Staad Planning

download Staad Planning

of 60

Transcript of Staad Planning

  • 8/2/2019 Staad Planning

    1/60

    MATERIALE DENS

    KIP/IN2 IP/FT2 KN/M2 KN/MM2 KIP/IN3 KIP/FT3

    STEEL 29000 ### 205.000 ### 0.30 ### ###

    STAINLESS ST 28000 ### 197.930 ### 0.30 ### ###

    ALUMINIUM 10000 ### 68.948 ### 0.33 ### ###

    CONCRETE 3150 453600 21.718 ### 0.17 ### ###

    1 144

    12

    POISSON'S RATIO

  • 8/2/2019 Staad Planning

    2/60

    ITY ALFA HEAR MODULUS (G)

    KG/M3 KN/M3 KIP/FT2

    ### 76.8195 ### ### 0.03 0.00

    ### 76.8195 ### ### 0.03 0.00

    ### 26.6018 ### ### 0.03 0.00

    ### 23.5616 ### ### 0.05 0.00

    CRITICALDUMPIN

    G@/F @/K

  • 8/2/2019 Staad Planning

    3/60

    TUAN MINIMUM BALOK DAN SLAB 1 ARAH TANPA DE

    Jenis

    Ketebalan Minimum (h)

    Slab-One Wa l/20 l/24 l/28 l/10

    Beam l/16 l/18.5 l/21 l/8

    Terdukung

    Sederhana

    1 UjungMenerus

    2 UjungMenerus

    Kantilever

  • 8/2/2019 Staad Planning

    4/60

    BETONFc' kg/cm2 250 250 250 250 250 250

    Fy kg/cm2 4000 4000 4000 4000 4000 4000

    L m 4 4 4 6 6 6

    b m 0.2 0.2 0.2 0.25 0.25 0.25

    h m 0.3 0.3 0.3 0.4 0.4 0.4

    selimut m 0.03 0.03 0.03 0.03 0.03 0.03

    P kg 2000 750 1500 300

    Q kg/m 2000 750 400

    tulatas

    bawah 4D12 4D12 4D12 4D12 4D10 3D12

    ka 15D12-1 15D12-1 15D12-129

    ki 15D12-1 15D12-1 15D12-129sengkang

  • 8/2/2019 Staad Planning

    5/60

    250 250

    4000 4000

    6 8

    0.25 0.3

    0.4 0.5

    0.03 0.03

    300

    350

    3D12

  • 8/2/2019 Staad Planning

    6/60

    ROLL : FX V

    FY -

    FZ V

    MX V

    MY V

    MZ V

    Panjang efektif untuk tekan: Ly, LzPanjang efectif untuk momen lentur: UNT, UNB, UNL

  • 8/2/2019 Staad Planning

    7/60

    CONCRETE COVER

    CLB bottom

    CLS side

    CLT top

    Code : CODE ACI

    Kuat beton : FC 25 N/mm2

    Tegangan leleh tulangan utama : FYMAIN 415 N/mm2 Tegangan leleh tulangan sengkang : FYSEC

    Parameter-parameter pendukung lainnya

    Ec 22 kN/mm2

    density 25 kN/m3

    poisson ratio 0.17

    Design Balok : DESIGN BEAM

    Design Kolom : DESIGN COLUMN

    TAKE OFF

    MINMAIN 16 = Minimum diameter tulangan utama beton D16MINSEC 10 = Minimum diameter tulangan sekunder beton/sengkang

    P10

    MAXMAIN 16 = Maksimum diameter tulangan utama beton, D16

    REINF 0 = Jenis sengkang apakah spiral (1) atau tied (0)

  • 8/2/2019 Staad Planning

    8/60

    Code : CODE AISC

    Tegangan leleh baja : FYLD

    KZ pada seluruh kolom

    UNB, UNT, LY pada kolom dan beam/rafter.

    Ratio : ratio adalah 1 untuk beban tetap, 1,3 untuk

    Beban sementara.

    Faktor panjang tekuk Check code : CHECK CODE

    Take Off.

    Jika fa adalah compesive dan fa/Fa lebih besar dari 0.15 (compression is

    dominant)

    Jika fa adalah compesive dan fa/Fa lebih kecil dari 0.15 (flexural is

    dominant)

    Jika fa adalah tensile atau nol

  • 8/2/2019 Staad Planning

    9/60

  • 8/2/2019 Staad Planning

    10/60

  • 8/2/2019 Staad Planning

    11/60

  • 8/2/2019 Staad Planning

    12/60

  • 8/2/2019 Staad Planning

    13/60

  • 8/2/2019 Staad Planning

    14/60

    AISCLRFD

  • 8/2/2019 Staad Planning

    15/60

  • 8/2/2019 Staad Planning

    16/60

    DESIGN RESULT - FLEXURE

    LENGTH 20 FT

    FY 60000 kN/FT2 132 kip/ft2

    FC 4000 kN/FT2

    SIZEb 15 INCHES

    h 21 INCHES

    LEVEL penomoran tulangan

    HEIGHT tinggi tulangan dihitung dari dasar balok / BEAM ke atas

    FT 1 = 12

    IN 6-1/8 = 6.13

    18.13 IN dari tinggi total h = 21 IN

    BAR INFO jumlah dan diameter tulangan yang dipakai

    4 # 11 = dipakai 4 tulangan yang berdiameter 11

    FROM awal penempatan panjang tulangan dihitung dari sebelah kiri balok / BEAM sebag

    FT 0 = 0

    IN 0-0/0 = 00 IN dari panjang total L = 20 FT

    TO akhir penempatan panjang tulangan dihitung dari sebelah kiri balok / BEAM seba

    FT 18 = 216

    IN 10-0/0 = 10

    226 IN dari panjang total L = 20 FT

    ANCHOR kait yang diberikan pada tiap tulangan

    START Yes = diberikan kait

    END No = tidak ada kait

    CRITICAL NEG/POS MOMENT 369.86 KIP-FT AT 0.00 FT, LOAD 1REQUIRED STEEL = As 0.17 2.09

    min

    max

    Fy Fc' LBeam Re-bar

    Mub h d n D

    psi si (lb/in2 Ft In In in In kip-ft

    60000 4000 20 15 21 18.9 4 1.41 369.86

    SHEAR

    Vu 83.9 kip

    Vc 35860.23 lb 35.79kip

    Vs 63043.46 lb 62.92kip

    Vc = 2..fc'.bw.d

    Vs = (Vu/) - Vc

  • 8/2/2019 Staad Planning

    17/60

    Av/s 0.06 in

    Av 0.39 in2

    s 7 in

    Check

    1 1 f'cc 0.85 = 4000 psi

    a 0.85- > 4000 berkurang 0.05 setiap 1

    c

    tul single

    tul double

    a = c*1

    b = 0.85*1*(f'c/fy)*(87/(87+fy))

    min >= (3f'c^(1/2))/fy

    min >= 200/fy

    Asmin = min*b*d

    temp fy

    0 40 atau ksi0 60

    0.0018*6 > 60

    Astemp = temp/(2*b*h)

    maks

    single

    maks = 0.75*b

    doubly

    maks = 0.75*b+'*f'sb/fy

    ' = As'/b*d

    f'sb = 87*(1-d'/d)*(87+fy)/87

  • 8/2/2019 Staad Planning

    18/60

    singly

    = As/(b*d)

    doubly

    A's yield

    f's = (1-(d'/c))*87 >= fy

    = (0.75*b)+(A's/(b*d))

    A's doesn't yieldf's = (1-(d'/c))*87 < fy

    = (0.75*b)+(A's/(b*d))*(f's/fy)

    singly

    As = *b*d

    doubly

    A's yield

    f's = (1-(d'/c))*87 >= fy

    As = (0.75*b*b*d)+(Mu/-0.85*f'c*a*b

    A's doesn't yieldf's = (1-(d'/c))*87 < fy

    As = (0.75*b*b*d)+((Mu/-0.85*f'c*a*

    A's yield

    f's = (1-(d'/c))*87 >= fy

    A's = (Mu/-0.85*f'c*a*b*(d-a/2))/(fy*(d

    A's doesn't yield

    f's = (1-(d'/c))*87 < fy

    A's = ((Mu/-0.85*f'c*a*b*(d-a/2))/(fy*(

    = (*fy-((*fy)^2-4*(*0.59*fy^2/f'c)

  • 8/2/2019 Staad Planning

    19/60

    yard mil cm ft in

    0.42 15000 38.1 1.25 15

    0.33 12000 30.48 1 12

    0.01 393.7 1 0.03 0.39

    2.78E-05 1 0 8.33E-05 0

    1 36000 91.44 3 36

    kN kip N Mpa psi

    1 0.22 1000 1 145.03

    4.45 1 0 0.01 1

    0 0 1

    kg lb kip

    1 2.2 0

    0.45 1 0454.55 1002.09 1

    No Berat

    lb

    3 0.376

    4 0.668

    5 1.043

    6 1.502

    7 2.045

    8 2.671

    0.9 9 3.39910 4.308

    11 5.310

    14 7.656

    18 13.606

    Mu/ x As

    min

    kip-ft ft in2 in2 in2

    0.9 410.96 0 5.47 5.44 6.25 0 0 0.02

    ok

    4-NUM.11 atau 4#11

    As(STAAD)

    s(DESIGN

  • 8/2/2019 Staad Planning

    20/60

    00 psi tp tidak boleh kurang sampai 0.65

    in

    in

    f'c n fy = psi

  • 8/2/2019 Staad Planning

    21/60

    =0.9

    *(d-a/2))/(fy*(d-d'))

    b*(d-a/2))/(fy*(d-d')))*(f's/fy)

    -d'))

    -d')))*(f's/fy)

    *(12Mu/(b*d^2)))^(1/2))/(2*(*0.59*fy^2/f'c))

  • 8/2/2019 Staad Planning

    22/60

    Dia Luas Kel

    in in2 in

    0.38 0.110 1.179

    0.50 0.196 1.571

    0.63 0.307 1.964

    0.75 0.442 2.357

    0.88 0.602 2.750

    1.00 0.786 3.143

    1.13 1.000 3.5451.27 1.267 3.991

    1.41 1.562 4.431

    1.69 2.252 5.321

    2.26 4.002 7.093

    b max

    0

    kip-ft kN-m N-cm lb-in psi

    410.96 557.17 ### 4000

    0.74 1 8849.56

  • 8/2/2019 Staad Planning

    23/60

    0 0.11 1

  • 8/2/2019 Staad Planning

    24/60

  • 8/2/2019 Staad Planning

    25/60

    1 1.45

    lb/in2 N/cm2 kN/cm2 kip/in2 kip/ft2

    4000 2758 2.76 4 576.03

  • 8/2/2019 Staad Planning

    26/60

  • 8/2/2019 Staad Planning

    27/60

  • 8/2/2019 Staad Planning

    28/60

    = P/A 0.16 kN/mm2

    P 22.36

    A 144

    = Ps/ 0

    Ps

    Calculations are presented for the top surface only.

    SX = 0 pound/inch2

    SY = 0 pound/inch2

    SXY = 0 pound/inch2

    MX = 16.9pound-inch/inch

    MY = 85.81pound-inch/inch

    MXY = 36.43pound-inch/inch

    S 0.17 in2 S = (1/6)*(t^2)

    x 101.4 pounds/in2 x = SX + MX/S

    y 514.86 pounds/in2 y = SY + MY/Sxy 218.58 pounds/in2 xy =SXY + MXY/S

    TMAX 300.86pounds/in2

    SMAX 608.99 pounds/in2 SMAX = (( x + y)/

    SMIN 7.27 pounds/in2 SMIN = (( x + y)/

    ANGLE -23.3 ANGLE = (1/2 TAN^

    VONT 605.29 psi VONT = 0.707 ((S

    Plate Principal Stresses

    Smax Smin Tmax Angle Pricipal Vm Tresca

    psi(lb/in2 psi psi psi psi psi

    Top 44.64 -0.07 22.36 67.5 Max 44.64 44.67 44.72

    Bottom 0.07 -44.64 22.36 67.5 Min -0.07 44.67 44.72

    TMAX = ((((x-y)

  • 8/2/2019 Staad Planning

    29/60

    SOAL 18 PLATE NO 4Calculations are presented for the top surface only.

    SX = 0 pound/inch2

    SY = 0 pound/inch2

    SXY = 0 pound/inch2

    MX = 2.86pound-inch/inch

    MY = 16.83pound-inch/inch

    MXY = 1.71pound-inch/inch

    S 0.17 in2 S = (1/6)*(t^2)

    x 17.17 pounds/in2 x = SX + MX/S

    y 100.97 pounds/in2 y = SY + MY/S

    xy 10.28 pounds/in2 xy =SXY + MXY/S

    SMAX = (( x + y)/

    SMIN = (( x + y)/

    ANGLE = (1/2 TAN^

    VONT = 0.707 ((S

    Plate Principal Stresses

    TMAX = ((((x-y)

  • 8/2/2019 Staad Planning

    30/60

    Smax Smin Tmax Angle Pricipal Vm Tresca

    psi(lb/in2 psi psi psi psi psi

    Top 102.21 15.92 43.15 83.11 Max 102.21 95.24 102.21

    Bottom -15.92 -102.21 43.15 83.11 Min 15.92 95.24 102.21

    3.Max. Distortion energy theory (Von Mises & Henckys theory):

    Considering the factor of safety

    Maximum principal stress

    The criteria of failure for the distortion energy theory is expressed as

    For bi axial stresses (3=0),

  • 8/2/2019 Staad Planning

    31/60

    Minimum principal stress

    For ductile materials

    1

    should not exceed Syt/FoS in tension, FoS = factor of safety

    For brittle materials 1 should not exceed in tension

    The failure or yielding is assumed tmember where the max shear stresreaches a value equal to shearobtained from simple tension test.In a biaxial stress case max shear str

    wheremax =

  • 8/2/2019 Staad Planning

    32/60

    This theory is mostly used for ductile mate

  • 8/2/2019 Staad Planning

    33/60

    2) + TMAX

    ) - TMAX

    -1)*(2xy/(x-y))

    AX SMIN)2 + (SMAX)2 + (SMIN)2) = psi

    2)/4)+(xy^2))

  • 8/2/2019 Staad Planning

    34/60

    SQX, SQY Shear stresses (For

    SX, SY, SXY Membrane stresses

    MX, MY, MXY Moments per unit wi

    (For Mx, the unit wi

    parallel to the local

    width is a unit dista

    axis. Mx and My cau

    causes the element

    SMAX, SMIN Principal stresses in

    (Force/unit area). T

    TMAX Maximum 2D shear

    element (Force/unit

    2) + TMAX ANGLE Orientation of the 2

    ) - TMAX VONT, VONB 3D Von Mises stres

    -1)*(2xy/(x-y))

    AX SMIN)2 + (SMAX)2 + (SMIN)2) = psi VM = 0.707 (SMAX SMIN)2 + SMAX2

    TRESCAT, TRESCAB Tresca stress, wher

    TRESCA = MAX[ |(Smax-Smin)| , |(Smax

    2)/4)+(xy^2))

  • 8/2/2019 Staad Planning

    35/60

    Notes:

    1. All element stress output is in the loc

    direction and sense of the element stre

    Fig. 1.13.

    2. To obtain element stresses at a speci

    element, the user must provide the loca

    in the coordinate system for the elemen

    local coordinate system coincides with telement.

    3. The 2 nonzero Principal stresses at th

    SMIN), the maximum 2D shear stress (T

    orientation of the principal plane (ANGL

    stress (VONT & VONB), and the 3D Tres

    & TRESCAB) are also printed for the top

    of the elements. The top and the botto

    determined on the basis of the direction

    4. The third principal stress is assumed

    for use in Von Mises and Tresca stress cthe TMAX and ANGLE are based only on

    stresses (SMAX & SMIN) at the surface.

    shear stress at the surface is not calcula

    to the 3D Tresca stress divided by 2.0.

  • 8/2/2019 Staad Planning

    36/60

    Boundary for maximum normal stress theory

    take place at a point in ain a biaxial stress system

    strength of the material

    ss developed is given by

  • 8/2/2019 Staad Planning

    37/60

    rials.

  • 8/2/2019 Staad Planning

    38/60

  • 8/2/2019 Staad Planning

    39/60

    ce/ unit len./ thk.)

    (Force/unit len./ thk)

    idth (Force x Length/length)

    th is a unit distance

    axis. For My, the unit

    ce parallel to the local X

    se bending, while Mxy

    to twist out-of-plane.)

    the plane of the element

    e 3rd principal stress is 0.0

    stress in the plane of the

    area)

    principal plane (Degrees)

    , where

    SMIN2

    | , |(Smin)| ]

  • 8/2/2019 Staad Planning

    40/60

    l coordinate system. The

    ses are explained in

    ied point within the

    tion (local X, local Y)

    t. The origin of the

    he center of the

    e surface (SMAX &

    AX), the 2D

    ), the 3D Von Mises

    a stress (TRESCAT

    and bottom surfaces

    surfaces are

    of the local z-axis.

    o be zero at the surfaces

    alculations. However,the 2D inplane

    he 3D maximum

    ted but would be equal

  • 8/2/2019 Staad Planning

    41/60

  • 8/2/2019 Staad Planning

    42/60

  • 8/2/2019 Staad Planning

    43/60

    DESIGN RESULT

    LENGTH FT

    FY 60000 kN/FT2 psi (lb/in2)

    FC 4000 kN/FT2 psi (lb/in2)

    SIZEb 12 INCHES

    h 12 INCHES

    Reinf Tied

    Ast 7.89 sq.in

    Ast (%)

    As provid 8 sq.in

    Bar 8 n

    Number 9 1 in2

    Reinf PCT 5.56 sq.in

    0.7

    Pn

    COLUMN INTERACTION MnPo Pn P-bal M-bal e-bal

    kip kip

    860.68 0.8 688.54 189.56

    Pu Mz My

    249.33 66.14

  • 8/2/2019 Staad Planning

    44/60

    210.44 202.41 194.25 185.95 178.93 163.81 156.52 149.93 143.69

    166.6 168.67 169.97 170.45 171.48 171.74 170.63 169.69 168.61

    165 166 167 168 169 170 171 172

    50

    100

    150

    200

    250

    Axis Title

    AxisTitle

  • 8/2/2019 Staad Planning

    45/60

    137.8 132.25 127.39

    167.44 166.2 165.41

    173

    COLUMN

  • 8/2/2019 Staad Planning

    46/60

    BEAM

    DESIGN RESULT OF FLEXURE

    LENGTH 20 FT PERKIRAAN TEBAL KOL 15.0 SYARAT

    FY 60000 LB.IN PANJANG BALOK EFEKTI 225.0 B/D RATI

    FC 4000 LB.IN 4d < Le ##> 0.3

    SIZE b 15INCHES 75.6 < 225.0 OK

    h 21INCHES OK LEBAR Bd 19INCHES 15> ##

    LEVELHEIGHT

    BAR INFOFROM TO

    FT IN FT IN FT IN

    0 2 - 5 / 8 3 NUM 9 2 4 - 5 / 8 20 0 - 0 / 0

    IN 2.63 3.38 28.63 240.00

    CRITICAL POS/NEG MOMENT 189.77 KIP-FT AT 12.00 FT

    REQUIRED STEEL 2.4800 IN2 ROW 0.0090 ROWMX 0.0214 R

    MAX/MIN/ACTUAL BAR SPACING 7.50 / 2.26 / 4.94 INCHBASIC/REQD. DEVELOPMENT LENGTH 37.95 / 31.42 INCH

    CHECKED

    min b maxMu

    x

    kip-ft p ft

    0.0032 ### 0.0106 0.0000 1.13 189.77 0.9 # 0

    j As0.85 0.8 0

    BARDIA.

    u/

    As = Mu / fy j d

  • 8/2/2019 Staad Planning

    47/60

    BEAM

    DESIGN RESULT OF FLEXURE

    EMPA LENGTH 6096 MM PERKIRAAN TEB

    >= 0.3 FY 414 N.MM PANJANG BALOK

    FC 28 N.MM 4d < Le

    SIZE b 381 MM ### < 5715.0

    LOK >= 250 MM h 533 MM OKOK d 480 MM

    ANCHORLEVEL

    HEIGHTBAR INFO

    F

    START END FT IN FT

    0 2 - 5 / 8 3 NUM 9 2 4

    MM 66.68 85.95 7

    LOAD 1.00 CRITICAL POS/NEG MOME ### N-MM AT

    OWMN 0.0033 REQUIRED STEEL 62.9920 MM2 ROW

    MAX/MIN/ACTUAL BAR SPACING 190.50 / 57.40BASIC/REQD. DEVELOPMENT LENGTH 963.93

    CHECKED

    As

    min b m

    in2 in2 in2

    2.48 2.79 #NAME? 0.0381 0.4835 #N/A 0.0000

    j As0.85 0.8 6.25

    a=As.fy/0.85.fc'.b

    (STAAD

    (DESIGN

    As = Mu / fy j d

  • 8/2/2019 Staad Planning

    48/60

    L KOL 381.0 SYARAT GEMPA

    EFEKTI 5715.0 B/D RATIO >= 0.3

    ##> 0.3

    OK

    LEBAR BALOK >= 250 MM##>## OK

    ROM TO ANCHOR

    IN FT IN START END

    - 5 / 8 20 0 - 0 / 0

    7.08 6096.00

    ### MM LOAD 1.00

    0.0090 ROWMX 0.0214 ROWMN 0.0033

    / 125.48 MM/ 798.07 MM

    axMu

    x As

    kip-ft p ft in2 in2 in2

    #N/A 189.77 0.9 # 0 2.48 0 #NAME?

    BARDIA.

    u/

    (STAAD

    (DESIGN

  • 8/2/2019 Staad Planning

    49/60

    h =

    c = 3.128

    21 d = 19

    b = 15

    KONTROL

    c/d 0.166 min

    ok ### > 0.0033

    0.015 >= 0.005 ok

    ok

    t

  • 8/2/2019 Staad Planning

    50/60

    0

    C = 135600a = 2.659

    d - (a/2) 17.571

    0.85

    T = 135600

    c =

  • 8/2/2019 Staad Planning

    51/60

    C=0.85.F'c.b.a

    T=As.Fy

    =0.003(d/t-1)

    a=.c

  • 8/2/2019 Staad Planning

    52/60

    No Berat Dia Luas Kel kip-ft kN-m N-cm

    lb in in2 in 210.86 285.88

    3 0.376 0.38 0.110 1.179 0.74 1

    4 0.668 0.50 0.196 1.571 0 0.11

    5 1.043 0.63 0.307 1.964

    6 1.502 0.75 0.442 2.357

    7 2.045 0.88 0.602 2.750

    8 2.671 1.00 0.786 3.1439 3.399 1.13 1.000 3.545

    10 4.308 1.27 1.267 3.991

    11 5.310 1.41 1.562 4.431

    14 7.656 1.69 2.252 5.321

    18 13.606 2.26 4.002 7.093

    19

    22

    23

    25

  • 8/2/2019 Staad Planning

    53/60

    lb-in

    ###

    8849.56

    1

  • 8/2/2019 Staad Planning

    54/60

    MODULUS ELASTICITY (e)

    kg Nmm kip ft ton m lb ft kip in kN m kg m kN cm

    1 9806.65

    1 20.89 101.97 20885.43 0.15 1000 ### 0.1

  • 8/2/2019 Staad Planning

    55/60

    Konversi Panjang

    1 m satuan baru

    0 km Rumus Konversi = x angka

    100 cm satuan lama

    1000 mm39.37 in

    3.28 ft Contoh 1 :

    1.09 yd 0.5 cm = . ft

    Jawab :

    Konversi Area

    Satuan lama = cm

    1 Satuan baru yang diinginkan = ft

    10000

    1000000 Sesuaikan dengan tabel konversi disamping

    1550.39 sq in Ambil angka (nilai) yang ada ditabel untuk dijadikan perbandinga

    10.76 sq ft1.2 sq yd 3.28

    0.5 cm = x 0.5

    Konversi Volume 100

    1 0.5 cm = 0.0164 ft

    1000000

    1000000000

    61023.84 cu in

    35.31 cu ft

    1.31 cu yd

    264.2 gal(USA)

    6.29 barrel(oil)

    219.97 gal(UK)

    Konversi Berat

    1 Kg Contoh 2 :

    9.81 N 30 kip = . N

    9.81E-03 KN Jawab :

    9.81E-06 MN

    1.00E-03 T Satuan lama = kip

    0.98 dyN Satuan baru yang diinginkan = N

    2.2 lb

    2.20E-03 kip Sesuaikan dengan tabel konversi disamping

    1.00E-03 mton Ambil angka (nilai) yang ada ditabel untuk dijadikan perbandinga

    Konversi Sudut 9.81

    30 kip = x 30

    1 deg 2.20E-03

    1.11 grad

    1.75E-02 rad 30 kip = 133500 N

    Converting Units Of Measurement http://www.kampustekniksipil.co.cc

    m2

    cm2

    mm2

    m2

    cm3

    mm3

    http://www.kampustekniksipil.co.cc/http://www.kampustekniksipil.co.cc/http://www.kampustekniksipil.co.cc/http://www.kampustekniksipil.co.cc/
  • 8/2/2019 Staad Planning

    56/60

    Konversi Tekanan

    1

    1.00E-04

    1.00E-06

    9.81 Pa

    9.81E-03 Kpa

    9.81E-06 Mpa

    1.00E-03

    1.00E-07

    1.00E-09

    Contoh 3 :

    Konversi Momen 25 Mpa = . kg/cm2

    Jawab :

    1 kg.m

    100 kg.cm Satuan lama = Mpa

    1000 kg.mm Satuan baru yang diinginkan = kg/cm2

    1.09 kg.yd

    3.28 kg.ft Sesuaikan dengan tabel konversi disamping

    39.37 kg.in Ambil angka (nilai) yang ada ditabel untuk dijadikan perbandinga1.00E-03 t.m

    0.1 t.cm 1.00E-04

    1 t.mm 25 Mpa = x 25

    1.09E-03 t.yd 9.81E-06

    3.28E-03 t.ft

    3.94E-02 t.in 25 Mpa = 254.929 kg/cm2

    9.81 N.m

    980.67 N.cm

    9806.65 N.mm

    10.72 N.yd

    32.17 N.ft

    386.09 N.in9.81E-03 KN.m

    0.98 KN.cm

    9.81 KN.mm

    1.07E-02 KN.yd

    3.22E-02 KN.ft

    0.39 KN.in

    9.81E-06 MN.m

    9.81E-04 MN.cm

    9.81E-03 MN.mm

    1.07E-05 MN.yd

    3.22E-05 MN.ft

    3.86E-04 MN.in

    kg/m2

    kg/cm2

    kg/mm2

    t/m2

    t/cm2

    t/mm2

  • 8/2/2019 Staad Planning

    57/60

    yard mil cm ft in

    0.03 1000 2.54 0.08 10.33 12000 30.48 1 120.01 393.7 1 0.03 0.39

    engali 2.78E-05 1 0 ### 01 36000 91.44 3 36

    Mpa psi

    1 145.030.01 1

    kg lb kip kN N Ton dyN

    1 2.2 0 0.01 9.81 0 0.980.45 1 0 0 4.45 0 0.44

    454.55 1002.09 1 4.46 4457.57 0.45 445.76101.94 224.73 0.22 1 999.66 0.1 99.97

    0.1 0.22 0 0 1 0 0.11000 2204.6 2.2 9.81 9806.65 1 980.671.02 2.25 0 0.01 10 0 1

  • 8/2/2019 Staad Planning

    58/60

    9.29 Converts 100 square feet into square meters (9.29030

    1.09 =1 kg.m ke kg.yard

    451939.36 salah

  • 8/2/2019 Staad Planning

    59/60

  • 8/2/2019 Staad Planning

    60/60

    ).