaland biophysical analyses of recombinant forms of human topoisomerase I.(1996).JBiolChem271(13):7593‐601;[21]PalleK,PattarelloL,vanderMerweM,LosassoC,BenedettiP,BjornstiMA.Disulfidecross‐linksrevealconserved featuresofDNAtopoisomerase Iarchitecture and a role for the N terminus in clamp closure (2008). J BiolChem283(41):27767‐75;[22] Haluska P Jr, Rubin EH. A role for the amino terminus of humantopoisomeraseI(1998).AdvEnzymeRegul38:253‐62;[23]LeppardJB,ChampouxJJ.HumanDNAtopoisomeraseI:relaxation,roles,anddamagecontrol(2005).Chromosoma114(2):75‐85;[24] Redinbo MR, Campoux JJ, Hol WG., Novel insights into catalyticmechanism from a crystal structure of human topoisomerase I in complexwithDNA.(2000)Biochemistry39(23):6832‐40;[25]ChillemiG,FioraniP,BenedettiP,DesideriA.Proteinconcertedmotionsin the DNA‐human topoisomerase I complex. (2003) Nucleic Acids Res.31(5):1525‐35;[26]Chrencik JE,StakerBL,BurginAB,PourquierP,PommierY,StewartL,Redinbo MR. Mechanisms of camptothecin resistance by humantopoisomeraseImutations(2004)JMolBiol,339(4):773‐84;[27] Stewart L, Ireton GC, Champoux JJ. Reconstitution of humantopoisomerase I by fragment complementation (1997), J Mol Biol,269(3):355‐72;

Page 111: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

97

[28] Stewart L, Ireton GC, Champoux JJ. A functional linker in humantopoisomerase I is required for maximum sensitivity to camptothecin in aDNArelaxationassay(1999).JBiolChem274(46):32950‐60;[29]FioraniP,AmatrudaJF,SilvestriA,ButlerRH,BjornstiMA,BenedettiP.Domain interactions affecting human DNA topoisomerase I catalysis andcamptohecinsensitivity.(1999)MolPharmacol56(6):1105‐15;[30] Fiorani P, Bruselles A, Falconi M, Chillemi G, Desideri A, Benedetti P.Single mutation in the linker domain confers protein flexibility andcamptothecin resistance to human topoisomerase I. (2003) J Biol Chem278(44):43268‐75; [31] Losasso C, Cretaio E, Palle K, Pattarello L, Bjornsti MA, Benedetti P.Alterations in linker flexibility suppress DNA topoisomerase I mutant‐inducedcelllethality.(2007)JBiolChem;282(13):9855‐64;[32] Chillemi G, Castrignanò T, Desideri A. Structure and hydration of theDNA‐humantopoisomerase Icovalentcomplex(2001)Biophys J81(1):490‐500;[33] Stewart L, RedinboMR, Qiu X, HolWG, Champoux JJ. Amodel for themechanismofhumantopoisomeraseI(1998),Science279(5356):1534‐41;[34]Champoux JJDNAtopoisomerase I‐mediatednickingofcircularduplexDNA(2001)MethodsMolBiol95:81‐7;[35]KosterDA,CroquetteV,DekkerC, ShumanS,DekkerNH,FrictionandtorquegoverntherelaxationofDNAsupercoilsbyeukaryotictopoisomeraseIB(2005),Nature,434(7033):671‐4;[36] Confalonieri F, Elle C, Nadal M, de La Tour C, Forterre P, Duguet M.Reverse gyrase: a helicase‐like domain and a type I topoisomerase in thesamepolypeptide(1993),ProcNatlAcadSciU.S.A.90(10):4753‐7;[37]ShibataT,NakasuS,YasuiK,KikuchiA,IntrinsicDNA‐dependentATPaseactivityofreversegyrase(1987)JBiolChem,262(22):10419‐21;[38]JaxelC,BouthierdelaTourC,DuguetM,NadalM.Reversegyrasegenefrom Sulfolobus shibatae B12: gene structure, transcription unit andcomparativesequenceanalysisofthetwodomains.(1996)NucleicAcidsRes24(23):4668‐75;[39] Nadal M, Mirambeau G, Forterre P, Reiter W‐D, Duguet M, Positivelysupercoiled DNA in a virus‐like particle of an archaebacterium, (1986)Nature321:256‐258;[40]NadalM.Reversegyrase:AninsightintotheroleofDNA‐topoisomerases

Page 112: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

98

(2007)Biochemie89(4):447‐55;[41] Bouthier de la Tour C, Portemer C, Huber R, Forterre P, Duguet MReversegyraseinthermophiliceubacteria(1991)JBacteriol,173(12):3921‐3;[42] Jaxel C, Nadal M, Mirambeau G, Forterre P, Takahashi M, Duguet M,Reverse gyrase binding to DNA alters the double helix structure andproduces single‐strand cleavage in the absence of ATP (1989) EMBO J8(10):3135‐9;[43]RodriguezAC,StockDCrystalstructureofreversegyrase:insightsintothepositivesupercoilingofDNA.(2002)EMBOJ21(3):418-26;[44]DèclaisAC,MarsaultJ,ConfalonieriF,deLaTourCB,DuguetM,Reversegyrase, the two domains intimately cooperate to promote positivesupercoiling.(2000)JBiolChem,275(26):19498‐504;[45] Capp C, Qian Y, Sage H, Huber H, Hsieh TS, Separate and combinedbiochemical activities of the subunits of a naturally split reverse gyrase(2010)JBiolChem285(51):39637‐45;[46] Lòpez‐Garcia P, Forterre P, Control of DNA topology during thermalstress in hyperthermophilic archaea: DNA topoisomerase levels, activitiesand induced thermotolerance during heat and shock in Sulfolobus (1999),MolMicrobiol33(4):766‐77;[47]ChristensenMO,KrokowskiRM,BarthelmesHU,HockR,BoegeF,MielkeC, Distinct effects of topoisomerase I and RNA polymerase I inhibitorssuggest a dual mechanism of nucleolar/nucleoplasmic partitioning oftopoisomeraseI(2004)JBiolChem279(21):21873‐82;[48]LeppardJB,ChampouxJJHumanDNAtopoisomeraseI:relaxation,roles,anddamagecontrol(2005)Chromosoma114(2):75‐85;[49]MaoY,MehlIR,MullerMT,SubnucleardistributionoftopoisomeraseIislinked to ongoing transcription and p53 status (2002) Proc Natl Acad SciU.S.A.99(3):1235‐40;[50]SøeK,DianovG,NasheuerH,P,BohrV,A,GrosseF,StevnsnerT,Ahumantopoisomerase I cleavage complex is recognized by an additional humantopoisomerase Imolecule in vitro (2001)Nucleic Acids Res,29(15): 3195–3203;[51] Søe K, Hartmann H, Schlott B, Stevnsner T, Grosse F The tumorsuppressor protein p53 stimulates the formation of the humantopoisomerase I double cleavage complex in vitro (2002) Oncogene21(43):6614‐23;

Page 113: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

99

[52] Christensen MO, Barthelmes HU, Boege F, Mielke C, The N‐terminaldomain anchors human topoisomerase I at fibrillar centers of nucleoli andnucleolar organizer regions of mitotic chromosomes (2002) J Biol Chem277(39):35932‐8; [53] Shaiu WL, Hsieh TS Targeting to transcriptionally active loci by thehydrophilic N‐terminal domain of Drosophila DNA topoisomerase I (1998)MolCellBiol18(7):4358‐67;[54]BermejoR,DoksaniY,CapraT,KatouYM,TanakaH,ShirahigeK,FoianiM, Top1‐ and Top2‐mediated topological transitions at replication forksensure forkprogression and stability andpreventDNAdamage checkpointactivation(2007)GenesDev21(15):1921‐36;[55] Abdurashidova G, Radulescu S, Sandoval O, Zahariev S, Danailov MB,Demidovich A, Santamaria L, Biamonti G, Riva S, Falaschi A. FunctionalinteractionsofDNAtopoisomeraseswithahumanreplicationorigin(2007)EMBOJ26(4):998‐1009;[56]FalaschiA,AbdurashidovaG,SandovalO,RadulescuS,BiamontiG,RivaMolecular and structural transactions at human DNA replication origins(2007)S.CellCycle.6(14):1705‐12;[57]ParkH,SternglanzR,Identificationandcharacterizationofthegenesfortwo topoisomerase I‐interacting proteins from Saccharomyces cerevisiae.(1999)Yeast15(1):35‐41;[58] Khopde S, Roy R, Simmons DT. The binding of topoisomerase I to TantigenenhancesthesynthesisofRNA‐DNAprimersduringsimianvirus40DNAreplication,(2008)Biochemistry47(36):9653‐60;[59]ArltMF,GloverTWInhibitionoftopoisomeraseIpreventschromosomebreakageatcommonfragilesites(2010)DNARepair(Amst)9(6):678‐89;[60]ClowerRV,HuY,MelendyT.PapillomavirusE2protein interactswithandstimulateshumantopoisomeraseI(2006)Virology348(1):13‐8;[61]HuY,ClowerRV,MelendyT.CellulartopoisomeraseImodulatesoriginbindingbybovinepapillomavirustype1E1(2006)JVirol80(9):4363‐71;[62]LiuLF,WangJC.SupercoilingoftheDNAtemplateduringtranscriptionProcNatlAcadSciU.S.A.(1987)84(20):7024‐7;[63] Tsao YP, Wu HY, Liu LF. Transcription‐driven supercoiling of DNA:directbiochemicalevidencefrominvitrostudies.(1989)Cell56(1):111‐8;[64] Avemann K, Knipper R, Koller T, Sogo JM. Camptothecin, a specificinhibitoroftypeIDNAtopoisomerase, inducesDNAbreakageatreplicationforks(1988)MolCellBiol8(8):3026‐34;

Page 114: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

100

[65]WangJC.DNAtopoisomerases.(1996)AnnuRevBiochem65:635‐92;[66]McClendonAK,RodriguezAC,OsheroffN.HumantopoisomeraseIIalpharapidly relaxes positively supercoiled DNA: implications for enzyme actionaheadofreplicationforks.(2005)JBiolChem280(47):39337‐45;[67]SalcedaJ,FernàndezX,RocaJ.TopoisomeraseII,nottopoisomeraseI,istheproficientrelaxaseofnucleosomalDNA.(2006).EMBOJ25(11):2575‐83;[68] Lebel M, Spillare EA, Harris CC, Leder P. TheWerner syndrome geneproductco‐purifieswiththeDNAreplicationcmplexandinteractswithPCNAandtopoisomeraseI.(1999).JBiolChem274(53):37795‐9;[69] Brill SJ, Sternglanz R. Transcription‐dependent DNA supercoiling inyeastDNAtopoisomerasemutants.(1988)Cell54(3):403‐11;[70] Merino A, Madden KR, Lane WS, Champoux JJ, Reinberg D. DNAtopoisomerase I is involved in both repression and activation oftranscription.(1993)Nature365(6443):227‐32;[71]RossiF,LabourierE,FornèT,DivitaG,DerancourtJ,RiouJF,AntoineE,Cathala G, Brunel C, Tazi J. Specific phosphorylation of SR proteins bymammalianDNAtopoisomeraseI.(1996)Nature381(6577):80‐2;[72] Pommier Y, Kerrigan D, Hartman KD, Glazer RI. Phosphorylation ofmammalianDNAtopoisomeraseIandactivationbyproteinkinaseC.(1990)JBiolChem265(16):9418‐22;[73]YuD,KhanE,KhalequeMA, Lee J, LacoG,KohlhagenG,Kharbanda S,ChengYC,PommierY,BhartiA.PhosphorylationofDNAtopoisomeraseIbythec‐Abltyrosinekinaseconferscamptothecinsensitivity.(2004)JBiolChem279(50):51851‐61;[74] Anderson RD, Berger NA. International Commission for ProtectionAgainst Environmental Mutagens and Carcnogens. Mutagenicity andcarcinogenicity of topoisomerase‐interactive agents. (1994) Mutat Res309(1):109‐42;[75] Rosenstein BS, Subramanian D, Muller MT. The involvement oftopoisomeraseIintheinductionofDNA‐proteincrosslink’sandDNAsingle‐strand breaks in cells of ultraviolet irradiated human and frog cell lines.(1997)RadiatRes,148(6):575‐9;[76]BullockP,ChampouxJJ,BotchanM.Associationofcrossoverpointswithtopoisomerase I cleavagesites: amodel fornonhomologous recombination.(1985)Science,230(4728):954‐8;[77] Zhu J, Schiestl RH. Human topoisomerase I mediates illegitimate

Page 115: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

101

recombination leading to DNA insertion into the ribosomal DNA locus inSaccharomycescerevisiae.(2004).MolGenetGenomics271(3):347‐58;[78]PourquierP,PilonAA,KohlhagenG,MazumderA,SharmaA,PommierY.Trapping of mammalian topoisomerase I and recombination’s induced bydamaged DNA containing nicks or gaps. Importance of DNA endphosphorylation and camptothecin effects. (1997). J Biol Chem272(42):26441‐7;[79] Castano IB, Brzoska PM, Sadoff BU, Chen H, Christman MF. Mitoticchromosome condensation in the rDNA requires TRF4 and DNAtopoisomerase I in Saccharomyces cerevisiae. (1996) Genes Dev10(20):2564‐76;[80] Losada A, Hirano T. Biology in pictures. New light on sticky sisters.(2000)CurrBiol10(17):R615;[81] Chen AY, Yu C, Gatto B, Liu LF. DNAminor groove‐binding ligands: adifferent class ofmammalian DNA topoisomerase I inhibitors. (1993)ProcNatlAcadSciU.S.A.90(17):8131‐5;[82]HsiangYH,HertzbergR,HechtS,LiuLF.Camptothecininducesprotein‐linkedDNAbreaksviamammalianDNAtopoisomeraseI.(1985)JBiolChem260(27):14873‐8;[83] Muggia FM, Creaven PJ, Hansen HH, Cohen MH, Selawry OS. Phase Iclinicaltrialofweeklyanddailytreatmentwithcamptothecin(NSC‐100880):correlation with preniclinical studies. (1972) Cancer Chemother Rep56(4):515‐21;[84] Gottlieb JA, Guarino AM, Call JB, Oliviero VT, Block JB. Preliminarypharmacologic and clinical evaluation of camptothecin sodium (NSC‐100880).(1970)CancerChemotherRep54(6):461‐70;[85]DrawlMN,AgamaK,WakelinLP,PommierY,GriffithR.ExploringDNAtopoisomerase I ligand space in search of novel anticancer agents. (2011).Plosone6(9):e25150;[86] Eng WK, Faucette L, Johnson RK, Sternglanz R. Evidence that DNAtopoisomeraseIisnecessaryforthecytotoxiceffectsofcamptothecin.(1988)MolPharmacol34(6):755‐60;[87]WangJC.DNAtopoisomerase.Newbreak forarchaealenzyme.(1997).Nature386(6623):329‐331;[88]KingsburyWD,BoehmJC, JakasDR,HoldenKG,HechtSM,GallagherG,CaranfaMJ, McCabe FL, Faucette LF, Johnson RK et al. Synthesis of water‐soluble (aminoalkyl)camptothecin analogues: inhibition of topoisomerase Iandantitumoractivity.(1991)JMedChem34(1):98‐107;

Page 116: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

102

[89]PommierY,BarceloJM,RaoVA,SordetO,JobsonAG,ThibautL,MiaoZH,Seiler JA, Zhang H, Marchand C, Agama K, Nitiss JL, Redon C. Repair oftopoisomeraseI‐mediatedDNAdamage(2006)ProgNucleicAcidResMolBiol81:179‐229;[90]PrielE, ShowalterSD,BlairDG Inhibitionofhuman immunodeficiencyvirus (HIV‐1) replication in vitro by noncytotoxic doses of camptothecin, atopoisomeraseIinhibitor.(1991)AIDSResHumRetroviruses7(1):65‐72;[91]PommierY,RedonC,RaoVA,SeilerJA,SordetO,TakemuraH,AntonyS,MengL,LiaoZ,KohlhangenG,ZhangH,KohnKW.Repairofandcheckpointresponse to topoisomerase I‐mediated DNA damage. (2003) Mutat Res532(1­2):173‐203;[92]HorwitzSB,ChangCK,GrollmanAP.Studiesoncamptothecin.I.Effectsofnucleicacidandproteinsynthesis(1971)MolPharmacol7(6):632‐44;[93]HolmC,Covey JM,KerriganD,PommierY.Differential requirementofDNAreplicationforthecytotoxicityofDNAtopoisomeraseIandIIinhibitorsinChinesehamsterDC3Fcells.(1989)CancerRes49(22):6365‐8;[94]StakerBL,FeeseMD,CushmanM,PommierY,ZembowerD,StewartL,Burgin AB, Structure of three classes of anticancer agents bound to thehuman topoisomerase I‐DNA covalent complex. (2005) J Med Chem48(7):2336‐45;[95] Adams VR, Burke TG Camptothecin in cancer therapy. Cancer DrugDiscovery&Development(2005)HumanaPress;[96]PommierY,TopoisomeraseIinhibitors:camptothecinsandbeyond.NatRevCancer(2006)6(10):789‐802;[97]MarchandC,AntonyS,KohnKW,CushmanM, IoanoviciuA,StakerBL,BurginAB, Stewart L, PommierY.A novel norindenoisoquinoline structurerevealsacommoninterfacial inhibitorparadigmforternarytrappingof thetopoisomerase I‐DNA covalent complex. (2006)Mol Cancer Ther 5(2):287‐95;[98] Pommier Y, Pourquier P, Urasaki Y, Wu J, Laco GS. Topoisomerase Iinhibitors: selectivity and cellular resistance. (1999) Drug Resist Updat2(5):307‐318;[99] Goldwasser F, Shimizu T, Jackman J, Hoki Y, O’ConnorPM, Kohn KW,Pommier Y. Correlations between S and G2 arrest and the cytotoxicity ofcamptothecin in human colon carcinoma cells. (1996) Cancer Res56(19):4430‐7;

Page 117: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

103

[100] Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug‐stabilizedtopoisomeraseI‐DNAcleavablecomplexesasamechanismofcellkillingbycamptothecin.(1989)CancerRes49(18):5077‐82;[101] Hsiang YH, Liu LF, Wall ME, Wani MC, Nicholas AW, Manikumar G,KirschenbaumS, SilberR,PotmesilM.DNA topoisomerase I‐mediatedDNAcleavage and cytotoxicity of camptothecin analogues. (1989) Cancer Res49(16):4385‐9;[102]ZhouY,GwadryFG,ReinholdWC,MillerLD,ScherfU,LiuET,KohnKW,Pommier Y, Weinstein JN. Transcriptional regulation of mitotic genes bycamptothecin‐inducedDNAdamage:microarrayanalysisofdose‐andtime‐dependenteffects.(2002)CancerRes62(6):1688‐95; [103]NitissJL,WangJC.Mechanismofcellkillingbydrugsthattrapcovalentcomplexes between DNA topoisomerases and DNA. (1996)Mol Pharmacol50(5):1095‐102;[104] Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y.Conversionof topoisomerase I cleavagecomplexeson the leadingstrandofribosomal DNA into 5’‐phosphorylated DNA double‐strand breaks byreplicationrunoff.(2000)MolCellBiol20(11):3977‐87;[105]ShaoRG,CaoCX,ZhangH,KohnKW,MarcSW,PommierYReplication‐mediatedDNAdamagebycamptothecininducesphosphorylationofRPAbyDNA‐dependent protein kinase and dissociates RPA:DNA‐PK complexes.(1999)TheEMBOJournal18,1397–1406;[106]Simbulan‐RosenthalCM,RosenthalDS,BoularesAH,HickeyRJ,MalkasLH, Coll JM, Smulson ME. Regulation of the expression or recruitment ofcomponents of the DNA synthesome by poly(ADP‐ribose) polymerase.(1998)Biochemistry37(26):9363‐70;[107]StaronK,Kowalska‐LothB,NieznanskiK,SzumielI.Phosphorylationoftopoisomerase I in L5178Y‐S cells is associated with poly(ADP‐ribose)metabolism.(1996)Carcinogenesis17(3):383‐7;[108] Plo I, Liao ZY, Barcelò JM, Kohlhangen G, Caldecott KW,WeinfeldM,PommierY.AssociationofXRCC1andtyrosylDNAphosphodiesterase(Tdp1)fortherepairoftopoisomeraseI‐mediatedDNAlesions.(2003).DNARepair(Amst)2(10):1087‐100;[109] Pommier Y, Jenkins J, Kohlhagen G, Leteurtre F. DNA recombinaseactivityofeukaryoticDNAtopoisomeraseI:effectsofcamptothecinandotherinhibitors.(1995)MutatRes337(2):135‐45;[110]ChengC,ShumanS.Recombinogenicflapligationpathwayforintrinsicrepair of topoisomerase IB‐induced double‐strand breaks. (2000)Mol CellBiol20(21):8059‐68;

Page 118: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

104

[111] Sordet O, Khan QA, Kohn KW, Pommier Y. Apoptosis induced bytopoisomerase inhibitors. (2003). Curr Med Chem Anticancer Agents3(4):271‐90;[112]GoldwasserF,BaeI,ValentiM,TorresK,PommierY.TopoisomeraseI‐related parameters and camptothecin activity in the colon carcinoma celllinesfromtheNationalCancerInstituteanticancerscreen.(1995)CancerRes55(10):2116‐21; [113] Beidler DR, Cheng YC. Camptothecin induction of a time‐ andconcentration–dependentdecreaseoftopoisomeraseIanditsimplicationincamptothecinactivity.(1995).MolPharmacol47(5):907‐14;[114] Desai SD, Liu LF, Vazquez‐Abad D, D’Arpa P. Ubiquitin‐dependentdestruction of topoisomerase I is stimulated by the antitumor drugcamptothecin.(1997)JBiolChem272(39):24159‐64;[115] Fu Q, Kim SW, Chen HX, Grill S, Cheng YC. Degradation oftopoisomerase I inhibitors is dependent on inhibitor structure butindependetofcelldeath.(1999)MolPharmacol55(4):677‐83;[116] Mao Y, Desai SD, Liu LF. SUMO‐1 conjugation to human DNAtopoisomeraseIIisozymes.(2000)JBiolChem275(34):26066‐73;[117]MaoY,SunM,DesaiSD,LiuLF.SUMO‐1conjugationtotopoisomeraseI: A possible repair response to topoisomerase‐mediated DNA damage(2000).ProcNatlAcadSciU.S.A.97(8):4046‐51;[118]Desai SD,MaoY, SunM, Li TK,Wu J, Liu LF.Ubiquitin, SUMO‐1, andUCRP in camptothecin sensitivity and resistance. (2000)Ann N Y Acad Sci922:306‐8;[119] Mo YY, Yu Y, Shen Z, Bech WT. Nucleolar delocalization of humantopoisomeraseIinresponsetotopotecancorrelateswithsumoylationoftheprotein.(2002)JBiolChem277(4):2958‐64;[120]MaJ,MaliepaardM,NooterK,LoosWJ,KolkerHJ,Verweij J,StoterG,Schellens JH. Reduced cellular accumulation of topotecan: a novelmechanism of resistance in human ovarian cancer cell line. (1998). Br JCancer77(10):1645‐52;[121] Goto T, Wang JC. Cloning of yeast TOP1, the gene encoding DNAtopoisomerase I, and construction of mutants defective in both DNAtopoisomeraseIandDNAtopoisomeraseII.(1985)ProcNatlAcadSciU.S.A.82(21):7178‐82;

Page 119: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

105

[122] van Waardenburg RCAM and Bjornsti M.A. Biochemical and geneticanalysesofDNAtopoisomeraseI‐mediatedDNAdamage(2005)Ed.T.Burke.HumanaPress“Camptothecinincancertherapy”;[123]NitissJ,WangJC.DNAtopoisomerase‐targetinguntitumordrugscanbestudiedinyeast(1988).ProcNatlAcadSciU.S.A.85(20):7501‐5;[124]BjornstiMA,BenedettiP,VigilantiGA,Wang JC.ExpressionofhumanDNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I:restoration of sensitivity of the cells to the antitumor drug camptothecin.(1989)CancerRes49(22):6318‐23;[125] Alsner J, Svejstrup JQ, Kieldsen E, Sørensen BS, Westergaard O.Identification of an N‐terminal domain of eukaryotic DNA topoisomerase Idispensable for catalytic activitybut essential for in vivo function. (1992) JBiolChem267(18):12408‐11;[126] Colley WC, van der Merwe M, Vance JR, Burgin AB Jr, Bjornsti MA.Substitutionofconservedresidueswithin theactivesitealters thecleavagereligation equilibrium of DNA topoisomerase I. (2004) J Biol Chem279(52):54069‐78;[127] StakerBL,HjerrildK, FeeseMD,BehnkeCA,BurginAB Jr, StewartL.The mechanism of topoisomerase I poisoning by camptothecin analog.(2002)ProcNatlAcadSciU.S.A.99(24):15387‐92;[128] Kubota N, Kanzawa F, Nishio K, Takeda Y, Ohmori T, Fujiwara Y,Terashima Y, Saijo N. Detection of topoisomerase I gene pointmutation inCPT‐11resistant lungcancercell line(1992)BiochemBiophysResCommun.Oct30;188(2):571‐7;[129]LosassoC,CretaioE,FioraniP,D'AnnessaI,ChillemiG,BenedettiP.Asinglemutationinthe729residuemodulateshumanDNAtopoisomeraseIBDNAbindinganddrugresistance.(2008)NucleicAcidsRes36(17):5635‐44;[130] Chillemi G, Fiorani P, Castelli S, Bruselles A, Benedetti P, Desideri A.Effect on DNA relaxation of the single Thr718Ala mutation in humantopoisomeraseI: a functional and molecular dynamics study, Nucleic AcidsRes.(2005),33(10):3339‐50;[131]KosterDA,PalleK,BotES,BjornstiMA,DekkerNH,AntitumourdrugsimpedeDNAuncoilingbytopoisomeraseI(2007)Nature448(7150):213‐7;[132] Sari L,Andricioaei I.RotationofDNAaround intact strand inhumantopoisomerase I implies distinct mechanisms for positive and negativesupercoilrelaxation(2005)NucleicAcidsRes.33(20):6621‐34;[133] Chillemi G, Redinbo M, Bruselles A, Desideri A. Role of the linkerdomainandthe203‐214N‐terminalresiduesinthehumantopoisomeraseIDNAcomplexdynamics.(2004)BiophysJ87(6):4087‐97;

Page 120: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

106

[134] Frøhlich RF, Veigaard C, Andersen FF, McClendon AK, Gentry AC,Andersen AH, Osheroff N, Stevnsner T, Knudsen BR; Tryptophane‐205 ofhuman topoisomerase I is essential for camptothecin inhibition of negativebut not positive supercoil removal. (2007)Nucleic Acids Res. 35(18):6170‐80;[135] Woo MH, Losasso C, Guo H, Pattarello L, Benedetti P, Bjornsti MA.Locking theDNA topoisomerase I protein clamp inhibitsDNA rotation andinducescelllethality(2003)ProcNatlAcadSciUSA.100(24):13767‐72;[136] BjornstiMA,Wang JC. Expression of yeast DNA topoisomerase I cancomplement a conditional‐lethal DNA topoisomerase I mutation inEscherichiacoli.(1987)ProcNatlAcadSciUSA.84(24):8971‐5;[137] Dyballa N, Metzger S. Fast and sensitive colloidal coomassie G‐250stainingforproteinsinpolyacrylamidegels.(2009)JVisExp(30).pii:1431.doi:10.3791/1431;[138] Valenti A, Perugino G, D’Amaro A, Cacace A, Napoli A, Rossi M,Ciaramella M. Dissection of reverse gyrase activities: insight into theevolutionofathermostablemolecularmachine(2008)NucleicAcidsResearch36(14):4587‐4597;[139] Clarke JD. DNA Topoisomerases: Methods and Protocols (2009)HumanaPress;[140] Knab AM, Fertala J, Bjornsti MA. A camptothecin‐resistant DNAtopoisomerase I mutant exhibit altered sensitivities to other DNAtopoisomerasepoisons.(1995).JBiolChem,270(11):6141‐8;[141]KnabAM,FertalaJ,BjornstiMA.MechanismofcamptothecinresistanceinyeastDNAtopoisomeraseImutants. (1993) JBiolChem,268(30):22322‐30; [142] Lisby M, Olesen JR, Skouboe C, Krogh BO, Straub T, Boege F,Velmurugan S, Martensen PM, Andersen AH, Jayaram M, Westergaard O,Knudsen BR. Residues within the N‐terminal domain of humantopoisomerase I play a direct role in relaxation. (2001) J Biol Chem276(23):20220‐7;[143] Kauh EA, Bjornsti MA. SCT1 mutants suppress the camptothecinsensitivityof yeast cells expressingwild‐typeDNA topoisomerase I. (1995)ProcNatlAcadSciU.S.A.92(14):6299‐303;[144]TobeyRA.Effects of cytosine arabinoside, daunomycin,mithramycin,azacytidine,adriamycin,andcamptothecinonmammaliancellcycletraverse.(1972).CancerRes32(12):2720‐5;[145]D’ArpaP,BeardmoreC,LiuLF.Involvementofnucleicacidsynthesisin

Page 121: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

107

cell killing mechanisms of topoisomerase poisons. (1990) Cancer Res50(21):6919‐24;[146] Fiorani P, Tesauro C, Mancini G, Chillemi G, D’Annessa I, Graziani G,TentoriL,MuziA,DesideriA.Evidenceofthecrucialroleofthelinkerdomainon the catalytic activity of human topoisomerase I by experimental andsimulative characterization of the Lys681Ala mutant. (2009)Nucleic AcidsRes37(20):6849‐58;[147] Megonigal MD, Fertala J, Bjornsti MA. Alterations in the catalyticactivityofyeastDNAtopoisomeraseIresultincellcyclearrestandcelldeath.(1997).JBiolChem272(19):12801‐8;[148]PommierY.DNATopoisomerasesandCancer(2011)HumanaPress;[149] Fiorani P, BrusellesA, FalconiM, ChillemiG,DesideriA, Benedetti P.Single mutation in the linker domain confers protein flexibility andcamptothecin resistance to Human Topoisomerase I (2003) J Biol Chem278(44):43268‐75.

Page 122: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart
Page 123: STRUCTURAL AND FUNCTIONAL STUDIES ON HUMAN DNA ...paduaresearch.cab.unipd.it/4666/1/StefaniaRodioPhDBiotecnologie.pdf · con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart

1