Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars...

20
Strategic roadmap WITHIN STRATEGIC VEHICLE RESEARCH AND INNOVATION (FFI) Sustainable production 2015-04-18

Transcript of Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars...

Page 1: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

Strategic roadmap WITHIN STRATEGIC VEHICLE RESEARCH AND INNOVATION (FFI)

Sustainable production 2015-04-18

Page 2: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 2

Table Contents

1 Background .................................................................................................. 3

2 Purpose and Goals ....................................................................................... 4

3 Programme Areas ........................................................................................ 6

4 Present Situation and Desired Future Position for the Project Portfolio ........................................................................................... 6

5 Project Area and Timetable ......................................................................... 7

5.1 New products with high life cycle efficiency ..................................................................... 7

5.2 Competitiveness ............................................................................................................... 8

5.3 Environment ..................................................................................................................... 9

5.4 Quality .............................................................................................................................. 9

5.5 Lead times ...................................................................................................................... 10

5.6 Flexibility ......................................................................................................................... 11

6 FFI SP's Connection to Associated Strategic Innovation Programmes ............................................................................ 12

6.1 FFI SP in relation to the Strategic Innovation programme Production2030 .................. 12

6.2 FFI SP in relation to the Strategic Innovation programme Metallic Materials ................ 12

6.3 FFI SP in relation to the Strategic Innovation programme Lightweight.......................... 12

7 Annex: Automation Technology and Manufacturing Readiness Levels: A guide to recognised stages of development within the Automation Industry ................................................................. 13

Page 3: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 3

1 Background This strategic roadmap describes the challenges, research and development needs, and the expected

results for the Sustainable Production programme in the partnership programme, Vehicle Strategic

Research and Innovation – FFI.1

The aim is to contribute to an increased ability to jointly identify research and development activities in areas

that contribute to higher production efficiency and that reduce the environmental impact of manufacturing

processes. The roadmap is also an instrument for monitoring and evaluation. By illustrating the correlation

between the funded activities and the expected impact within the programme area, the roadmap also

contributes to a better understanding of the FFI programme and specifies what needs to be done to achieve

its overall objective of:

reducing the environmental impact of road traffic;

reducing the number of people injured and killed in traffic;

strengthening international competitiveness.

A sustainable and systematic approach will be required if this is to be achieved.

In its ongoing programme work, FFI's programme areas primarily is controlled by giving priority to different

identified objectives for a period of time – milestones. The milestones are expressed as a desired

distribution of research and development efforts for each period. At an overall level, the work can be

regarded as a permanent interaction between research and development, and implementation. See Figure

1. The expected development status at a milestone for a development area is that research is about

complete and that development, in interaction with actual implementation, is taking place somewhere. See

Figure 3.

Figure 1. Outline of production-related research, development and deployment activities within the FFI programme.

1 http://www.vinnova.se/sv/ffi/

Page 4: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 4

2 Purpose and Goals The automotive industry is totally dependent on maintaining and improving its competitiveness. The

programme area Sustainable Production mainly aims at enabling the manufacture of new vehicle solutions

and strengthening its global competitiveness that minimises environmental impact and increases vehicle

safety. The driving motivation is to reduce the automotive industry's CO2 emissions from a life cycle

perspective. The two main tracks in this endeavour are weight reduction and an increase in the level of

electrification, both of which place increasing demands on the manufacturing system,

Figure 2.

Figure 2. Vehicle manufacture from a life cycle perspective2. The blue bars show the scale of the manufacturing system's contribution. ICEV=internal combustion engine vehicles, HEV=hybrid vehicles, PHEV=plug-in hybrid vehicles, BEV=battery-powered vehicles.

Even from a road safety perspective, there are requirements for choices of materials and processes in

product development. The need to combine active safety systems, e.g. when the vehicle itself can take over

and avoid collisions, and passive safety systems, e.g. impact secure bodywork, to ensure high levels of

safety for drivers and passengers and other drivers will still exist for a relatively long time.

If the objectives are to be achieved, we need not only new knowledge, but we also need to be able to

quickly apply the results of research. Within the framework of the FFI, however, research and development

projects are not funded all the way to fully implemented solutions and technologies. They are only funded to

a level from which the companies must adapt the solutions to their production systems.

A single project may include both application development with new materials and challenges relating to

their handling in the manufacturing system. For that reason, it may be relevant to describe the development

level according to both the TRL scale (Technology Readiness Level) and to the MRLS scale (Manufacturing

Readiness Level). Primarily, the programme supports projects that are within the range of TRLs 2 to 8 or

MRLs 1 to 6 according to the definitions in the document “Automotive Technology and Manufacturing

Readiness Levels – A Guide to Recognized Stages of Development within the Automotive Industry”3.

2From Life Cycle CO2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership 3 See the appendix to this document.

Page 5: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 5

Page 6: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 6

3 Programme Areas A global, competitive production of innovative, environmentally friendly and safe products is of crucial

importance for the Swedish automotive industry's objectives, prospects and technical manufacturing

challenges. The sub-programme, Sustainable Production, is therefore mainly driven by the following overall

challenge:

The ability to be able to produce new products, components and materials.

Manufacturing processes and production systems must also be flexible and capable of high quality product

manufacturing with short delivery times at competitive costs. This leads to the wording of the following

prioritised sub-challenges:

Robust and efficient manufacture and processing;

Increased demands on volume and version flexibility;

Resource efficiency and minimisation of emissions from the manufacturing.

Based on these, the programme committee has identified six programme areas to address (and connect

to)in the project proposal's research and development efforts:

1. New products with high life cycle efficiency – the ability to handle new products and materials in the

manufacturing system;

2. Competitiveness - cost-effective new manufacturing systems in a global perspective;

3. Environment – environmentally-neutral manufacturing and recycling of residual products and energy;

4. Quality – ensure the desired quality;

5. Lead time – short lead times throughout the entire product realisation chain in development and

manufacturing;

6. Flexibility – sufficiently flexible manufacturing systems for requested components.

See the more detailed descriptions in section 5.

4 Present Situation and Desired Future Position for the Project Portfolio

To achieve the identified objectives, the project proposals with different orientations are expected to vary

slightly in the future according to the bar graph below.

Figure 3. The programme committee's expectations for the project portfolio to achieve the predefined milestones.

0%

5%

10%

15%

20%

25%

30%

New products +LC

Competitiveness Environment Quality Lead time Flexibility

2015

2020

2025

2030

Page 7: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 7

5 Project Area and Timetable There are both general consideration for each programme area and a number of more specifically

expressed desired abilities and examples. For each desired ability there is also a milestone (year) on which

the main part of the research and development efforts should focus.

The need for skilled personnel with relevant manufacturing training also needs to be considered carefully.

Important competency gaps were identified in a project carried out between 2011 and 2012 within the

framework of the FFI Innovation System's roadmap. These are explained under the heading “Important

areas of expertise”. The basic idea is that projects, if possible, should help to reduce these gaps through

employing postgraduate students, producing training material, implementing different activities for spreading

information and so on.

5.1 New products with high life cycle efficiency

5.1.1 General description

Effective productions systems and low carbon footprints require conservative and optimal use of materials.

This promotes use of lightweight solutions and integrated functions and places completely different

requirements on materials, such as low weight and high passive safety. The requirement increases for a

holistic perspective with improved performance throughout the life cycle, that allow the use of, for example,

smart functions of the material, energy storage, transport of energy or data, heat conduction and sound

insulation. This, in turn, means that more and different types of construction materials will be used and all

the resulting technologies and processes will need to be developed to be able to create competitive

manufacturing systems for them.

5.1.2 Desired abilities and milestones

Combining advanced materials and material combinations, 2020

Being able to create product plans and business models that ensure a high level of life cycle efficiency,

2025

Surface treatment of new materials and material combinations, 2025

Expertise in the manufacture of electrified power trains, 2025

Handling shortages of certain raw materials by developing alternatives and solutions, 2030

5.1.3 Example

Electrostatic spray painting of plastic materials

The ability to easily separate joints in merged complex material combinations

5.1.4 Important areas of expertise

New light, durable and strong materials in manufacture:

Functional surfaces

Jointing

Moulding

Processing

Specific methods of manufacture for certain materials

Material models

Surface treatment and coatings

New production methods:

For existing materials

For new materials

For re-use and disassembly

Page 8: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 8

5.2 Competitiveness

5.2.1 General description

High productivity, short lead times and ability to achieve a high rate of change are important competitive

aspects that are affected by how the new manufacturing system solutions are planned, designed and

implemented. In the production system, humans need a good working environment, demographic

conditions, choice of technology for product development and choice of automation solutions.

5.2.2 Desired abilities and milestones

Empowered, competent, committed, and healthy workers in all functions and all stages, 2020

Efficient and user-friendly virtual tools for evaluating ergonomics and workplace design, 2020

Efficient and accessible education systems, 2020

The use of storing and linking project results, training materials, instruction manuals for routine use in

education and training within industry, academia and institutes, 2020

Re-use of information through an unbroken continuous data flow, 2020

Automation systems that can be configured and managed without a requirement for expert knowledge,

2025

Planning systems that take care of increasingly complex production networks and which compensate

for uncertainties and disturbances in the supply chains, 2025

Dynamic strategies to meet the increased rate of change and customer needs on a global market,

2025

Combine different information sources, calculate, visualise and analyse data to provide decision

makers with an optimum basis for decisions, 2025

Standardised information systems for the “digital factory” that can evolve over time and easily be

changed to fit the new requirements of the manufacturing system, 2030

5.2.3 Example

Reduced assembly costs per vehicle through innovative implementation of automation.

A constantly updated list of joint and possible courses for industry and academia at different levels from BSc

to DSc.

5.2.4 Important areas of expertise

Globally competitive production:

Industrial structures and supply chains

Productivity

Efficient use of skills

Long-term power of innovation

Optimum automation

Page 9: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 9

5.3 Environment

5.3.1 General description

The vision is for all production to be environmentally neutral and closed loops for both residual products and

such by-products as energy. Methods and techniques are also needed for continually reducing the amount

of raw materials, media and energy. All forms of waste should be eliminated.

5.3.2 Desired abilities and milestones

Developed techniques for reducing the environmental impact of paint application, 2020

Developed techniques for reducing the environmental impact of pre-processing, 2020

Significantly reduced environmental impact of process fluids and residues, 2025

Significantly reduced energy consumption per manufactured unit, 2025

Genuine integration of an economic, ecological and social sustainability perspective in the case of

product development, manufacturing development and process development, 2030

5.3.3 Example

The development of methods for reduced consumption of materials and reduced use of solvents in the

paint shop when applying paint.

Development of methods for reducing raw material and energy consumption at the pre-processing

plant

Closed systems for process fluids.

5.3.4 Important areas of expertise

Factory cycle:

Minimisation of residual products

New/developed surface treatment systems

Energy smart factories and machinery

Purification of process fluids

Renovation, upgrading, reusing

5.4 Quality

5.4.1 General description

In general, the programme area concerns requirements and management of geometric properties and

methods of working towards a geometry-assured process. It is also about being able to respond to factory

processes on the basis of human conditions.

5.4.2 Desired abilities and milestones

A joint industrial and academic training plan for education and training at different levels, 2020

Applicable methods for non-destructive testing in-line, 2025

Efficient, safe and seamless interaction between people and automated systems in assembly lines,

2025

Full control and traceability of all critical processes and products, 2025

Virtual verification of physical qualities that match reality, 2030

Page 10: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 10

5.4.3 Example

Methods for the feedback of in-line measurement data for process control.

5.4.4 Important areas of expertise

Humans in the factory

Ergonomics

Human-machine interaction

Cognitive aspects/information

Safety and harmful environments

Attractive workplaces and minimisation of discrimination

5.5 Lead times

5.5.1 General description

The ever increasing demands on volume and version flexibility affect the ability to plan and control the

production process' different phases, i.e. to quickly move from concept to launched product. It is about both

the development of principles, methods and tools for reducing lead times in engineering (TTM – time to

market), industrialisation (TTV – time to volume) and the order process (TTC – time to customer). Computer

assistance and virtual tools are considered to have a large part to play in this.

5.5.2 Desired abilities and milestones

Methods for the reduction of breaking in periods, 2020

Methods for the reduction of lead times for the installation of new production lines, 2025

Model-based methods for preparation of new products, 2030

5.5.3 Example

The development of methods for radically reduced breaking in periods for new components in

processing.

Model-based product introduction and preparation.

5.5.4 Important areas of expertise

Efficient production development:

New methods of production preparation (virtual tools)

Material supply systems

Event-driven production planning

Design and installation of production systems for existing and new product types

Optimum maintenance systems (prevention/condition-based)

Metrology

Integrated product and production development in early phases (incl. suppliers)

Page 11: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 11

5.6 Flexibility

5.6.1 General description

The automotive industry's requirements for “mass customisation” needs efficient supply of and exposure of

huge and varied amounts of part numbers for production. This must be accomplished without material

shortages, without quality deviations, on small surfaces and without increasing costs. In addition to to being

able to manufacture a wide range of versions, logistics and production planning are also important aspects

for a flexible production system and links to the supply chain, as well as for service level and lead time to the

customer.

5.6.2 Desired abilities and milestones

Assembly technology that supports the introduction of new materials and materials combinations, 2020

Fast and cost-effective changes in the production of multiple versions and alternative power trains,

2020

Simulation of the paint film's structure on application with different paint and spraying equipment, 2025

The use of packaging and a packaging standard that effectively supports and meets the needs of the

supply and consuming processes' requirements, and which is also effective during transport and

handling, 2025

Standard user interfaces for different automation solutions, 2030

Standardised and modular information systems that can be developed over time to meet changing

requirements, 2030

Developed models and methodologies for faster design, validation and assessment of new and

changing supply chains, 2030

5.6.3 Example

The use of additive manufacturing for the manufacture of components

The establishment of new assembly and jointing techniques that support the introduction of new

materials and material combinations.

Simulation of the paint film's structure on application for different types of paint and spraying

equipment.

5.6.4 Important areas of expertise

Robustness and flexibility in production processes:

Quality

Geometry-assured

Reliability

Retooling

Volume and version flexibility

Page 12: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 12

6 FFI SP's Connection to Associated Strategic Innovation Programmes The roadmap also aims to guide the applicant with regard to other ongoing initiatives and various

stakeholders through R&D project applications, but also as an input to the programme directors about areas

of cooperation. Since 2013, a number of strategic innovation programmes have been running in partnership

between VINNOVA, the Swedish Energy Agency and the Swedish Research Council, Formas, several of

which have overlapping subject areas with FFI's sub-programme Sustainable Production. As we have

previously mentioned, FFI SP has the objective of expanding competitiveness by improving productivity of

the production system and by reducing the environmental impact of manufacturing processes. The task of

the Strategic Innovation programmes is to coordinate and strengthen research, development and innovation

within their respective defined subject areas. Each Strategic Innovation programme has its own autonomous

programme logic and stakeholder base which means that an applicant cannot expect coordination between

the various programmes other than where specifically stated.

6.1 FFI SP in relation to the Strategic Innovation programme Production2030

Differences: The essential difference between a relevant application is that a project proposal within FFI

SP must be specifically targeted at the automotive industry and correspond with the FFI programme's

objectives and roadmaps, while projects in Production2030 should have a more holistic approach and

include wider areas of use and sectors of industry within the framework of the six prioritised Swedish

strengths. These are defined in the Strategic Innovation agenda “Made in Sweden 2030”

(www.produktion2030.se).

R&D projects in Production2030 are currently positioned between 4 and 7 on the TRL scale, while FFI SP

also has an ambition to have R&D projects with lower degrees of maturity (TRL levels from 2).

Production2030 also has a requirement of having at least three industrial partners and two academic

partners.

Areas of cooperation: Inter-programme issues can be found within activation of SMEs, expertise and

education, as well as international R&D issues (Horisont 2020).

Contact: Cecilia Warrol (Programme manager at Teknikföretagen), Tero Stjernstoft (VINNOVA)

6.2 FFI SP in relation to the Strategic Innovation programme Metallic Materials

Differences: The essential difference between a relevant application is that project proposals within FFI SP

treat material issues in combination with manufacturing process issues for component manufacture. Metallic

materials relate mainly to issues concerning the material production, where three of the seven defined areas

of interest are resource efficiency, increased rate of material development and flexibility in the development

of niche products. Effect goals and stated areas of interest are defined in the Strategic Innovation agenda

'National Unity on Metallic Materials”. (http://www.jernkontoret.se/)

Areas of cooperation: Inter-programme issues can be found within energy and the environment, resource

efficiency and achievement of product functions (e.g. durability)

Contact: Gert Nilsson (Programme manager at Jernkontoret), Anders Maren (VINNOVA)

6.3 FFI SP in relation to the Strategic Innovation programme Lightweight Differences: The essential difference between FFI SP and the Strategic Innovation programme Lightweight

is the limited area of application. Vehicle applications and issues around combined materials and

manufacturing basics should be more suitable for FFI SP. The Strategic Innovation programme's industry-

based development projects are currently positioned on results between 4 and 6 on the TRL scale and

require active participation and demand from at least two sectors of industry. Light and heavy vehicles are

Page 13: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 13

listed here as a single industry. These efforts should also include many disciplines as well as

comprehensive experimental verification and demonstration.

Areas of cooperation: Increased activation of SMEs, expertise issues and achievement of the weight

efficiency function in vehicles.

Contact: Stefan Gustafsson-Ledell (Programme manager at LIGHTer Arena), Claes de Serves and Maria

Öhman (VINNOVA)

7 Annex: Automation Technology and Manufacturing Readiness Levels: A guide to recognised stages of development within the Automation Industry

Page 14: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 14

 

                 

AutomotiveTechnologyandManufacturingReadinessLevelsAguidetorecognisedstagesofdevelopmentwithintheAutomotiveIndustry

Page 15: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 15

   

                 

     Foreword 

 Good, clear communication firms the ground for exploring new ventures, common areas of interest and establishing new relationships. Within engineering sectors, communication is paramount to achieving high quality products and using resources most efficiently and effectively.   There is an ongoing need for greater cooperation, joint exploration of new designs and acquisition of evolutionary and revolutionary products in order to rebuild the strengths of the UK’s Automotive Sector. This set of ‘readiness’ levels assists the sector by providing specific, identifiable stages of maturity, from early stages of research through to supply chain entry.   I hope you will join others in implementing this framework for technology development, using it as a basis for further planning and communication, and gaining further benefit from its use.  

 Professor Richard Parry‐Jones CBE Co‐Chairman of the Automotive Council 

          Acknowledgements The authors of these readiness levels Roy Williamson (LowCVP) and Jon Beasley (GKN) wish to thank and acknowledge the support contributed by the UK automotive sector in developing this guide under the auspices of the Automotive Council. These levels draw upon established practices for defining technology development and acquisition in use within the defence and aerospace supply chains.    This guide has been created by the Low Carbon Vehicle Partnership in association with the Automotive Council.  January 2011    

Page 16: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 16

   

                 

Introduction to Technology and Manufacturing Readiness Levels (TRLs and MRLs) A recurring issue to developers and adopters of new technologies is how to successfully communicate their accomplished or expected stages of technology development and readiness for manufacture. This set of Automotive TRLs and MRLs aims to help facilitate this dialogue and in doing so help with technology commercialisation, development work with new partners, planning supplier engagement and bringing new capabilities to market, through common understanding. Readiness levels provide common terms to define technology from concept to commercial production and through to disposal, and have a proven effectiveness from the aerospace and defence sectors. Independently, readiness levels can also assist with self‐assessment, monitoring progress and planning goals and actions.   

Benefits  • Emergent supply chain companies have a framework through which they can better understand the 

engagement needs of TIer1s/VMs. • VMs, Tier1s and funding agencies are presented with clear definitions for present and targeting levels of 

development status. • A framework can be used to provide clearer direction regarding engagement of the most appropriate public 

sector support. • Angels/VC investor interenst can be strategically aligned to product requirements. • Self assessment provides guidance on next steps (trials, certification etc) relevant to Level and signposts 

sources of support. • Sector‐wide assessments and initiatives have a common framework to build upon. 

 These are a few of the benefits that are realised through common understanding.   

Application to Integrated Assemblies and Roadmaps When components are brought together and integrated, their individual TRL and MRL contribute to the readiness of the overall assembly. Integrated systems may contain components with different levels of readiness, influencing the status of the assembly overall. The use of readiness levels in such cases can highlight areas for focus and prioritisation in order to make best progress.  When considered with a timeframe in mind, readiness levels help depict the development path or time to implement next generation technologies or derivatives with respect to established products, similar to technology roadmaps and highlighting  strengths and weaknesses in proposed or emerging systems.   Readiness levels also offer the ability to assess complete systems at a high level, the electrification of transport for example, and to focus in on contributing components, such as battery technologies or infrastructure integration.   

Relationship between Technology Readiness and Manufacturing Readiness Level The table which follows details ten stages of maturity for a product to: 

deliver its function (Technology Readiness) 

be produced (Manufacturing Readiness)  These levels are staggered in the table since advancing technological capability logically progresses ahead of manufacture. For each Technology Readiness Level the corresponding Manufacturing Readiness Level is that which is usual. It should be noted however that some technologies can deviate from these levels.       

Page 17: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 17

   

                 

 

Automotive Technology and Manufacturing Readiness Levels 

TRL  Technology Readiness  MRL  Manufacturing Readiness 

1  Basic Principles have been observed and reported.   Scientific research undertaken.  Scientific research is beginning to be translated into applied research and development. 

Paper studies and scientific experiments have taken place. 

Performance has been predicted. 

   

2  Speculative applications have been identified.  Exploration into key principles is ongoing.  Application specific simulations or experiments have been undertaken. 

Performance predictions have been refined. 

  A high level assessment of manufacturing opportunities has been made. 

3  Analytical and experimental assessments have identified critical functionality and/or characteristics. 

Analytical and laboratory studies have physically validated predictions of separate elements of the technology or components that are not yet integrated or representative.  

Performance investigation using analytical experimentation and/or simulations is underway. 

1  Basic Manufacturing Implications have been identified.  

Materials for manufacturing have been characterised and assessed. 

4  The technology component and/or basic subsystem have been validated in the laboratory or test house environment.  

The basic concept has been observed in other industry sectors (e.g. Space, Aerospace). 

Requirements and interactions with relevant vehicle systems have been determined. 

2  Manufacturing concepts and feasibility have been determined and processes have been identified.  

Producibility assessments are underway and include advanced design for manufacturing considerations. 

5  The technology component and/or basic subsystem have been validated in relevant environment, potentially through a mule or adapted current production vehicle.  

Basic technological components are integrated with reasonably realistic supporting elements so that the technology can be tested with equipment that can simulate and validate all system specifications within a laboratory, test house or test track setting with integrated components 

Design rules have been established.  Performance results demonstrate the viability of the technology and confidence to select it for new vehicle programme consideration. 

3  A manufacturing proof‐of‐concept has been developed  

Analytical or laboratory experiments validate paper studies.  

Experimental hardware or processes have been created, but are not yet integrated or representative.  

Materials and/or processes have been characterised for manufacturability and availability. 

Initial manufacturing cost projections have been made. 

Supply chain requirements have been determined. 

Page 18: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 18

   

                 

6  A model or prototype of the technology system or subsystem has been demonstrated as part of a vehicle that can simulate and validate all system specifications within a test house, test track or similar operational environment.  

Performance results validate the technology’s viability for a specific vehicle class. 

4  Capability exists to produce the technology in a laboratory or prototype environment.  

Series production requirements, such as in manufacturing technology development, have been identified. 

Processes to ensure manufacturability, producibility and quality are in place and are sufficient to produce demonstrators.  

Manufacturing risks have been identified for prototype build. 

Cost drivers have been confirmed. 

Design concepts have been optimised for production.   

APQP processes have been scoped and are initiated. 

7  Multiple prototypes have been demonstrated in an operational, on‐vehicle environment. 

The technology performs as required. 

Limit testing and ultimate performance characteristics are now determined. 

The technology is suitable to be incorporated into specific vehicle platform development programmes. 

5  Capability exists to produce prototype components in a production relevant environment.  

Critical technologies and components have been identified. 

Prototype materials, tooling and test equipment, as well as personnel skills have been demonstrated with components in a production relevant environment. 

FMEA and DFMA have been initiated. 

8  Test and demonstration phases have been completed to customer’s satisfaction. 

 The technology has been proven to work in its final form and under expected conditions. 

Performance has been validated, and confirmed. 

6  Capability exists to produce integrated system or subsystem in a production relevant environment. 

The majority of manufacturing processes have been defined and characterised. 

Preliminary design of critical components has been completed. 

Prototype materials, tooling and test equipment, as well as personnel skills have been demonstrated on subsystems/ systems in a production relevant environment.  

Detailed cost analyses include design trades.  

Cost targets are allocated and approved as viable. 

Producibility considerations are shaping system development plans.  

Long lead and key supply chain elements have been identified. 

9  The actual technology system has been qualified through operational experience.  

The technology has been applied in its final form and under real‐world conditions. 

Real‐world performance of the technology is a success. 

The vehicle or product has been launched into the market place. 

Scaled up/down technology is in development for other classes of vehicle.  

7 Capability exists to produce systems, subsystems or components in a production representative environment.  

Material specifications are approved. 

Materials are available to meet planned pilot line build schedule.  

Pilot line capability has been demonstrated including run at rate capability. 

Unit cost reduction efforts are underway. 

Supply chain and supplier Quality Assurances have been assessed. 

Long lead procurement plans are in place. 

 Production tooling and test equipment design & development has been initiated 

FMEA and DFMA have been completed. 

Page 19: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 19

   

                 

    

8 Initial production is underway 

Manufacturing and quality processes and procedures have been proven in production environment.  

An early supply chain is established and stable.  

Manufacturing processes have been validated. 

9  Full/volume rate production capability has been demonstrated. 

Major system design features are stable and proven in test and evaluation. 

Materials are available to meet planned rate production schedules.  

Manufacturing processes and procedures are established and controlled to three‐sigma or some other appropriate quality level to meet design characteristic tolerances in a low rate production environment.  

Manufacturing control processes are validated. 

Actual cost model has been developed for full rate production. 

10  The technology is successfully in service in multiple application forms, vehicle platforms and geographic regions. In‐service and life‐time warranty data is available, confirming actual market life, time performance and reliability 

10  Full Rate Production is demonstrated 

Lean production practices are in place and continuous process improvements are on‐going. 

Engineering/design changes are limited to quality and cost improvements.  

System, components or other items are in rate production and meet all engineering, performance, quality and reliability requirements.  

All materials, manufacturing processes and procedures, inspection and test equipment are in production and controlled to six‐sigma or some other appropriate quality level.  

Unit costs are at target levels and are applicable to multiple markets.  

The manufacturing capability is globally deployable. 

Page 20: Strategic roadmap FFI Sustainable production 2016-04-18 ENG...2 Assessment of Low Carbon Cars 2020-2030, for the Low Carbon Vehicle Partnership ... Functional surfaces Jointing Moulding

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 20

   

                 

Examples Below are two examples of levels applied to automotive technologies.  Composite Structures for mass market automotive applications 

TRL  Technology Readiness  MRL Manufacturing Readiness

8  Test and demonstration phases have been completed to customer’s satisfaction. 

 The technology has been proven to work in its final form and under expected conditions. 

Performance has been validated, and confirmed. 

4  Capability exists to produce the technology in a laboratory or prototype environment.  

Series production requirements, such as in manufacturing technology development, have been identified. 

Processes to ensure manufacturability, producibility and quality are in place and are sufficient to produce demonstrators.  

Manufacturing risks have been identified for prototype build. 

Cost drivers have been confirmed. 

Design concepts have been optimised for production.   

APQP processes have been scoped and are initiated. 

  ABS for multiple vehicle class, automotive applications 

TRL  Technology Readiness  MRL Manufacturing Readiness

10  The technology is successfully in service in multiple application forms, vehicle platforms and geographic regions. In‐service and life‐time warranty data is available, confirming actual market life, time performance and reliability 

10 Full Rate Production is demonstrated 

Lean production practices are in place and continuous process improvements are on‐going. 

Engineering/design changes are limited to quality and cost improvements.  

System, components or other items are in rate production and meet all engineering, performance, quality and reliability requirements.  

All materials, manufacturing processes and procedures, inspection and test equipment are in production and controlled to six‐sigma or some other appropriate quality level.  

Unit costs are at target levels and are applicable to multiple markets.  

The manufacturing capability is globally deployable. 

          

URN 11/672