Steels Ponge Marie-Curie Summer School

download Steels Ponge Marie-Curie Summer School

of 55

Transcript of Steels Ponge Marie-Curie Summer School

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    1/55

    Max-Planck-Institut fr Eisenforschung GmbHMax-Planck-Institut fr Eisenforschung GmbH

    Structural Materials - Steels

    Structural Materials - Steels

    D. Ponge

    Marie Curie Summer School, Hrtgenwald

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    2/55

    ContentContent

    Steels for Constructions:

    High Strength LowAlloyed (HSLA) Steels

    Steels for Automotive application

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    3/55

    success story: HSLA-steels up toReH=1100 MPa

    fields of application:

    offshore

    pressure vessel

    shipbuilding pipelines

    cranes

    automotive

    bridges

    success story: HSLA-steels up toReH=1100 MPa

    fields of application: offshore

    pressure vessel

    shipbuilding pipelines

    cranes

    automotive

    bridges

    weight: 96 t

    lifting capacity: 800 t

    standard steels:lifting capacity: 140 t

    until 1970s: St 37(S235), St 52 (S355)

    oil-shocksin the 70s

    motivation to save raw materials and energy

    development of high strength low alloyed (HSLA) steels

    High Strength Low Alloyed (HSLA) SteelsHigh Strength Low Alloyed (HSLA) Steels

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    4/55

    basic requirements:

    high yield strength (Re)

    high toughness even at low temperatures(ductile to brittle transition temperature (DBTT) should be low)

    good weldabili ty(0.2%C (1) , limit for alloying elements)

    High Strength Low Alloyed (HSLA) SteelsHigh Strength Low Alloyed (HSLA) Steels

    (1): all compositions are given in mass%

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    5/55

    Strength and ToughnessStrength and Toughness

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    6/55

    Eng

    ineering

    stress[M

    Pa]

    Engineering strain [%]

    ReH

    ReL

    Yield strengthYield strength

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    7/55

    S690QS690Q

    S460NS460N

    S355S355

    S235S235

    Engineering

    stress[M

    Pa]

    Engineering strain [%]

    Engineering stress-strain curvesEngineering stress-strain curves

    minimum

    ReHin MPa

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    8/55

    ToughnessToughness

    Liberty shipsLiberty ships

    Numberofb

    rokenships

    Totalnum

    berofships

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    9/55

    m

    H

    h

    sample

    Av

    0

    300

    Toughness: ducti le to britt le transit ion temperatureToughness: ducti le to britt le transition temperature

    impact

    notch

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    10/55

    Impact transition curveImpact transit ion curve

    upper shelf

    Lower shelf

    transition

    Test temperature in C

    Impactenergyin

    J

    glossy

    crystallinespot

    mate

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    11/55

    Impact transition curveImpact transit ion curve

    Test temperature in C

    Impacte

    nergyin

    J

    bcc

    fcc

    27J

    DBTT

    DBTT: ductile to brittletransition temperature

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    12/55

    Effect of carbon content on toughnessEffect of carbon content on toughness

    0.11 %C

    after F. B. Pickering in

    Constitution and Properties

    of Steels, p. 55, VCH 1992

    0.31 %C

    0.80 %C

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    13/55

    Test temperature in C

    ImpactenergyinJ

    standard steel

    fine grained HSLA steels

    DBTT

    Grainrefinement

    Effect of grain refinement on toughnessEffect of grain refinement on toughness

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    14/55

    Increase strengthIncrease strength

    Increase the strength ofsteel is easy !Increase the strength ofIncrease the strength ofsteel is easy !steel is easy !

    But it has a price But it has a priceBut it has a price

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    15/55

    -10

    -5

    0

    5

    10

    0 2.5 5.0 7.5 10.0Increase of yield strength in MPa

    Change

    oftransitiontemperatureinC

    Solids

    olution

    hardeningb

    ycarbo

    n

    Solids

    olution

    hardening

    bycarb

    on

    Strengthenin

    gbydisloca

    tions

    Strengthenin

    gbydisloca

    tions

    Precipitationhard

    ening

    Precipitationhard

    ening

    Grainrefinem

    ent

    Grainrefinement

    Effect on strengthening mechanisms on toughnessEffect on strengthening mechanisms on toughness

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    16/55

    WeldabilityWeldability

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    17/55

    Iron-Cementite DiagramIron-Cementite Diagram

    LiquidLiquid

    as cast iron

    Fe3C

    (austenite)face centered cubic (fcc)

    Max. C solubility: 2.06%

    (ferrite)body centered cubic (bcc)

    Max. C solubility: 0.02%

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    18/55

    Cooling time t8/5 [s ]

    HardnessHV10

    M

    icrostructure[%]

    Continuous-cooling-transformation (CCT) diagram of S355NContinuous-cooling-transformation (CCT) diagram of S355N

    Time [s]

    Temperat

    ure[C]

    Austenitization: 900C for 5 min

    Chemical composition in mass%:

    phase transformation phase transformation

    170435

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    19/55

    Heating by weldprocess

    Welding rod

    Heat Affected Zone (HAZ):

    Zone, in which the parent

    material is affected (usually adegradation) by the weldtemperature cycle

    Affection of base material by weld temperature cycleAffection of base material by weld temperature cycle

    Temperature in C

    TimeHAZ

    HAZ

    Temperature cycle

    in the weld region

    Temperature cycle

    in the weld regionfusion zone

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    20/55

    S235 (St37-2) C=0.15 E360 (St70-2) C=0.45

    not welded

    welded

    Brit tle fracture due to

    excessive hardening (martensite)

    C 0.2%

    max.hardness:

    350 HV

    Effect of carbon contentEffect of carbon content

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    21/55

    cold cracks

    Cause:

    Cooling rate to high

    Avoiding cold cracks by preheatingAvoiding cold cracks by preheating

    Steels with a high hardenability have to bepreheated before fixing and welding

    Effect: cooling rate is reduced => avoiding

    untempered martensite (no excessive hardening)Preheating temperature: 100C to 400C

    Eff t f iti ld k tibil it

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    22/55

    %massin

    15

    NiCu

    5

    VMoCr

    6

    MnC)IIW(CE

    ++

    ++++=

    Besides C also other elements can increase the hardenability:

    if CE(IIW) 0,40 %: low cold crack susceptibility

    Effect of composition on cold crack susceptibil ityEffect of composition on cold crack susceptibil ity

    Carbon equivalent CE:

    International Institute for Welding

    C fC l i f t l d i

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    23/55

    Conclusions for steel designConclusions for steel design

    improves weldability

    improves toughness decreases strength

    Increasing strength mainly by: grain refinement (improves also toughness)

    precipitation hardening (microalloying)

    Decreasing carbon content:

    (Carbon content 0.2%)

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    24/55

    Normalized structural steelsNormalized structural steels

    example: S460N

    N li iNormali ing

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    25/55

    + Ac3

    Temp

    erature

    Conventional hot rolling

    Ar3

    Ar1

    + Pearlite

    normalizing

    Time

    approx. 50C

    Pearlite

    NormalizingNormalizing

    Austenite Austenite

    PearliteFerrite

    R t d ti f t it i th b AlNRetardation of austenite grain growth by AlN

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    26/55

    900 1000 1100 1200 1300 1400

    12

    10

    8

    6

    4

    2

    0

    -2

    -4

    Austenitizing temperature in C

    ASTM

    grainsize

    number Coarse grain

    Coarse grain

    Fine grainFine grain

    0.047% Al

    0.017% N

    0.004% Al

    0.010% N

    Austenitization time: 30 minAustenitization time: 30 min

    Retardation of austenite grain growth by AlNRetardation of austenite grain growth by AlN

    Austenite grain size as function

    of austenitization temperature

    Austenite grain size as function

    of austenitization temperature

    AlN: retards grain growth

    Effect of microalloying additions on austenite grain coarseningEffect of microalloying additions on austenite grain coarsening

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    27/55

    after G. R. Speich, L..J.

    Cuddy, G. R. Gordon, A.J.DeArdo, in: Phase

    Transformations in Ferrous

    Allys: A. R. Marder et al.

    (Eds.), Warrendale:TMS-

    AIME, pp. 341-389

    Effect of microalloying additions on austenite grain coarseningEffect of microalloying additions on austenite grain coarsening

    V Al NbTi

    Austenite

    Austenite C-Mn

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    28/55

    Thermomechanically rolled steels (TM)Thermomechanically rolled steels (TM)

    example: S460M

    Effect of finishing rolling temperature on transformationEffect of finishing rolling temperature on transformation

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    29/55

    high finishing roll ing temperature low

    conventional rolling controlled rolling

    partiallytrans-formedmicro-structure

    partiallytrans-formedmicro-

    structure

    micro-structurebefore

    trans-formation

    micro-structurebefore

    trans-formation

    -recrystallization

    Effect of finishing rolling temperature on transformationEffect of finishing rolling temperature on transformation

    acceleratedcooling

    grain

    matrix

    deformation band nuclei in matrix

    : additional nuclei due to controlledrolling or accelerated cooling

    : additional nuclei due to controlledrolling or accelerated cooling

    magnified

    after I. Kozasu in

    Constitution and Properties

    of Steels, p. 189, VCH 1992

    Retardation of austenite recrystall ization by NbRetardation of austenite recrystall ization by Nb

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    30/55

    1000

    900

    800

    10 10 10 10

    -1 0 1 2

    Rollingtem

    peratur

    einC

    Time to start of recrystallization in s

    0 mass% Nb

    0.04 mass% Nb

    Maximumstrain induced

    NbC precipitation

    Maximumstrain induced

    NbC precipitation

    Retardation of austenite recrystall ization by NbRetardation of austenite recrystall ization by Nb

    Change of Yield strength and DBTTChange of Yield strength and DBTT

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    31/55

    Change of Yield strength and DBTTChange of Yield strength and DBTT

    Increaseo

    fyieldstrengthinMPa

    Changeoftransitiontemperaturein

    C

    Grain size in mm-1/2 Grain size in mm-1/2

    Grain

    refin

    ementP

    recipitation

    h

    ardening

    Precipitatio

    n

    hardening

    S355 with 0.05% Nb or 0.1%V or 0.1% TiS355 with 0.05% Nb or 0.1%V or 0.1% Ti

    TM steelsTM steels

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    32/55

    Goal: decrease pearl ite content and carbon equivalent at the

    same or even higher strength

    10 m

    Ferrite: very soft (approx. 60 HV)

    Cementite: very hard (approx. 800HV)

    Pearlite

    TM steelsTM steels

    [1]

    [2]

    from [3]

    [1]: J.J. Irani, D. Burton, J.D. Jones , A. B.

    Rothwell: Strong tough structural steels, London

    1967 (Spec. Rep. Iron Steel Inst. No. 104) pp.

    110

    [2]: W. E. Duckworth, R. Phillips, J. A.

    Chapman, J. Iron Steel Inst. 203 (1965) p. 1108

    [3]: B. Msgen, H. de Boer, H. Frber, J.Petersen, Normal and High Strength Structural

    Steels, in Steel Vol. 2, Springer Verlag

    Stahleisen 1993, p. 40

    Comparison microstructure normalized and TM- steelComparison microstructure normalized and TM- steel

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    33/55

    S355 J2G3S355 J2G3 S355 MCS355 MC

    NormalizedNormalized Thermomechanically rolled (TM)Thermomechanically rolled (TM)

    Comparison microstructure normalized and TM steelComparison microstructure normalized and TM steel

    pearlite

    ferrite

    Typical compositions of normalized steel and TM steelsTypical compositions of normalized steel and TM steels

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    34/55

    Typical compositions:

    Typical compositions of normalized steel and TM steelsyp p

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    35/55

    Quenched and tempered HSLA-steelsQuenched and tempered HSLA-steels

    example S690Q, S1100Q

    Quenched and tempered HSLA-steelsQuenched and tempered HSLA-steels

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    36/55

    Water quenching:

    martensite (0,2%C)

    HSLA:at relative high temperingtemperatures

    (typically 600-680C)for sufficient ductility

    hardeninghardening temperingtempering+

    pp

    Time [s]

    Temperatu

    re[C]

    Development of HSLA-steelsDevelopment of HSLA-steels

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    37/55

    1850 1900 1950 2000

    0

    200

    400

    600

    800

    1000

    1200

    Minim

    umy

    ield

    strengt

    hinMPa

    Year

    Hot rolled: S235

    normalized

    S355J2G3; S355N

    thermo-

    mechanically(TM) rolled

    S700MC

    S420MC

    quenched and

    tempered:

    S960Q

    S890Q

    S690Q

    S1100QLS960M

    TM+accelerated

    cooling (ACC)

    and tempering

    p

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    38/55

    New Developments

    Mechanical PropertiesMechanical Properties

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    39/55

    Normalised Ultra Fine

    Grain

    Ultra Fine

    Grain

    TMCP

    Ferrite Grain Size, dF (m)40 10 5 3 1

    2 6 10 14 18 22 26 30 34

    dF-1/2 (mm-1/2)

    900

    800

    700

    600

    500

    400

    300

    200

    YieldStreng

    thR

    eH

    (M

    Pa)

    p

    Yield Strength Yield Strength

    Transition

    Temperature (0C)(50% FATT)

    0

    - 80

    - 40

    -120

    -160-200

    -240

    Transition

    Temperature

    bergangstemp

    Hall-

    Petch

    Cottrell-Petch

    Mechanical PropertiesMechanical Properties

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    40/55

    ReH or Rp0,2, MPa after Nagai200 300 400 500 600 700

    CMnSi

    %N0m

    Steel:

    0.1%C

    0.7%Mn0.2%Si

    0.005%NdF=10m

    Steel:0.1%C

    0.7%Mn0.2%Si

    0.005%NdF=10m

    dF: 2 1m

    dF: 5 2m

    dF: 10 5m

    Mn: 0.7

    3.0%

    N: 0.0050.02%

    Si: 0.21.0%

    Streckgren

    ze

    p

    MicrostructureMicrostructure

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    41/55

    0.2% C; 1.5%Mn; 0.2%Si0.2% C; 1.5%Mn; 0.2%Si

    Further reading: Microstructure and crystallographic texture of an ultrafine grained CMn steeland their evolution during warm deformation and annealing, R. Song, D. Ponge, D. Raabe, R.Kaspar, Acta Materialia 53 (2005) 845858

    ContentContent

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    42/55

    Steels for Constructions:

    High Strength LowAlloyed (HSLA) Steels

    Steels for Automotive application

    Fraction of conventional and high strength steel for carsFraction of conventional and high strength steel for cars

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    43/55

    0

    20

    40

    60

    80

    fractio

    nin%

    conventional high strength

    1990 1995 2000 2005

    Steel grades for car bodySteel grades for car body

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    44/55

    Mehrphasen-Sthle

    Dualphasen-Sthle

    DP 280/600

    DP 300/500DP 350/600

    DP 400/700

    DP 500/800

    DP 700/1000

    CP 700/800

    Misc.

    BH 210/340BH 260/370

    IF 300/420

    HSLA 350/450

    MS 950/1200

    MS 1250/1520

    1%4%

    30%22%

    4%

    3%

    8%

    7% 1%4% 6% 4%2%1%

    3%

    TRIP 450/800

    CP 700/800

    Martensit-Sthle

    Fraction of different steel grades in a car body (Porsche Cayenne)

    Car body

    Porsche Cayenne

    Application ofhigh strength steelswith UTS up to 1000 MPa

    High strength Dual Phase steel

    TRIP-steel

    Martensitic

    steels

    Dual Phase

    steels

    Multiphasesteels

    Ductil ity/Strength combinations of steels for automotive applicationsDucti lity/Strength combinations of steels for automotive applications

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    45/55

    TRIP(Mn+Al) (Mn+Si) Mn+Si+Nb

    TRIP(Mn+Al) (Mn+Si) Mn+Si+Nb

    austeniticstainless

    Fe-Mn-Al-C

    Fe-Mn-Al-SiTWIPFe-Mn-Al-SiTWIP

    Fe-Mn-Al-SiTRIPFe-Mn-Al-SiTRIP

    Al-alloys

    Fe P06

    Fe P01-P05HSLA

    HSLABH(P)

    DualPhase(DP)

    CPCP

    MartensiticMartensitic

    BH t l

    Bake-hardening effectBake-hardening effect

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    46/55

    Stress

    Strain

    C

    After

    press

    forming

    Bake

    hardening

    Work

    hardening

    Conventional

    steel

    Baking

    BH steel

    after M. Kurosawa, S. Sato,

    T. Obara, K. Tsunoyama,

    Age-hardening behaviour

    and dent resistance ofbake-hardenable and extra

    deep-drawable high strengh

    steel, Kawasaki Steel Tech.

    Rep. 18 (1988), pp. 61-65

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    47/55

    AdvancedAdvanced HighHigh--StrengthStrength

    and Supraand Supra--Ductile LightDuctile Light--WeightWeight

    SteelsSteelsG.G. FrommeyerFrommeyer and U.and U. BrBrxx

    MaxMax--PlanckPlanck--InstitutInstitut for Iron Researchfor Iron Research

    DuesseldorfDuesseldorf, Germany, Germany

    Further reading: Supra-Ductile and High-Strength Manganese-TRIP/TWIPSteels for High Energy Absorption Purposes, G. FROMMEYER, U. BRX andP. NEUMANN, ISIJ International, Vol. 43 (2003), No. 3, pp. 438446

    Engineering stress-strain curvesEngineering stress-strain curves

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    48/55

    0 20 40 60 80 1000

    200

    400

    600

    800

    1000

    1200

    TRIPLEX-steel

    X110 MnAl 26 11

    TRIP-steel

    X5 MnAlSi 15 3 3

    TWIP-steel

    X5 MnAlSi 25 3 3

    stress[

    MPa]

    plastic strain pl

    [%]

    characteristic stress-strain-curves of TRIP-, TWIP-

    and TRIPLEX-steels (strain rate = 10-4s-1)&

    Twinning Induced Plasticity

    Transformation Induced Plasticity

    Dominant deformation mechanismsDominant deformation mechanisms

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    49/55

    TWIPdeformation twinning

    TRIP Martensitetransformation

    Austenitic FeMn [Al, Si]Steels

    Austenitic / Ferritic FeMn [Al, Si] Steels

    Temperature-dependence of mechanical propertiesTemperature-dependence of mechanical properties

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    50/55

    TWIP steel (X5 Mn Al Si 25 3 3)

    -200 -100 0 100 200 300 4000,0

    200

    400

    600

    800

    1000

    1200

    1400

    III II I

    un

    f

    Rp0,2

    Rm

    Strength[

    MPa]

    Temperature T [C]

    0

    20

    40

    60

    80

    100

    St

    rain

    [%]

    = 10-4 s-1.

    M:1000x

    T = 400 C, = 50 %T = 50 C, = 78 %

    DuctilityDuctility

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    51/55

    TWIP steel (X5 Mn Al Si 25 3 3)TWIP steel (X5 Mn Al Si 25 3 3)

    Undeformed sampleUndeformed sample

    Sample after tw isting by 1080 (T = 20 C)Sample after twisting by 1080 (T = 20 C)

    Undeformed sampleUndeformed sample

    Deformed sample (uniform elongation of 70%)Deformed sample (uniform elongation of 70%)

    High Strength TRIPLEX Light-Weight SteelHigh Strength TRIPLEX Light-Weight Steel

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    52/55

    TEM images of a high carbon Fe-Mn-Al-C steel

    revealing a fine shear band structure (BF) (a),SADP of the twinning region (b),

    E21-structured -carbides (DF) (c),theoretical SADP of-matrix and E21-carbides (d)

    fcc(111)

    fcc(111)

    fcc(111)

    fcc(002)

    fcc(111)

    E2 (001)1

    E2 (110)1E2 (001)1

    E2 (110)1

    7 874 /3

    Density vs. Al-concentration of quaternary Fe-Mn-Al-C alloysDensity vs. Al-concentration of quaternary Fe-Mn-Al-C alloys

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    53/55

    12 14 16 18 20 226,4

    6,5

    6,6

    6,7

    6,8

    6,9

    7,0

    7,1

    7,2

    7,3

    7,4

    7,5

    18

    16

    14

    12

    10

    8

    6

    Mn content [At.-]

    ,

    , ,

    , ,

    , ,

    , ,

    , ,

    , , resulting density

    aluminium content [At.-%]

    density

    [g/cm

    3]

    Eisen

    = 7.874 g/cm3

    percentagereductioninden

    sity

    (0-)/0*100

    : 8

    : 9 : 17

    : 10 : 19

    : 11 : 21

    : 12 : 22

    : 13 : 23

    : 16 : 24

    density reduction resulting

    from the lattice dilatation

    ApplicationsApplications

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    54/55

    TRIPTWIP

    TRIPLEX

    Lightweight constructionand

    crashresistent

    High strengthand safety against brittle failure

    High toughness

    at low temperatures

    since

    Development of steels with high strength and formabilityDevelopment of steels with high strength and formabili ty

  • 7/28/2019 Steels Ponge Marie-Curie Summer School

    55/55

    0 10000 20000 30000 40000 50000

    2002

    1996

    1996

    1990

    1990

    1990

    1985

    1985

    1981

    1978

    1975

    FeMnAlC TRIPLEX steels

    high manganese TWIP steels

    high manganes TRIP steels

    Conventional TRIP steels

    SULC steels

    Isotropic streels

    highstrength IF steels

    Bake-Hardening steels

    Dualphase steels

    Phosphorus alloyed steels

    Microalloyed steels

    ultimate tensile strength * total elongation [MPa %]