Status and Future Plans for the MAX IV Light...

28
MAX IV – Status and Future Developments Plans Lund, August 2016 Status and Future Plans for the MAX IV Light Sources Pedro F. Tavares MAX IV Laboratory

Transcript of Status and Future Plans for the MAX IV Light...

Page 1: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Status and Future Plans for the MAX IV Light Sources

Pedro F. Tavares

MAX IV Laboratory

Page 2: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Summary

●What is Synchrotron Radiation ?

●Why Synchrotron Radiation ?

●The MAX IV Light Sources: Status and Commissioning Highlights

●Future Perspectives

Page 3: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Electron source

Ring (528 m circumf)

Linear accelerator (ca 250 m)

Ring (96 m circumf)

Experimental stations

What is Synchrotron Light ?

Pictures and animation by S.Werin

Properties:

Wide band

High

intensity/Brilliance

Polarization

Time structure

Page 4: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Insertion Devices

Wiggler

Periodic arrays of magnets cause the beam to “undulate”

www.lightsources.org

Undulator

Photo E.Wallen

Page 5: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Using Light To Understand the World

Galileo 1564 - 1642

The telescope is presented to the Doge of Venice

Anton van Leeuwenhoek

1632-1723

Page 6: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Why Synchrotron Light ?

Image: Lawrence Berkely Lab

Page 7: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Photo: Vasa Museum

Sandstrom, M. et al. Deterioration of the seventeenth-century warship vasa by internal formation of sulphuric acid. Nature 415, 893 - 897 (2002)

J.Lindgren et al, Molecular preservation of the pigment melanin in fossil melanosomes, Nature Communications DOI: 10.1038/ncomms1819 (2012)

A.Malachias et ak, 3D Composition of Epitaxial Nanocrystals by Anomalous X-Ray Diffraction, PRL 99, 17 (2003)

OLIVEIRA, M. A. et al. Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa. Acta Crystallographica. Section D, Biological Crystallography, v. D60, p. 337-339, 2004

Why Synchrotron Light ?

Page 8: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Equator

Under construction

Operational

Design

SR Light Sources WorldWide

Page 9: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

• Scientific Case calls for high brightness radiation

over a wide spectral and time range: IR to Hard R-

rays, Short X-Ray Pulses.

• Need for high brightness: low emittance and

optimized insertion devices.

• This is hard to achieve in a single machine:

• higher electron beam energy harder photons

• lower electron beam energy softer photons

One size does not fit all !

Conceptual Basis of the MAX IV Design

Page 10: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

●Different machines for different uses: • A high energy ring with ultra-low emittance for

hard X-ray users.

• A low emittance low energy ring for soft radiation users

• A LINAC based source for generating short pulses and allowing for future development of an FEL source.

The MAX IV Approach

Page 11: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

The MAX IV Light Sources

linac

SPF

3 GeV LINAC 250 m 100 Hz to SPF 10 Hz to rings 100 fs to SPF

1.5 GeV Ring 92 m 12 achromats 6 nmrad

3.0 GeV Ring 528 m 20 acrhomats 330 pmrad

Page 12: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

1. FemtoMAX fs dynamics in solid

2. NanoMAX Nano-imaging & - spectroscopy

3. BALDER Chemical spectroscopy: operando

4. BioMAX Protein crystallography

5. Veritas Electronic & magnetic excitations: solids

6. Hippie Photoemission: near ambient pressure

7. ARPES Electronic structure: solids

8. FinEstBeaMS Electronic structure: gases, aerosols

9. SPECIES Electronic & magnetic excitations: surfaces

10. Transfer_PEEM Microscopy: surfaces

11. Transfer_XPS Electronic structure: surfaces & gases

12. CoSAXS Geometric structure & correlation: (bio) liquids

13. SoftiMAX Microscopy & method development

14. DanMAX Powder diffraction & imaging: materials science

15. ForMAX Wood & paper: structure & processing

16. MicroMAX Most relevant (difficult) protein structures

17. DiffMAX Crystal structure of bulk & surface

18. iMAX Imaging of engineering materials

8

4 3

2

1 6

5

7

9

10

12

11

13

14

15

Slide by C. Quitmann

Page 13: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

MAX IV Project Timeline ● 2002 – First technical design note

● 2005 – Scientific Case/Conceptual Design Report

● 2009 – Funding secured

● 2010 – Detailed Design Report – Funding released

● Spring 2015 – Linear accelerator commissioned

● Autumn 2015 – 3 GeV ring commissioning

● June 2016 – Inauguration

● Autumn 2016 – 1.5 GeV ring commissioning

Page 14: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

3 GeV Ring Commissioning Timeline

Beam in TR3

Aug 11

2015

First Turn

Aug 25

2015

Stored Beam

0.1 mA

Sep 15

2015

Stacking

4 mA

Oct 08

2015

First Light

Nov 2

2015

Feb&March 2016

First IVUs

198 mA

July 9, 2016

Page 15: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Future Perspectives Higher Brightness and Coherence

LINAC

• Soft X Ray FEL (proposal User Community)

• Hard X Ray FEL

3 GeV Ring

• Brightness Improvements: current lattice and Ids (150 pm rad)

• Brightness Improvements: additional focussing (100 pm rad)

• Completely new lattice (diffraction limit at 10 keV)

1.5 GeV Ring

• Timing modes (requested by User Community)

Full Delivery of the DDR Parameters – User operations

Page 16: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Light Source Figures of Merit

Intensity/spectral range

Time structure Average vs Peak Values

Polarization

Stability

Brightness/Flux Density

Coherence

How do photon beam performance goals translate into electron beam performance requirements ?

Page 17: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Spectral Brightness

dxdydddtd

dNyxEB

),,,,(

dxdyBdF 0

Photon Phase Space

In an ideal optical transport system, brightness is conserved – a property of the source. Several derived quantities are often used

Density in photon phase space

Central Brightness Angular density of flux

H.Wiedemann, Part.Acc.Phys, Vol II

00

yxdxdydddtd

dNB

Page 18: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Brightness from a real beam

yTxTTyTx

nn

FB

202 22

22

rxxT

rxTx

Lr

4

1

Lr

Convolute the angular distribution of radiation from a single electron with the electron beam transverse spatial and angular distributions

For the nth harmonic of an undulator of length L

Spectral flux (E,I,B,n)

Effective source size and divergence

Electron beam

4rr

Diffraction Limit: xxx e-beam emittance

Page 19: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

0.0001

0.001

0.01

0.1

1

10

100

10001/[nm

-1]

2030202020102000199019801970

Emittance Evolution over 40 years

2nd Generation

1st Generation

3rd Generation

4th Generation

102

103

104

105

106

107

108

109

1010

1011

1012

[nm

-1]

101

102

103

104

Circumference [m]

1970´s - 1980´s 1990´s - 2014 2015 Under Construction/Planned

Page 20: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

ALS DLS BESSY III SLS 2.0 Tohoku U

Thailand Beijing PETRA IV

MAX IV: Forerunner of a new breed of accelerators

Slide by C.Quitmann

Page 21: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

How did we go from third to fourth generation ?

High Brightness

Accelerator Physics

New Lattica Design (MBA)

New Tools for Dynamic Analysis

Accelerator Engineering

Compact Magnets

Distributed Pumping – NEG

coating

Low Frequency RF

Long Bunches

Page 22: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

MAX IV - An integrated Solution

MBA Lattice Ultra-low emittance robust, high stability. large momentum aperture

Large

Number

of

Magnets

Small

Magnet

Apertures

Wake-Fields

Low RF frequency

Full Energy

Injector LINAC:

Short Pulses

Long

Bunches

Landau

Cavities

Compact

Magnet Design.

High precision,

High vibration

frequencies

Narrow

vacuum

Chambers

Multi-

purpose

Strong

Magnets

IBS

Low Vacuum

Conductance High Heat

Load

Density

Copper

Chambers

100 %

NEG

Coating

Page 23: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Compactedness is the key !

Picture by E. Aldmour

Page 24: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

How can we go even further ?

102

103

104

105

106

107

108

109

1010

1011

1012

[nm

-1]

101

102

103

104

Circumference [m]

1970´s - 1980´s 1990´s - 2014 2015 Under Construction/Planned

Page 25: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Diffraction Limited @ 10 keV within ~ 500 m

Novel Injection Schemes

High Gradient

Permanent Magnets

NEG coating very small apertures

Long(er) Bunches

Compact Design – Small Aperture

Enab

ling

Tec

hn

olo

gies

Page 26: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Beyond MAX IV – an exercise

Existing 7 BA

Future Lattice Candidate – 19 BA

Page 27: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Parameter Value Unit

Energy 3 GeV

Number of periods 20

Circumference 528 m

Straight section length 5 m

Natural Emittance 16 pm.rad

Natural energy spread 0.09 %

Horizontal Tune 101.2

Vertical Tune 27.28

Natural horizontal chromaticity -100.21

Natural vertical chromaticity -126.1

Momentum compaction 5.30E-05

Beyond MAX IV – an exercise

BH

SD SD SF

QF QF

BH

Unit cell phase advances: ∆𝜇𝑥 = 22𝜋

16 , ∆𝜇𝑦 =

𝜋

16

19-BA lattice in the MAX IV 3 GeV ring tunnel

Lattice design: OPA (A.Streun) Elegant (M.Borland)

Page 28: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Conclusions

● A new generation of storage-ring based light sources has just come into operation opening a wide range of research opportunities.

● Many labs around the world are now following that trend.

● Future order-of-magnitude improvements in performance seem within reach if we just dare to go even further along the compactedness route.