(Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

download (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

of 17

Transcript of (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    1/17

    ELSEVIER

    Journal o f Petroleum Science and E ngineering 18 (1997) 113 - 129

    S t e a m C O 2 d r iv e e x p e r i m e n t s u s i n g h o r i z o n t a l a n d v e r ti ca l w e l l s

    F Giim rah , S . Ba~ cl

    Petroleum and Natural Gas Engineering Department Middle East Techmcal University 06531 Ankara Turkey

    Rece wed 4 July 1996; accepted 17 January 1997

    A b s t r a c t

    R e s e a r c h i n t o t h e a p p l i c a t i o n o f a s i m u l t a n e o u s s t e a m - C O 2 d ri v e p r o c e s s a n d t h e e x a m i n a t i o n o f v e r t i c a l an d h o r i z o n t a l

    i n j e c t i o n - p r o d u c t i o n w e l l c o n f i g u r a t i o n s w a s c o n d u c t e d i n a p h y s i c a l m o d e l o f 1 / 1 2 t h o f a n i n v e r t e d r e g u l a r s e v e n - s p o t

    p a t t er n t o d e t e r m i n e t h e r e c o v e r y p e r f o r m a n c e o f 1 2 . 4 A P I h e a v y o i l . T h r e e g r o u p s o f w e l l c o n f i g u r a ti o n s w e r e m a i n l y

    i n v e s t i g a te d : a v e r t i c a l i n je c t i o n a n d p r o d u c t i o n w e l l s s c h e m e ( g r o u p 1 ), a v e r t i c a l in j e c t i o n a n d h o r i z o n t a l p r o d u c t i o n w e l l s

    s c h e m e ( g r o u p s 2 A a n d 2 B ) , a n d a h o r i z o n t a l i n j e c t i o n a n d p r o d u c t i o n w e l l s s c h e m e ( g r o u p s 3 C a n d 3 D ) . A t o t a l o f 1 7

    e x p e r i m e n t s o f w h i c h h a v i n g f i v e s t e a m - a l o n e a n d t w e l v e s t e a m - C O 2 p r o c e s se s w e r e c o n d u c t e d f o r th e a b o v e w e l l

    c o n f ig u r a t io n s .

    I n s t e a m - a l o n e t e s t s , th e v e r t i c a l i n j e c t o r a n d h o r i z o n t a l p r o d u c e r s c h e m e ( g r o u p 2 B ) s u p p l i e d a h i g h e r r e c o v e r y t h a n t h a t

    o f t h e o th e r s. T h e o i l re c o v e r y w a s 3 3 . 6 % o f o r ig i n a l o i l i n p l a c e ( O O I P ) i n g r o u p 2 B c o m p a r e d t o 7 . 8 % o f O O I P f o r t h e

    v e r t i c a l i n j e c t i o n a n d p r o d u c t i o n w e l l s s c h e m e ( g r o u p 1 ) a t 1 p o r e v o l u m e ( P V ) o f s t e a m i n j e c t e d . T h e l o w e s t u l t im a t e

    r e c o v e r y w a s o b t a i n e d f r o m t h e h o r i z o n t a l i n j e c t o r - h o r i z o n t a l p r o d u c e r w e l l c o n f i g u r a t i o n ( g r o u p 3 C ) .

    F o r s t e a m - C O ~ t e s t s , o i l r e c o v e r i e s w e r e 5 8 . 3 % a n d 2 5 . 3 % o f O O I P f o r a C O 2 / s t e a m r a t io o f 1 4. 2 d m 3 / 1 i n g r o u p 2 A

    a n d t h e h o r iz o n t a l i n j e c t o r a n d p r o d u c e r ( g r o u p 3 C ) w i t h a C O 2 / s t e a m r a t i o o f 1 3 .4 d m 3 / 1 , r e s p e c t i v e l y . T h e c o - i n j e c ta o n o f

    C O 2 w i t h s t e a m i n c r e a s e d t h e u l t i m a t e o i l r e c o v e r y a n d t h e p r o d u c t i o n r a te o v e r s t e a m a l o n e . T h e r e c o v e r y e f f i c i e n c y o f

    h o r i z o n t a l i n j e c t o r - h o r i z o n t a l p r o d u c e r ( g r o u p 3 C ) w a s a l s o t h e l o w e s t o n e , b u t v e r t i c al i n j e c t o r - h o r i z o n t a l p r o d u c e r ( g r o u p

    2 A ) g a v e t h e b e s t p e r f o r m a n c e w h e n c o m p a r e d t o o t h e r t e s t s .

    W h e n s t e a m - a l o n e a n d s t e a m - C O 2 t e st s w e r e c o m p a r e d , t h e o i l r e c o v e r y i n c re a s e d w i t h i n c r e a s i n g C O 2 / s t e a m r a t i o t i ll

    a n o p t i m u m v a l u e w a s re a c h e d , a ft e r w h i c h a d i m i n i s h i n g e f f e c t w a s o b s e r v e d . T h e o p t i m u m C O 2 / s t e a m r a t io fo r

    m a x i m i s i n g o i l r e c o v e r y w a s ~ 1 4 d m 3 / 1 f o r a ll w e l l c o n f i g u r a ti o n s . T h e r e f o r e t h e v a l u e o f C O 2 / s t e a m r a t io w a s o n e o f

    t h e i m p o r t a n t f a c t o r s w h i c h a f f e c t e d th e p e r f o r m a n c e o f t h e p r o ce s s . T h e o t h e r f a c t o r w h i c h i n f l u e n c e d t h e o i l r e c o v e r y w a s

    t h e w e l l t y p e o f i n j e c t o r a n d / o r p r o d u c e r w h e t h e r i t i s h o ri z o n t a l o r v e r ti c a l . T h e d i s ta n c e b e t w e e n t h e w e l l s a l s o a f f e c te d

    t h e e f f i c i e n c y o f t h e p r o ce s s . T h e p r i m a r y m e c h a n i s m s f o r t h e m o b i l i s a t i o n o f o i l w e r e v i s c o s i t y r e d u c ti o n , s t e a m d i s t i l la t i o n ,

    s t r ip p in g a n d g a s d r iv e e f f e c t o f C O 2 .

    Keywords: stea m -CO 2 drive: physical model; vertical-ho rizontal wells , heavy-oil recovery

    1 I n t r o d u c t i o n

    * Correspo nding author. Fax:

    Fevz i@ orqual.cc.metu.edu.tr

    90-312-2101271; e-maih

    H e a v y - o i l r e s e rv o i r s p re s e n t p r o d u c t i o n p r o b l e m s

    b e c a u s e t h e h i g h o i l v i s c o s i t y a n d l o w r e s e r v o i r

    e n e r g y r e s u l t i n l o w r e c o v e r y r a t e s a n d p o o r r e c o v -

    092 0-41 05/ 97/ 17. 00 Copyright 1 997 Elsevier Science B.V. All r ights reserved.

    PII S 0 9 2 0 - 4 1 0 5 ( 9 7 ) 0 0 0 0 3 - X

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    2/17

    4 F. Gf imrah , S. Ba~c t / Journa l o f Pe t ro leum Sc ience and Engm eermg 18 11997 113- 129

    ery efficiency when compared to those of conven-

    tional oil reservoirs. The most widely used thermal

    technique to extract residual oil from heavy-oil fields

    is steam injection (Chu, 1985). There is an interest in

    using CO 2 gas as immiscible phase for recovering

    heavy oil (Roadifer, 1986). In heavy-oi l reservoirs, a

    combination of steam and non-condensable gases

    can be used to increase heavy-oil production. In

    Turkey 80 of the oil reservoirs are heavy-oil reser-

    voirs (Kantar and Topkaya, 1983). These heavy oils

    are usually mobile at reservoir conditions and most

    can be produced with primary production but recov-

    ery is very low. The Bat1 Kozluca Field which has

    98 106 stb crude oil with 12.4API is located in

    the southeastern region of Turkey. The presence of

    the Dodan natural gas field having 93 of CO~

    close to the oil field may favour the use of the CO 2

    injection process with steam. In the following para-

    graphs, the results of field tests, simulation studies

    and laboratory experiments for the combined use of

    steam and gases are reviewed.

    Steam-air stimulation f ield tests were reported

    by Rintoul (1979) and Meldau et al. (1981). The

    improvement in oil recovery over conventional steam

    stimulation was recorded in these applications. Sperry

    (1981) reported the results of the Vapour Therm

    system in three different fields in the U.S. mid-conti-

    nent region. An improvement in oil/steam ratio was

    achieved. The steam-generating systems such as

    downhole steam generators (Fox et al., 1981), the

    Vapour Therm process (Sperry, 1981). and the

    wet-air oxidation technique (Wilhelmi and Knopp,

    1979) consider the injection of produced non-con-

    densable gases with high-quality steam into the

    reservoirs. The injection of gases together with steam

    is believed to benefit the recovery process by the

    presence of non-condensing gas phase. Schirmer and

    Eson (1985) reported the concept of using a direct

    fired downhole steam generator in thermal oil recov-

    ery projects in the Kern River Field, California. The

    oil/steam ratio and peak production rate obtained

    from downhole the steam generator were higher

    compared to previous responses with conventional

    steam injection.

    Numerical reserL oir simulato rs have been used to

    predict the effect of various conditions on the use of

    non-condensable gases with steam for oil recovery

    (Weinstein, 1974; Fox et al., 1981; Meldau et al.,

    1981; Balog et al., 1982; Leung, 1982; Claridge and

    Dietrich, 1983; Stone and Malcolm, 1985a,b). Co-in-

    jection of a non-condensable gas with steam acceler-

    ated the oil production compared to the steam-only

    case. The ultimate recovery in a certain period was

    about the same for both cases, or higher for the

    co-injection case, depending on operating and reser-

    voir conditions. This indicates that an interpretation

    of simulation studies should be made with awareness

    of the conditions studied.

    The results of l abora to~ experimen ts which have

    been conducted to study the expected beneficial ef-

    fect of co-injecting a non-condensable gas together

    with steam are summarised in the following para-

    graphs. Ozen (1967) conducted a laboratory experi-

    ment to test the effect of co-injection of nitrogen gas

    on steam flood residual oil saturation. It was found

    that N2-steam flooding increased the oil recovery by

    ~ 4- 5 more compared to the steam-only case.

    This result was attributed to the presence of gas in

    the core which would aid in the distillation of crude

    leading to increased oil recovery. Slobod and Mer-

    riam (1969) investigated the contribution of factors

    as gas drive and vaporisation to improve the effi-

    ciency of displacement o f oil by steam flooding. But,

    hot water was used to introduce heat into the system,

    and nitrogen was used to provide a vapour space in

    the porous system to isolate the actions produced by

    heat alone and vaporisation alone. Pursley (1975)

    carried out experiments to investigate the effect of

    injecting air, methane, or CO 2 on steam stimulation.

    A dramatic improvement in the oil/steam ratio was

    observed as a result of injecting methane or air. The

    addition of CO~ was somewhat less effective be-

    cause of its high solubility in water. Fox et al. (1981)

    conducted laboratory experiments to examine recov-

    ery with soluble gas-steam drive using core sam-

    ples. It was found that soluble gas-steam drive

    recovered more rapidly than the steam-only case.

    Redford (1982) reported the effects of adding CO 2

    or ethane to steam in a 3-D physical model. Adding

    of CO 2 or ethane to steam greatly improved the

    recovery of Athabasca tar sand over that recovered

    with other additives. This was attributed to a solution

    gas drive effect which produced the fluid from the

    cooler portion of the reservoir. Briggs et al. (1982)

    presented the results of a 1-D physical simulator of

    cyclic steam injection with CO~ and naphtha addi-

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    3/17

    F. Giimrah, S. Ba~ct / Journal of Petroleum Sctence and Engineering 18 1997) 113-129

    115

    rives. The experiments were done with Athabasca tar

    sand. The use of CO 2 with steam improved recovery

    primarily by providing additional drive energy on the

    depletion portion o f the cyclic process. Harding et al.

    1983) reported results of a physical model study of

    steam flooding with nitrogen and CO 2 additives

    which were injected into a linear porous medium

    saturated with a moderately viscous refined oil and

    water. It was observed that the simultaneous injec-

    tion of the gases with steam resulted in a significant

    improvement in the ultimate recovery of the crude

    oil. Paracha 1985) studied the effects of CO~ addi-

    tion to steam in a 1-D laboratory model on heavy

    oils. The results indicated that although CO: with

    steam increased the rate o f recovery significantly, the

    oil viscosity and hence the API gravity were en-

    larged. Stone and Malcolm 1985b) conducted high-

    pressure steam-C O, co-injection experiments in a

    1-D physical model with Athabasca tar sand. The

    results from the experiments were compared with

    results from a numerical model study. Both models

    gave results that co-injection of CO z and steam

    increased ultimate recovery. Stone and Nasr 1985)

    analysed the use of s tea m-CO 2 and s tea m-N 2 mix-

    tures in a set of continuous injection experiments in

    a test bed. The addi tion of CO 2 to the steam resulted

    in a significant change in the displacement mecha-

    nism. An enhanced bitumen stripping and the forma-

    tion of a gas zone around the injection well resulted

    in increased conformance in the test bed and in-

    creased bitumen production, as well as in bitumen

    viscosity reduction due to d issolved CO 2 and an

    increased pressure gradient between the injection and

    production wells. Stone and Ivory 1987) carried out

    steam-C O 2 experiments in a large pressure oil sand

    vessel. CO 2 pre-soak followed by steam injection,

    steam-C O 2 co-injection and steam, CO, and solvent

    co-injection experiments were employed to under-

    stand the mechanisms behind recovery processes. In

    all cases investigated, the addition of CO~_ to steam

    resulted in improved utilisation of injected energy

    and improved the oil recovery over that from steam

    alone. Nasr et al. 1987) studied the effects of steam,

    ste am-C O 2, ste am-N 2 and stea m-CO R-N 2 mix-

    tures on bitumen recovery from oil sands by using a

    3-D physical model. The test results showed that the

    addition of flue gas to steam substantially improved

    both rate and ultimate recovery of bitumen as com-

    pared to that obtained by steam alone. The steam-

    CO 2 mixture was superior to either the steam-N 2 or

    steam-flue gas combinations. Giimrah and Okandan

    1987) studied simultaneous steam-CO, injection

    processes in a 1-D physical limestone pack model

    with heavy oils. The results indicated that an opti-

    mum COJsteam injection ratio was present. The

    ste am-C O 2 process accelerated production of heavy

    oil above that of the steam-only case. Doscher et al.

    1988) conducted scaled physical model experiments

    to investigate the advantage of using high-velocity

    gas injection for recovering reservoir fluids, the in-

    jection of gas and steam after steam breakthrough for

    increasing the profitability of some steam drives and

    the use of specially fractured horizontal wells to aid

    in the profitable production of viscous hydrocarbons.

    Frauenfeld et al. 1988) conducted physical model

    experiments to study the effects of a steam injection

    process. For oils without an initial gas content, co-in-

    jection of CO 2 with steam was capable of improving

    oil recovery over that obtained with steam alone.

    When an initial dissolved gas was present, co-injec-

    tion of CO 2 was not beneficial. Injection o f CO 2 or

    CH slugs just before steam injection was beneficial

    in increasing oil recovery for experiments where an

    initial dissolved gas was present. Metwally 1990)

    conducted a laboratory program for the Lindbergh

    Field, Alberta, to investigate the effect of CO~ and

    methane on the performance of steam processes. The

    results indicated that the presence of a non-con-

    densable gas improved steam injectivity. Injectivity

    improvement was most pronounced when a gas slug

    was injected prior to steam injection, but the pres-

    ence of a non-condensable gas with steam did not

    improve recovery and resulted in much higher resid-

    ual oil saturation compared to steam injection alone.

    Hornbrook et al. 1991) carried out a high-pressure

    1-D laboratory displacement study to evaluate the

    effects of adding CO 2 to steam on the recovery of

    West Sak crude oil. It was found that adding CO 2 to

    steam improved the recovery and recovery rate of

    the crude over conventional steam flooding. Giimrah

    and Okandan 1992) conducted steam-C O 2 experi-

    ments in 1-D and 3-D laboratory models to evaluate

    the benefits o f CO 2 addition to steam on the recov-

    ery of heavy oils. The linear tests indicated that the

    oil recovery increased with increasing CO2/steam

    ratios until an optimum value was reached. Light-oil

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    4/17

    116 F . G i im r a h , S . B a ~ c t / J o u r n a l o f P e t r o l e u m S c i e n c e a n d E n g i n e e r i n g 1 8 1 9 9 7 ) 1 1 3 - 1 2 9

    r e c o v e r y w a s r e l a t i v e l y l e s s i mp r o v e d b y t h e a d d i -

    t i o n o f C O 2 to t h e i n j e c t e d s t e a m ; h o w e v e r , t h e o i l

    p r o d u c t i o n r a t e w a s i n c r e a s e d c o n s i d e r a b l y f o r a l l

    o i ls . T h e p r o d u c t i o n o f l i g h te r - o i l f r a c t io n s i n c r e a s e d

    w i t h i n c r e a s i n g CO 2 c o n c e n t r a t i o n a n d A P I g r a v i t y .

    N a s r a n d P i e r c e 1 9 9 5 ) u s e d a h i g h - p r e s s u r e a n d

    h i g h - t e mp e r a t u r e s c a l e d mo d e l t o e v a l u a t e o i l r e c o v -

    e r y p r o c e s s e s b y a s e r i e s o f e x p e r i m e n t s o n s t e a m -

    CO 2 i n j e c ti o n s t r a te g i e s f o r b o t t o m w a t e r r e s e r v o i r s .

    T h e c o - i n j e c t i o n o f CO 2 w i t h s t e a m a c c e l e r a t e d a n d

    i m p r o v e d o i l r e c o v e r y r a t e s a s c o m p a r e d t o s t e a m -

    o n l y i n j e ct i on . T h e s t e a m - C O 2 c o n t i n u o u s i n j e c t i o n

    r e s u l t e d i n a b e t t e r p e r f o r ma n c e t h a n t h a t f r o m

    s t e a m - o n l y o r s t e a m - C O 2 s e q u e n t ia l i n je c t io n .

    S t e a m- o n l y i n j e c t i o n r e s u l t e d i n a d r a ma t i c i mp r o v e -

    m e n t i n o il r e c o v e r y a s c o m p a r e d t o h o t w a t e r - C O 2

    in jec t ion .

    N o e x p e r i m e n t a l d a t a k n o w n t o u s h a v e b e e n

    p u b l i s h e d o n s t e a m f l o o d i n g i n th e p r e s e n c e o f C O 2

    f o r Ba t l K o z l u c a c r u d e o i l . A l s o , t h e r e h a s n o c o m-

    p a r a t i v e s t u d y b e e n m a d e o n t h e p e r f o r m a n c e o f

    s t e a m - C O 2 p r o c e s s e s b y t h e u s e o f h o r i zo n t a l a n d

    v e r t i c a l i n j e c t i o n - p r o d u c t i o n w e l l s . Be c a u s e o f th e

    a mo u n t o f h e a v y o i l i n r e s e r v e a n d t h e p r e s e n c e o f a

    n a t u r a l C O 2 s o u r c e , i t w a s d e c i d e d t o s t u d y t h e

    e f f e c ts o f a d d i ng C O 2 t o s t e a m o n t h e r e c o v e r y o f

    Ba t1 K o z l u c a h e a v y o i l a t l a b o r a t o r y c o n d i t i o n s .

    2 Ex per i menta l a ppa ra tus a nd pro cedure

    2 1 Laboratory model

    I n r e c o v e r y p r o c e s s e s , t h e i n j e c t io n a n d p r o d u c i n g

    w e l l s c a n b e a r r a n g e d i n s o m e t y p e o f p a t t e rn . F r o m

    d .

    @

    p r o d u c l n g w i l l s

    l l n m o f

    _ _ l ~ l la rn o u n d ~ l ~

    d v ~ l l p a e l n g

    F i g . 1 . I n v e r t e d r e g u l a r s e v e n - s p o t w e l l a r r a y .

    t h i s p a t t e r n a s ma l l e l e me n t c a n b e d e r i v e d b y s y m-

    me t r y t o r e p r e s e n t t h e f l o o d i n a mo d e l s t u d y . T h e

    f l o o d p e r f o r ma n c e f o r t h e e n t i r e p a t t e r n c a n b e d e -

    v e l o p e d b y r e p r o d u c i n g t h e p e r f o r m a n c e o f t h e p r o -

    c e s s i n t h i s s ma l l e l e me n t . T h e s ma l l e s t e l e me n t

    f r o m t h e p a t t e r n t h a t c a n b e u s e d a s a mo d e l i s

    d e r i v e d b y c o n s t r u c t i n g l i n e s t h r o u g h a l l p l a n e s o f

    s y m m e t r y . T h e s e l i n e s o f s y m m e t r y r e p r e s e n t i nv a r i-

    an t l i nes across which there i s no f low. In th i s work ,

    t h e i n v e r t e d r e g u l a r s e v e n - s p o t p a t t e r n i s s t u d i e d .

    T h i s p a t t e r n c o n s i s t s o f o n e i n j e c t i o n w e l l s u r -

    r o u n d e d b y s i x p r o d u c i n g w e l l s . F i g . I s h o w s t h e

    a r r a n g e me n t o f w e l l s i n a h e x a g o n a l a r r a y . T h e u s e

    o f t h i s s y mme t r y t o d i v i d e t h e p a t t e r n i n t o s ma l l e r

    e l e me n t s i s a l s o s h o w n i n F i g . 1 . T h e s h a d e d a r e a i s

    t h e s ma l l e s t mo d e l l i n g e l e me n t o b t a i n e d f r o m t h i s

    p a t t e r n a n d r e p r e s e n t s t h e mo d e l s h a p e u s e d . T h e

    i n j e c t i o n w e l l o f t h e mo d e l a c t u a l l y r e p r e s e n t s 1 / 1 2

    of an in j ec t ion wel l i n the pa t t e rn , where as the

    T a b l e 1

    T h e p r o p e r t i e s o f p h y s i c a l a n d p r o t o t y p e m o d e l s

    P a t t e r n S c a l i n g p a r a m e t e r P r o t o t y p e P h y s i c a l m o d e l

    1 / 1 2 t h o f i n v e r te d r e g u l a r 7 - s p o t 1 / 1 2 t h o f i n v e r te d r e g u l ar 7 - s p o t

    D i s t a n c e b e t w e e n i n j e c t i o n L p / L m = a = 250 202 . 5 m

    a n d p r o d u c i n g w e l l s

    T h i c k n e s s H p / H m = a 2 5 . 0 m

    P e r m e a b i l i t y K p / K m = l / a 4 0 .0 m D

    P o r o s i t y 1 2 5 . 4

    T e m p e r a t u r e - 5 0 . 0 C

    O i l v i s c o s i t y 1 6 0 7 . 0 m P a s

    T i m e

    t p / t m = a z

    4 3 . 4 d a y s

    P r e s s u r e d r o p A p p / A P m = a 3 4 4 7 . 5 k P a

    In jec t ion r a t e Q p / Q m = a 1 4.4 m 3 / d a y

    8 1 . 0 c m

    1 0 . 0 c m

    10 . 0 D

    3 8 . 0

    5 0 . 0 C

    6 0 7 . 0 m P a s

    1 rn in

    2 0 . 7 k P a

    4 0 .0 c m 3 / m i n

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    5/17

    F. Giimrah, S. Ba~cl / Journal of Petroleum Science and Engineering 18 1997) 113-129 117

    WET TEST HEATER

    METER HEAT ER ONTROLLER TEMPERATURECA NNE R CONT ROLLE R

    ~ i i - ~ ; 1 ~ 1 I ] 1 , ' t ' [ I ~ -ROTAMETER ~,J2 )~

    ',I .- ' ,', ,/ i k ,:,:,,','.~..... : co

    r - - T - T _ l . . . . . . . . . o o L _ J

    b : - . : : : -'/ - . . . . . . . . . . . . . . . . . . . . . J STEAM

    SEPARATORS 3-D MOD EL GENERATOR

    F i g . 2 . A s c h e m a t i c r e p r e s e n t a t io n o f t h e e x p e r i m e n t a l s e t u p .

    G rou p 1 :vert ical in ject ion-vert ical production

    Injection we ll (vertical)

    . ~ T l e n g t h = 9 .7 cm

    a = 40.5 cm ~ per fo ra tion= 4 x5 mm

    P r o d u c t i o n e l l

    vert ical) ~l~ _ , , / ~'~

    length = 9 ,7 om

    pe r fo r a ti on= 4 x5 mm h = 10o re

    produotlon c = 81 m Injection

    Well well

    G rou p 2 : vert ical in ject ion-hor izon tal production

    G r o u p 2 A P~

    le ng th = 40,5 m / ~ ~ T

    per fora t ion= 10 x 2 .5 mm f / -

    r.5 ~ A I~ li l

    ~roduot lon InJeot lon

    w e l l / . ~ w e l l

    G r o u p 2 B . , / ~ ~

    7.5

    ~ ~ o d u ~ o n Inj~=tlon

    Well well

    G r o u p 3 : horizontal in ject ion-hor izontal production

    / - In ject ion we l l (hor izontal)

    j ~ l eng th =39 , 2 cm

    G r o u p 3 C , / / ~ p e r f o r e t l o n = 10 x 2 .5 m m

    inj~ tion

    /

    Group 3D. / / ~ o~ ,,~

    7 .5 ~ L ~

    produo~on inJeo~on

    well w~l

    F i g 3 . W e l l c o n f i g u r a t i o n s .

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    6/17

    [ 18 F. Giimrah, S. Ba~,cl/Journal of Petroleum Science and Engineering 18 1997) 113-129

    p r o d u c t i o n w e l l o f t h e m o d e l r ep r e s en t s 1 / 6 o f a

    p r o d u c t i o n w e l l . T h e m o d e l w a s t r i a n g u l a r i n s h a p e .

    A s c a l in g f a c t o r o f 2 5 0 w a s a s c e r t a i n e d t o c o r re -

    s p o n d t o t h e p r o t o t y p e s i n t h e f i e l d . P u j o l a n d

    B o b e r g ' s ( 1 9 7 2 ) t h e r m a l s c a l i n g a p p r o a c h w a s u s e d

    i n th e d e s i g n o f t h e s c a le d m o d e l . T h e p r o p e r t i e s o f

    t h e s c a l e d m o d e l a n d i t s c o r r e s p o n d i n g p r o t o t y p e a r e

    g i v e n i n T a b l e 1 .

    A s c h e m a t i c r e p r e s e n t a t i o n o f t h e e x p e r i m e n t a l

    s e t - u p i s i l l u s t r a t e d i n F i g . 2 . T h e s e t - u p i s c o m p r i s e d

    o f f o u r m a i n p a r t s : a s t e a m a n d C O 2 i n j e ct i o n s y s -

    t e m , a p h y s i c a l m o d e l , a d a t a r e c o r d i n g s y s t e m a n d a

    p r o d u c t i o n s y s t e m . T h e w e l l c o n f i g u r a t i o n s a r e d e -

    l i n e a te d i n F i g . 3 . T h e m o d e l h a s a d i m e n s i o n o f 8 1

    c m 7 0 . 1 c m x 4 0 . 5 c m w i t h a t h i c k n e s s o f l 0

    c m . T h e t o p o f th e m o d e l w a s r e m o v a b l e a n d a c ts a s

    a f l a n g e s o t h a t w a t e r , o i l a n d c r u s h e d l i m e s t o n e

    m i x t u r e c a n b e p a c k e d e a s i l y . T o m e a s u r e t h e t h r e e -

    d i m e n s i o n a l t e m p e r a t u r e d i s t r i b u t i o n i n s i d e t h e

    m o d e l , 6 2 t h e r m o c o u p l e s w e r e i n s t a l l e d a t t h e t o p ,

    c e n t r e a n d t h e b o t t o m p l a n e s o f th e m o d e l . I n s u l a t i n g

    m a t e r i a l s a n d h e a t e r s w e r e a l s o u s e d i n t h e m o d e l .

    2 2 Experimental procedure

    T h e p r e m i x i n g m e t h o d w a s u s e d i n p r ep a r i n g t h e

    u n c o n s o l i d a t e d l i m e s t o n e p a c k m i x t u r e s f o r t h e e x -

    p e r i m e n t s . T h e w a t e r a n d c l e a n c r u s h e d l i m e s t o n e

    w e r e m i x e d i n i ti a ll y t o m e e t t h e c o n d i t i o n s o f a

    w a t e r - w e t s y s t e m . T h e n t h e o i l w a s m i x e d h o m o g e -

    n e o u s l y w i t h t h e m t o y i e l d t h e d e s i r e d f l u i d s a t u r a -

    t i o n s a n d c a r e f u l l y p a c k e d i n t o t h e m o d e l . T h e o i l

    a n d w a t e r s a t u r a ti o n s w e r e c h o s e n a s 7 5 a n d 2 5 ,

    r e s p e c t i v e l y , a n d k e p t t h e s a m e f o r e a c h e x p e r i m e n t .

    T h e l im e s t o n e p a c k w i t h p o r e v o l u m e o f 5 3 7 3 c m 3

    g i v e s 3 8 p o r o s i t y a n d a b s o l u t e l i q u id p e r m e a b i l i t y

    o f 1 0 d a rc i es . A f t e r p a c k i n g , t he m o d e l w a s m o v e d

    h o r i z o n t a l l y i n s i d e t h e i n s u l a t i o n j a c k e t , t h e s e t - u p

    w a s t h e n p r e p a r e d f o r t h e t e s t a n d t h e m o d e l w a s

    h e a t e d a p p r o x i m a t e l y t o 5 0 C w h i c h w a s t h e d e s i r e d

    r e s e r v o i r t e m p e r a t u r e . T o i n i t i a t e a n e x p e r i m e n t , t h e

    s t e a m g e n e r a t o r w a s b r o u g h t t o i t s m a x i m u m t e m -

    p e r a t u r e a n d t h e m a s s f l o w c o n t r o l l e r w a s s e t t o t h e

    d e s i r e d C O 2 f lo w r a t e. T h e s i m u l t a n e o u s i n j e c ti o n o f

    s t e a m a n d C O 2 w a s s t ar te d . T e m p e r a t u r e d i s t r ib u t i o n

    i n s i d e t h e m o d e l w a s c o n t i n u o u s l y r e g i s t e r e d . T h e

    o t h e r p a r a m e t e r s t h a t w e r e r e c o r d e d t h r o u g h o u t t h e

    t e s t s w e r e f l u i d i n j e c t i o n a n d p r o d u c t i o n p r e s s u r e s

    O_

    g

    O

    o

    o

    >

    J

    o

    1 0 0 0 0

    1

    1O 0

    0

    BATI KOZLUCACRUDEOIL

    1 0 2 0 3 0 4 0 g o 6 0 i o

    8

    T E M P E R A T U R E ( C )

    F i g . 4 . V l sc o s i u e s f B a t lK o z lu c a r u d eo i l 12 . 4AP I) .

    a n d o i l , w a t e r a n d g a s p r o d u c t i o n d a t a . T h e e f f l u e n t s

    f r o m t h e m o d e l w e r e c o l l e c t e d in a t w o - s t a g e s e p a r a -

    t i o n s y s te m . B o t h o f t h e m a r e o p e r a t in g a t a t m o -

    s p h e r ic p r e s s u r e . T h e t o p o f t h e s e c o n d s e p a r a t o r w a s

    c o n n e c t e d t o a w e t t e s t m e t e r t o m e a s u r e t h e a m o u n t

    o f g a s p r o d u c e d . T o c o n t r o l t h e p r e s s u r e o f t h e

    p r o d u c t i o n w e l l , b a c k p r e s s u r e r e g u l a t o r s w e r e l o -

    c a t e d a t t h e f lu i d s t r e a m e n d o f th e f i rs t s e p a r a t o r

    a n d a t t h e u p s t r e a m e n d o f th e f i r s t se p a r a to r . T h e

    b a c k p r e s s u r e r e g u l a t o r s w e r e a d j u s t e d t o a p r e s s u r e

    w h i c h w a s ~ 1 3 .8 k P a ( A p = 2 p s i ) l o w e r t h a n t h e

    v a l u e o f i n j e c t i o n p r e s s u r e . T h e l i g h t e r - o i l f ra c t i o n s ,

    w h i c h w e r e t e r m e d c o n d e n s a t e d u r i n g t h i s w o r k ,

    w e r e p r o d u c e d f r o m t h e s e c o n d s e p a r a t o r . B a t 1 K o -

    z l u c a c r u d e o i l ( 1 2 . 4 A P I ) f r o m s o u t h e a s t e r n T u r k e y

    w a s u s e d . T h e v i s c o s i t y o f t h e o il s a m p l e i s il l u s -

    t r a t e d i n F i g . 4 .

    3 R e s u l t s a n d d i s c u s s i o n

    A t o t a l o f 1 7 e x p e r i m e n t s w e r e c o n d u c t e d w i t h a

    p h y s i c a l m o d e l r e p r e s e n ti n g 1 / 1 2 t h o f a n in v e r te d

    r e g u l a r s e v e n - s p o t p a tt e rn . T h e a i m o f t h e p r e s e n t

    s t u d y w a s t o i n v e s t ig a t e t h e p e r f o r m a n c e o f s te a m

    f l o o d i n g i n t h e p r e s e n c e o f C O 2 f o r h e a v y - o i l r e c o v -

    e r y b y u s i n g v e r t i c a l a n d h o r i z o n t a l w e l l c o n f i g u r a -

    t i o n s . T h e e x p e r i m e n t a l c o n d i t i o n s a r e p r e s e n t e d i n

    T a b l e 2 .

    T h e e x p e r i m e n t s w e r e c o n d u c t e d u n d e r t h re e m a i n

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    7/17

    F. Gi~mrah, S. Ba~ct / Journal of Petroleum Science and Engineering 18 1997) 113-129

    119

    Tab le 2

    E x p e r i m e n t a l c o n d i t i o n s

    STEAM NJECTION STEAM C0 2 INJECTION

    ell

    c o n f i g u r a t i o n c o = / , . ~ . ~ c o = c o = . . = o . ~ c o = ~ , . ~ = ~ . = . . . . c o = c o = / , .~ = ~o . = . . . c o =

    P r m l J m R i ce R i t e : St wr n P r l ll l Jr e R l a R J I ~ p r u i J r l R i l l ~ ~ P r l l i J r l R a l R i m

    (1112thof inverted egular7-s po t pa ttern) , a-,*o R-,,o ~=o Rmo

    [dm3,4. ] [kP I] [c. tmin] [c/mtn] l [dm3/~] [kP i] [/~ ln] [c, 'mk' l ] fdm3/I . ] [kP I] [c/mt~][cc#n ln] . [~] [ I

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    8/17

    1 2 0

    F. Giimrah, S. Ba~cl / Journal of Petroleum Sctence and Engmeermg 18 1997) 113-129

    dm3/1 were carried out. Fig. 5 compares the experi-

    mental recoveries as a function of pore volumes of

    injected steam as cold water equivalent (cwe). The

    highest recovery was obtained with the CO2/steam

    ratio of 22.3 din3/1. The oil recovery was the same

    for the CO2/steam ratio of 84.3 dm3/l when com-

    pared to the steam-only case. This result was at-

    tributed to the highest amount of injected gas with

    steam. As a result it might prevent the movement of

    oil through the production well because of higher

    mobility of gas. For the steam-alone test, the recov-

    ery was increased after 1 PV of steam injection. The

    22.3-dm3/1 CO~-st eam mixture recovered 34.4 of

    OOIP and the steam-only case recovered 7.8 of

    OOIP when 1 PV of steam was injected into the

    model. The recovery of the steam-only case was

    reached to 33.6 of OOIP when the injected amount

    of steam was 1.68 PV. The steam/oil ratios were

    6.83 cm 3/ cm 3 for the steam-only case, 18.83

    cm 3/ cm 3 for the CO2/ ste am ratio of 84.3 dm3/1,

    and 4.31 cm 3/ cm 3 for the CO 2/s tea m ratio of 22.3

    dm3/l at the end of the tests. Therefore, a lower

    amount of steam was required to produce the same

    amount of crude at the CO2/steam ratio of 22.3

    dm3/1.

    3.1.2. Group 2; t erticaI injection-horizontal produc-

    tion scheme

    In this group of tests, a horizontal production well

    was placed at two different locations of the model.

    Therefore the experiments were done under two

    subgroups, 2A and 2B. Scheme A includes a hori-

    zontal production well along the shorter side of the

    model and scheme B has a horizontal well located at

    the longer side of the model (Fig. 3).

    3.1.2.1. Group 2A. A total of four experiments were

    conducted. The CO2/steam ratios were 14.2, 29.8

    and 36.4 din3/1, and a steam-alone test was done to

    compare the performance of the steam -CO 2 experi-

    ments. Fig. 6 shows the results of these experiments.

    The highest recovery was obtained for the

    CO2/steam ratio of 14.2 dm3/I. The steam-only

    case supplied the lowest recovery. The recoveries of

    other tests were ranged between them. Oil recoveries

    were 58.3 of OOIP for the CO2/ stea m ratio of

    14.2 dm3/1, 43.2 of OOIP for 29.8 dm3/1, 41.9

    of OOIP for 36.4 dm3/l , and 23.8 of OOIP for the

    100

    9 0 G R O U P 2 A

    ~ 8 0

    oO 7 0 [ CO.STEAM~T[

    6

    [ u 5 0 -

    0 4 0

    0 _ , ~

    w

    r r 3 0 -

    O 2 0 -

    10-

    0

    0 0.5 1 1.5 2 2 5 3 5

    S T E A M I N JE C T E D ( P V o f c w e )

    F i g 6 . O i l r e c o v e r i e s f o r v e r t i c a l i n J e c t i o n - h o r i z o n t a l p r o d u c t i o n

    s c h e m e g r o u p 2 A )

    steam-only case. The steam/oil ratios at 1 PV of

    steam injection were 5.6 cm3 /c m 3 for the steam-

    alone test and 2.32 cm3 /c m 3 for the 14.2-dm3/1

    CO2/steam ratio test. In all CO2-steam experi-

    ments, the oil production rates were high and tapered

    off rapidly after 1 PV of steam injection. The pres-

    ence of a horizontal producer prevented the early

    production of CO 2 gas which was accumulated at

    the top of the model. Then, it exerted an extra force

    to drive the heated oil through the production well.

    The contact area of the horizontal production well is

    four times larger than that of the vertical well. This

    effect is also an important factor for higher oil

    production rate.

    3.1.2.2. Group 2B.

    In this group, the production well

    was placed along the longer side of the model, it has

    the same length of the production well of group 2A.

    A total of four experiments were done. One of them

    is steam alone and the others are CO2-steam experi-

    ments in which the CO2/steam ratios were 14.1,

    24.3 and 140 din3/1. Fig. 7 shows the oil recoveries

    of these tests. For the 14.1-dm3/1 test, the highest oil

    recovery was obtained as 52.4 of OOIP. The re-

    coveries were 36.0 of OOIP for 24.3 dm3/k 28.8

    of OOIP for 140 dm3 /l, and 33.6 of OOIP for the

    steam-only case. The highest COJsteam ratio case

    recovered lower oil than that of the steam-only case.

    The presence of a larger amount of CO 2 supplied

    worst performance than the other cases. For higher

    CO2/s tea m ratio, a larger amount of CO 2 was pro-

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    9/17

    F. Giimrah, S. Ba~ct / Journal of Petroleum Science and Engineering 18 1997) 113-129

    121

    1 0 0 -

    9o

    E 8 o -

    O 7 0 -

    uJ 50-

    O 4 0 - / ~

    O _ - - - - - I ~ [o I

    L _ J

    r r 3 0 -

    ---_1

    O 2 0

    1 0 ~ . + . ~ , , ,

    0

    0 0 . 5 1 1 . 5 2 2 . 5

    S T E A M I N J E C T E D ( P V o f c w e )

    F i g . 7 . O l l r e c o v e r i e s f o r v e r t i c a l i n j e c U o n - h o r i z o n t a l p r o d u c t i o n

    s c h e m e g r o u p 2 B )

    1 0 0

    G R O U P 3 C

    9 0

    ~ 8 0 -

    0 7 0 -

    6 0 -

    > .

    r r

    5 0 -

    >

    0 40 - ~

    W

    ~ 3 0

    2 0 ~

    10-

    0 : .~-~-- ~

    0 0 . 5 1 1 . 5 2 2

    S T E A M I N J E C T E D ( P V o f c w e )

    F i g . 8 . O l l r e c o v e r i e s f o r h o r i z o n t a l i n j e c t i o n - h o r i z o n t a l p r o d u c -

    t ion schem e g roup 3C).

    duced, and as a result, steam followed the path

    already swept by the CO 2. This result has also

    pointed out the importance of using optimum mix-

    ture of steam and COt in the tests. The ste am/ oi l

    ratios at 1 PV of steam injection were 2.60 and 3.97

    cm 3/ cm 3 for the stea m-CO 2 (14.2 dm3/1) and

    steam-alone tests, respectively. The co-injection of

    CO 2 with steam supplied better performance till a

    certain CO2/steam ratio was reached.

    3.1.3. Group 3; horizontal injection horizontal pro

    duction scheme

    3.1.3.1. Group 3C. The horizontal production well

    was placed along the shorter side of the model. The

    location is 2.5 cm higher than the bottom of the

    model. In this group, two s team- CO 2 tests and one

    steam-alone test were carried out to investigate the

    performance of CO2-steam mixture in horizontal

    well combinations (Fig. 8). Oil recoveries were

    30.3 of OOIP for the CO2/ ste am ratio of 49.7

    din3/1, 25.3 of OOIP for 13.4 dm3/1, and 8.8 of

    OO1P for the steam-alone test. If the recovery of the

    test of 49.7 dm3/1 CO2/steam ratio is compared

    with the 13.4-dm3/1 case, a 3.7 times higher amount

    of CO 2 had to be injected to attain only 20 incre-

    mental oil recovery over the 13.4-dm3/1 case. There-

    fore, the cost effect of injecting larger amounts of

    CO 2 gas should be considered. Both st eam-C O,

    tests recovered more oil than the steam-only case.

    These results were also observed for the values of

    steam/oil ratios. The steam/oil ratio was 16.6

    cm 3/ cm 3 for the steam-only case, 5.8 c m3 /c m 3 for

    the CO2/steam ratio of 49.7 dm3/l, and 5.2

    cm 3/ cm 3 for the CO2/ ste am ratio of 13.4 din3/1.

    3.1.3.2. Group 3D. The horizontal production well

    was placed along the longer side of the model. The

    location of horizontal injection well is the same as in

    group 3C and its position is 2.5 cm higher than the

    bottom of the model. Fig. 9 compares the recoveries

    of two steam-C O 2 tests and one steam-alone test.

    Recoveries were 51.1 of OOIP and 8.9 of OOIP

    for the CO2/steam ratios of 11.7 and 38.1 din3/1,

    respectively. For the steam-only case, it was 18.4

    1 0 0

    O

    >-

    t r

    IaJ

    >

    o

    o

    w

    rc

    90

    80-

    7 0 -

    60-

    50-

    40-

    30-

    20

    10-

    0 - . 4 -

    0

    G R O U P D ]

    [ ' : ' ~ - ' ~ - ~ ' ~ = I ~ [ ]

    ]

    ]

    0 . 5 1 1 . 5 2 2 . 5

    S T E A M I N J E C T E D ( P V o f cw e )

    F i g . 9 . O i l r e c o v e r i e s f o r h o r i z o n ta l i n j e c t i o n - h o r i z o n t a l p r o d u c -

    t i o n s c h e m e g r o u p 3 D ).

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    10/17

    122 F. Gi imrah , S . Ba~c t / Journa l o f Pe t ro leum Sc ience and Engineer ing 18 1997) 11 3-1 29

    S T E A M O N L Y G R O U P 3 D

    A IN JEC T ED ST E AM =O .0 4 5 PV A '

    INJECTION

    A I N J E C T E D S T E A M = l . 2 3 0 P V A

    I N J E C T I O N

    A I N J E C T E D S T E A M = 1 . 6 8 0 P V A '

    I N JE C T IO N T e m p e r a t u r e s in C

    P R O D U C T I O N I N J E C T I O N

    Fig. 10. Temp erature distribution of steam-alone test for horizontal injec tion -ho rizo ntal production group 3D).

    S T E A M - C O 2 G R O U P 3D

    C 0 2 / S T E A M R A T I O = 3 8 . 1 d m 3 1 L

    A I N JE C T E D S T E A M = 0 . 2 9 0 P V A '

    f -d

    INJE TION

    A I N J E C T E D S T E A M = 1 , 2 9 0 P V A

    I N J E C T I O N

    A IN JEC T ED ST EAM = 2 .0 5 0 PV A '

    I N J E C T I O N

    T e m p e r a t u r e s in C

    P R O D U C T I O N I N J E C T I O N

    F i g . | 1 . T e mp e r atu re d i s t r i b u t io n o f s te a m- C O ~ te st f o r h o r i zo n ta l i n j e c t i o n - h o r i zo n ta l p r o d u c t i o n ( g r o u p 3 D ) ,

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    11/17

    F. Gi~mrah, S. Ba~ct Journal of Petroleum Science and Engineering 18 1997) 113-129 123

    o f O O I P . T h e s t e a m / o i l r a ti o s w e r e 8 .5 c m 3 / c m 3

    f o r th e s t e a m- o n l y c a s e , 1 9 .8 c m 3 / c m 3 f o r t he 3 8 . 1 -

    d i n 3 /1 c a s e, a n d 3 . 8 c m 3 / c m 3 f o r th e l l . 7 - d m 3 / 1

    c a s e . I n t h i s s c h e me , t h e d i s t a n c e b e t w e e n t h e h o r i -

    z o n t a l p r o d u c e r a n d t h e h o r i z o n t a l i n j e c t o r w a s t h e

    o t h e r f a c t o r i n f l u e n c i n g t h e r e c o v e r y o f o i l f r o m t h e

    m o d e l . T w o r e p r e s e n t a t i v e e x p e r i m e n t s , s t e a m o n l y

    a n d s t e a m - C O z 3 8. 1 d m 3 / 1 ) a r e s e le c t e d t o s h o w

    t h e t y p i c a l b e h a v i o u r o f t h e t e mp e r a t u r e d i s t r i b u t i o n

    in the mo del tes t s F igs . 10 and 11). Te m pera tu re

    d a t a w e r e t a k e n f r o m t h r e e l e v e l s : t o p , c e n t r e , a n d

    b o t t o m o f t h e mo d e l . S t e a m t e n d s t o r e a c h t h e

    p r o d u c i n g e n d b y f l o w i n g t h r o u g h t h e u p p e r p a r t s o f

    t h e mo d e l . T h i s w a s d e mo n s t r a t e d b y t h e h i g h e r

    t e mp e r a t u r e s b e i n g r e c o r d e d a t t h e t o p r a t h e r t h a n a t

    t h e c e n t r e a n d b o t t o m o f th e m o d e l . E f f e c t i v e h e a t i n g

    o c c u r r e d a f t e r s t e a m b r e a k t h r o u g h i n t h e v e r t i c a l l y

    d o w n w a r d d i r e c t i o n a l o n g t h e mo d e l , i n d i c a t i n g

    s t e a m- z o n e e n l a r g e me n t . A l a r g e r p o r t i o n o f t h e

    m o d e l w a s t h e n h e a t e d b y s t e a m . T h e t e m p e r a t u r e s

    o f t h e b o t t o m o f t h e mo d e l w e r e l o w e r i n t h e s t e a m-

    a l o n e t e s t a s c o mp a r e d t o t h e s t e a m - C O 2 t es t.

    3.1.4. Comparison between the runs

    3.1.4.1. Steam-alone tests. A c o mp a r i s o n o f t h e r e -

    c o v e r y e f f i c i e n c i e s o f d i ff e r e n t w e l l c o n f i g u r a t i o n s i s

    s h o w n i n F i g . 1 2 . F r o m t h e c o m p a r i s o n o f o i l r e c o v -

    e r i e s f o r s t e a m- a l o n e t e s t s o f f i v e w e l l c o n f i g u r a -

    t ions , a ver t i ca l i n j ec to r and a hor i zon ta l p roducer

    w e l l sc h e m e g r o u p 2 B ) g a v e a b e t t er p e r f o r m a n c e

    t h a n t h e o t h e r te s ts . T h e r e c o v e r i e s w e r e t h e s a me f o r

    t h e v e r t i c a l i n j e c t i o n - p r o d u c t i o n w e l l s s c h e me g r o u p

    1 ) a n d t h e h o r i z o n t a l i n j e c t i o n - p r o d u c t i o n w e l l s

    s c h e m e g r o u p 3 C) t i ll 1 .1 PV o f s t e a m i n j e c t io n i s

    r e a c h e d . T h e n mo r e o i l w a s p r o d u c e d f o r g r o u p 1 .

    A l t h o u g h t h e u l t i ma t e r e c o v e r i e s o f t h e v e r t i c a l i n -

    j e c t i o n - h o r i z o n t a l p r o d u c t io n w e ll s s c h e m e g r o u p

    2 A ) a n d g r o u p 1 w e r e t h e s a m e u p t o 2 P V o f s t e a m

    i n j e c t i o n , t h e r e c o v e r y w a s mu c h h i g h e r u p t o 1 . 2

    PV o f s t e a m i n j e c t i o n i n g r o u p 2 A . T h i s w a s a t -

    t r i b u t e d t o t h e b e n e f i c i a l e f f e c t o f t h e h o r i z o n t a l

    p r o d u c e r w h i c h a c c e l e r a t e d t h e o i l p r o d u c t i o n . T h e

    l o w e s t u l t i ma t e r e c o v e r y w a s o b t a i n e d f o r g r o u p 3 C ,

    t h e d i s ta n c e b e t w e e n t h e h o r i z o n t a l i n j e c t o r a n d h o r i -

    1 0 0 -

    9 0 -

    8 0

    0_

    O 7 0

    O

    6 0

    >-

    n

    LU 50-

    >

    O

    j 4 0 -

    LLI

    r r

    3 0 -

    O

    2 0 -

    1 0 -

    0 :

    I S T E A M O N L Y

    i v e r t J c a l l r t j - h o r i z o r r t a l p r o d g r o u p ? A ) I

    _ _

    I I I l I [

    0 . 5 1 1 . 5 2 2 . 5

    S T E A M I N J E C T E D ( P V o f c w e )

    Fig. 12. Com parisonof oil recoveries or steam-alone ests.

    3 3 . 5

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    12/17

    124 F. Gi imrah , S . Ba~c t / Jo urna l o f Pe t ro leum Sc ience and Engineer ing 18 1997) 11 3-12 9

    1 0 0

    13..

    0

    0

    >-

    n,-

    IJJ

    >

    0

    0

    HJ

    r

    0

    9 0 - [ S T E A M - C O 2

    I(C02/steam ra tio) I

    8 0 - [ v o ~ . ,o , ~ o . = ~ r o d . o r o o ~ . 4 ~ , ]

    ~ 0 - I ~ . . . . ~ , ,o , -~ . . . . O , o r * .o ~ o o o ~ D , , ,~

    6 0 , / ~ . ~ - E ~ . . . . . . . ~ . x

    , . > , ~ , .. X ' [ v e ~ c a lm -hor i zonta l rod ,g roup2B 14.1

    4 0 - ..~ > ~-c - - j m

    ~ u ..':~ r - - - -

    . ~ ~ , l l I l - - . ~ ~ p r od . ,g r o u p (2 2 ..3 )]

    2 0 4 j ~ ~ ~ -

    , , ,

    0 . 5

    1 1 . 5 2

    S T E A M I N J E C T E D ( P V o f c w e )

    Fig. 13. Comparison of oil recoveries for steam CO~ tests.

    2.5

    zontal producer was another important factor for the

    displacement of oil. At 1 PV of steam injection, the

    recovery of group 2B was 33.6 of OOIP compared

    to 7.8 of OOIP for group 3C.

    3.1.5. St ea m CO 2 tests

    3.1.5.1. Oil recoveries. Fig. 13 shows the compari-

    son of the results of tests which were conducted at

    13_

    O

    O

    > -

    r r

    u J

    >

    O

    O

    U J

    r r

    O

    1 0 0

    9 0 -

    8 0 -

    7 0 -

    S T E A M - C O 2

    ~ , e r t ic a l n j . - h o r i z o n t a lp r o d , g ro u p 2 A ]

    6 0 -

    ~ . ~

    5 0 ~ , ........... ~ e r t ic a l n j - h o r i z o n t a l p r o d . , g r o u p 2 B

    ~ : ~ '- . ~ - .. ~ p , . ~ v en a l in j .- v e r ti c a l p r o d , g r o u p I [

    2 0 ' - . ~ - - -

    ~ ' ~ Z ' ' . ~ [ h o r iz o n ta ln j -hor i zonta l rod , g roup 3D

    l o ~ ( ~ , ~ - ~ - - ~ . . . .

    I I hor i zonta ln j .-h . . . . ~ p rod , g roup 30 I

    0 l , T , ; , , ,

    0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0

    C O 2 / S T E A M R A T I O ( d m 3 / L )

    Ftg. 14. Oil recoveries as a fund]on of CO2/steam ratio.

  • 8/12/2019 (Steam-CO 2 Drive Experiments Using Horizontal and Vertical)

    13/17

    F. Giimrah. S Ba~,ct Journal of Petroleum Sctence and Engmeering 18 1997) 113-129 1 2 5

    a b o u t th e s a m e C O 2 / s t e a m r a t io s a n d d if f e r e n t w e l l

    c o n f i g u r a t i o n s . T h e r e s u lt s o f t e st s h a v i n g t h e h i g h e s t

    r e c o v e r i e s w e r e p l o t t e d i n t h i s f i g u r e . T h e r e c o v e r y

    e f f i c i e n c y o f g r o u p 3 C w a s a l s o t h e l o w e s t o n e

    a m o n g t h e s t e a m - C O 2 t es ts , b u t g r o u p 2 A g a v e t h e

    b e s t p e r f o r m a n c e w h e n c o m p a r e d t o o t h e r t e s t s . O i l

    r e c o v e ri e s w e r e 5 8 . 3 o f O O I P a n d 2 5 . 3 o f O O I P

    f o r t h e C O 2 / s t e a m r a ti o o f 1 4 .2 d m 3 / 1 ( g r o u p 2 A )

    a n d 1 3 .4 d m 3 / 1 ( g r o u p 3 C ) , r e s p e c t i v e l y . F i g . 1 4

    c o m p a r e s t h e e x p e r i m e n t a l r e c o v e r i e s a s a f u n c t i o n

    o f C O 2 / s t e a m r a ti o a t 1 P V o f s te a m i n je c te d . T h e

    C O 2 / s t e a m r a ti o w a s ra n g e d f r o m z e r o t o 1 4 0 d m 3 / 1 .

    T h e r e c o v e r y w a s i n c r e a s e d u p t o a c e r t a i n p o i n t

    w i t h i n c r e a s i n g C O 2 / s t e a m r a t i o , a f t e r w h i c h a d i -

    m i n i s h i n g e f f e ct w a s o b s e r v e d . T h e u s e o f to o m u c h

    C O 2 c a n h a v e u n d e s i r a b l e e f f e c t s . F i r s t ly , t h e g a s

    o c c u p i e s v o l u m e a n d r e d u c es t h e a m o u n t o f s te a m

    i n j e c t e d . S e c o n d l y , i f t o o m u c h g a s i s i n j e c t e d , i t

    i n c r e a s e s t h e g a s s a t u r a t i o n f l o w i n g b e t w e e n t h e

    i n j e c t i o n a n d p r o d u c t i o n w e l l s a n d c a u s e s c h a n -

    n e l l in g o f t h e s t e a m t o t h e p r o d u c t i o n p o i n t . T h i s

    e f f e c t i s n o t e d i n t h e e x p e r i m e n t a l r e s u l t s p r e s e n t e d

    h e r e b y t h e r e d u c e d r e c o v e r y a n d l o w e r s t e a m i n j e c -

    t i v it y a t h i g h e r a m o u n t s o f C O 2 . H e n c e b y t h is

    a n a l y s i s , i t b e c a m e a p p a r e n t t h a t a n o p t i m u m

    C O 2 / s t e a m r a t io e x i s te d , w h i c h i s ~ 14 d m 3 / 1 f o r

    B a u K o z l u c a c r u d e o i l ( 1 2 . 4 A P I ) w h i c h c a u s e d t h e

    b e s t p e r f o r m a n c e i n te r m s o f h i g h e s t o i l r e c o v e r y .

    T h e C O 2 / s t e a m r a t i o t h a t r e s u l t e d i n t h e m a x i m u m

    o i l r e c o v e r y w a s t h e s a m e v a l u e f o r a l l w e l l c o n f i g u -

    r a t i o n s e x c e p t i n g r o u p 3 C . T h e i n c r e m e n t a l o i l

    r e c o v e r y o v e r t h e s t e a m - o n l y c a s e d e c r e a s e d w i th

    i n c r e a s i n g C O ~ / s t e a m r a t i o . T h e r e f o r e t h e v a l u e o f

    C O 2 / s t e a m r a ti o w a s o n e o f th e i m p o r t a n t fa c t o rs

    w h i c h a f f e c t e d th e p e r f o r m a n c e o f t h e p r o c e s s . T h e

    o t h e r f a ct o r w a s t h e t y p e o f in j e c to r a n d / o r p r o -

    d u c e r , w h e t h e r t h e w e l l w a s p l a c e d i n h o r i z o n t a l o r

    v e r t i c a l p o s i t i o n . T h e d i s t a n c e b e t w e e n t h e w e l l s a l s o

    a f f e c t e d t h e e f f i c ie n c y o f p ro c e s s . I f th e y w e r e c l o s e

    t o e a c h o t h e r , b e c a u s e o f h i g h e r f l u i d m o b i l i t y , e a r l y

    b r e a k t h r o u g h o c c u r r e d . A s a r e s u l t , t h e m a j o r i t y o f

    s u b s e q u e n t l y i n j e c te d f l u i d s f o l l o w e d t h is e s t a b l i s h e d

    p a t h o f l e a st r e s i s ta n c e a n d p r o c e s s e f f i c i e n c y w a s

    i m p a i r e d .

    2 0 0

    1 8 0 -

    2 1 6 0 -

    E

    o 1 4 0 -

    co

    (3_

    O 1 2 0 -

    uJ

    r r l O 0 -

    z

    O

    r - - 80-

    C.)

    -3

    (3

    O 6 0 -

    E

    0 .

    .J

    5

    s team-CO2 , (OPR)

    4 0 - - i ~/ ,-

    20 - ...i ~

    O '

    0

    v e r t i c a l i n j e c t i o n - h o r i z o n t a l p r o d u c t i o n , g r o u p 2 B

    CO2/ste~'n atio= 141 dm3/L ]

    ~.. t lW_:~,.-stea. , I , - - - o n ly , ( SO R )

    , ,~ A ' k ~ . , ~ - - - - - - - I ID ~ s te a m - C O 2 , ( S O R )

    I s team on ly , (OPR)

    ~] i-

    ... ~ ..... F i ........

    5. 5 1 . 2

    S T E A M I N J E C T E D ( P V o f c w e )

    Fig. 15. Production data for vertical rejection-horizontal production (group 2B).

    1 0

    - 9

    - 8

    - 7

    - 6

    - 5

    - 4

    - 3

    -2

    -1

    0

    2 . 5

    -

    o

    o,9_,

    O

    O

    V--