µSR and Superconductors · 2018. 12. 10. · 1957 Abrikosov: 2 types of superconductors (magnetic...

29
1 Zuoz 2008 μSR and Superconductors Masterschool PSI μSR and Superconductors (SC) Crash course on SC Nanometer scale parameters How to determine them by μSR o Abrikosov state (Bulk μSR and LEM) o Meissner state (LEM) Appendices Ginzburg-Landau equation Pairing symmetry Two-gap superconductors

Transcript of µSR and Superconductors · 2018. 12. 10. · 1957 Abrikosov: 2 types of superconductors (magnetic...

  • 1

    Zuoz 2008

    µSR and Superconductors

    Masterschool PSI

    µSR and Superconductors (SC) Crash course on SC Nanometer scale parameters How to determine them by µSR

    o Abrikosov state (Bulk µSR and LEM)o Meissner state (LEM)

    Appendices Ginzburg-Landau equation Pairing symmetry Two-gap superconductors

  • 2

    Zuoz 2008

    Crash course on superconductivity

    Masterschool PSI

    Superconductivity -- Introduction

    Temperature dependence of the resistance of a Hg sample

    Discovery by Kamerlingh Onnesin 1911 in mercury

    Received the Nobel Prize in 1913 for “his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium”.

  • 3

    Masterschool PSI

    Below the transition temperature a superconductor expels a magnetic field from its inner core (Meissner and Ochsenfeld effect)

    Quelle: http://staff.ee.sun.ac.za/wjperold/Research/research.htm

    Superconductivity -- Introduction

    Masterschool PSI

    Superconductivity -- Introduction

  • 4

    Masterschool PSI

    Superconductivity -- Timeline

    1908 Kammerling Onnes: production of liquid helium

    1911 Kammerling Onnes: discovery of zero resistance

    1933 Meissner and Ochsenfeld: superconductors expell applied magnetic fields (MOE)

    1950 Ginzburg and Landau: phenomenological theory of superconductors

    1950 Maxwell and Reynolds et al.: isotope effect

    1935 F. and H. London: MOE is a consequence of the minimization of the electromagneticfree energy carried by superconducting current

    1957 Abrikosov: 2 types of superconductors (magnetic flux)

    1957 Bardeen, Cooper, and Schrieffer: BCS theory -- superconducting current as a superfluid of Cooper pairs

    1962 Josephson: Joesephson effect

    1986 Berdnorz and Müller: High-Tc‘s superconductors

    Masterschool PSI

    Lenz-Faraday’s law: currents to keep B constant inside of the sample

    Ideal Conductor Superconductor

    New thermodynamic state of matter

    From: Lecture on Superconductivity, Alexey Ustinov, Uni. Erlangen, 2007

  • 5

    Masterschool PSI

    Main Characteristics:

    Is a superconductor “just” an ideal conductor?

    New thermodynamic state of matter!

    Kamerlingh Onnes Meissner and Ochsenfeld

    Zuoz 2008

    Nanometer scale parameters

    Magnetic penetration depth:

    Coherence length:

  • 6

    Masterschool PSI

    Phenomenological London’s equations

    F. and H. London, Proc. Roy. Soc. A149, 71 (1935)

    Masterschool PSI

    1st Nano-scale Param.: London Penetration Depth

    SC

    Bz(x)

    x

    SC

    jz(x)

    x

    Bo

    I

  • 7

    Masterschool PSI

    SCOrder

    parameter

    x

    2nd Nano-scale Param.: Coherence Length

    The coherence length describes the variation of the fact that thesuperconducting electron density cannot vary abruptly (see Appendix).

    In some limiting cases, it can be considered as the typical lengthof the superconducting pair.

    The coherence length describes the variation of the fact that thesuperconducting electron density cannot vary abruptly (see Appendix).

    In some limiting cases, it can be considered as the typical lengthof the superconducting pair.

    Masterschool PSI

    Type I and Type II Superconductors

    SC

    B

    x

    Free

    Ene

    rgy D

    ensit

    y

    SC

    B

    x

    Free

    Ene

    rgy D

    ensit

    y

    Number of superelectrons

    Magnetic fluxdensity

    Magneticcontribution B2/2o

    Condensationenergy -Bc2/2o

    Totalenergy

    Type I Type II

  • 8

    Masterschool PSI

    Type I ( ) Type II ( )

    B

    H

    H

    -M

    Hc

    Hc

    H

    TTc

    Hc (0)Meissner phase

    H

    TTc

    Hc1 (0)

    Hc2 (0)

    H

    H

    -MHc1 Hc2

    Hc2Hc1

    B

    Vortex (Abrikosov) phase

    Masterschool PSI

    Vortex (Abrikosov) phase

    H

    H

    TTc

    Hc1 (0)

    Hc2 (0) B B

    Bitter DecorationPb-4at%In rod, 1.1K, 195G U. Essmann and H. Trauble, Phys. Lett 24A, 526 (1967)

    Magnetic flux quantum = h/2e = 2.067 · 10-15 Wb

    “Flux Line Lattice”

  • 9

    Zuoz 2008

    Abrikosov state (Bulk µSR and LEM)

    Masterschool PSI

    p (B

    )

    Bmin Bsad B Bmax

    Muons and Field Distribution in Type II S.C.

    Bishop et al., Scientific American 48 (1993)

    H

    TTc

    Hc1 (0)

    Hc2 (0) Vortex (Abrikosov) phase

  • 10

    Masterschool PSI

    H

    TTc

    Hc1 (0)

    Hc2 (0)

    Vortex (Abrikosov) phase for µSR studies

    “Transversal-Field µSR” (TF-µSR)

    Masterschool PSI

    Bext

    Bext

    Since the muon is a local probe, the SR relaxation functionis given by the weighted sum of all oscillations:

    Vortex (Abrikosov) phase for µSR studies

  • 11

    Masterschool PSI

    H

    Tc

    Hc1

    Hc2

    f (B)

    B

    f (B)

    Bext

    T < Tc

    T > Tc

    Mo3Al2C Bauer et al., Phys. Rev. B 90, 054522 (2014)

    T

    H

    Tc

    Hc1

    Hc2

    Masterschool PSI

    Field Distribution in “Extreme” Type II S.C.

    • Ginburg-Landau parameter

    • Large range of fields (up to Bc2/4) where London model applies

    • Vortex cores well separated and do not interact

    • Vortex fields superimpose linearlyd

  • 12

    Masterschool PSI

    d

    Masterschool PSI

    By measuring the second moment of the field distribution (for example by µSR), we directly determine the London penetration

  • 13

    Masterschool PSI

    p (B

    )

    Maisuradze et al.

    Masterschool PSI

    Determination of λ by µSR

    H

    Tc

    Hc1

    Hc2

    f (B)

    B

    T < Tc

    Assume a Gaussian distribution:And since:

    One can determine the penetration depthby determining the depolarization rate !!

  • 14

    Masterschool PSI

    Mo3Al2C

    Masterschool PSI

    Weak Points of such Analysis

    • One assumes that the muon depolarization (and therefore also that the field distribution) can be fitted by a Gaussian

    • The field dependence of the second moment of the field distribution is neglected

    • The size of the vortex core () is neglected

    p (B

    )

    Bmin Bsad B Bmax

  • 15

    Masterschool PSI

    Gaussian or not Gaussian.. that‘s the question!

    • In polycrystals or sintered samples: large density and disorder of pinning sites strong smearing of the field

    distribution

    • The asymmetry of the field distribution appears in single crystals

    Pd-In alloy

    Charalambous et al., Phys. Rev. B 66, 054506 (2002)

    44 46 48 50

    0.00

    0.02

    0.04

    0.06

    0.08

    Frequency (MHz)

    YBa2Cu3O6.97Pümpin et al., Phys. Rev. B 42, 8019 (1990) = 130 (10) nm

    811 812 813 814 815 816 817

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    Frequency (MHz)

    YBa2Cu3O6.95single crystal

    811 812 813 814 815 816 817

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    Frequency (MHz)

    YBa2Cu3O6.95single crystal

    Sonier et al., PRL 83, 4156 (1999)

    = 150 (4) nm

    Masterschool PSI

    0.0 0.5 1.0 1.5 2.0 2.5 3.0-0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.3

    aG(t)

    time (µs)

    Gaussian or not Gaussian.. that‘s the question!

    46.5 47.0 47.5 48.0 48.5 49.0-1

    0

    1

    2

    3

    4

    5

    6

    7

    Frequency (MHz)

    Example: NbSe2

    A Gaussian fit is rather poor but provides a fair approximation of the depolarization

    NbSe2B = 3.5 kG

    Sonier et al., Rev. Mod. Phys. 72, 769 (2000)

  • 16

    Masterschool PSI

    Constructing the second momentof the field distribution by usingtwo Gaussian components

    Example MgB2S. Serventi et al., PRL 93, 217003 (2004)

    Gaussian .. or even two Gaussians

    Masterschool PSI

    Field Dependence -- Numerical GL Solution

    λ = 50 nm, ξ = 20 nm (b = B/Bc2)

    Field

    Courtesy from A. Maisuradze

  • 17

    Masterschool PSI

    Effect of the coherence length

    1

    2

    B(r) FFT

    The fact that the coherence length is finite leads to a “cutoff” of the high terms in the Fourier transform of B(r) when K ~ -1

    Masterschool PSI

    More advanced Model

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    5

    10

    15

    20

    (M

    Hz)

    Field (T)

    One model (among many others): Modified London Model with Gaussian CutoffE.H. Brandt, J. Low Temp. Phys. 73, 355 (1988)

    0.00 0.01 0.02 0.03 0.040.000

    0.001

    0.002

    0.003

    0.004

    4

    2

    B/Bc2

    = 200 = 25 = 10

    Example: MgB2Niedermayer et al., Phys. Rev. B 65, 094512 (2002)

    By measuring the field dependence of the second moment of the field distribution by µSR

    determination of

  • 18

    Masterschool PSI

    Example YB6

    Example: Cubic YB6From the field dependence of µSR depolarization rate (second moment) = 192 nm and = 33 nm

    Hillier et al., Phys. Rev. B 42, 8019 (1990)

    Masterschool PSI

    Other model: Analytical solution of the Ginzburg-Landau equations considering a Lorentzian function for the order parameter |(r)|2 of an isolated vortex:

    J.R. Clem , J. Low Temp. Phys. 18, 427 (1975)Z. Hao et al., Phys. Rev. B 43, 2844 (1991)A. Yaouanc et al., Phys. Rev. B 55, 11107 (1997)

  • 19

    Zuoz 2008

    Meissner state (LEM)

    Masterschool PSI

    Type I ( ) Type II ( )

    B

    H

    H

    -M

    Hc

    Hc

    H

    TTc

    Hc (0)Meissner phase

    H

    TTc

    Hc1 (0)

    Hc2 (0)

    H

    H

    -MHc1 Hc2

    Hc2Hc1

    B

    Vortex (Abrikosov) phase

  • 20

    Masterschool PSI

    H

    TTc

    Hc1 (0)

    Hc2 (0)

    B(z)

    z

    Bext Bext

    Superconductorin the Meissner State

    Masterschool PSI

    Meissner State Measurements

    0 1 2 3 4 5 6 7 8 9 10

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Muo

    n Sp

    in P

    olar

    isat

    ion

    Time (s)

    0 1 2 3 4 5 6 7 8 9 10

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Muo

    n Sp

    in P

    olar

    isat

    ion

    Time (s)

    0 1 2 3 4 5 6 7 8 9 10

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Muo

    n Sp

    in P

    olar

    isat

    ion

    Time (s)

    B(z)

    z0

    Superconductorin the Meissner State

    Bext

  • 21

    Masterschool PSI

    Penetration depth

    T Tc

    T 0

    Masterschool PSI

    Magnetic field profiles in YBa2Cu3O7- and Pb

    0 50 100 150

    1E-3

    0.01YBa2Cu3O7-, T=20K, Tc=87.5K

    hext

    = 91.5(3) G, 0 = 1.5 nm fixed, 0 = 137(10) nm

    hext exp(-z/(T)) 3.4 keV 8.9 keV 15.9 keV 20.9 keV 29.4 keV

    B (T

    )

    z (nm)local: exponential

    T.J. Jackson et al., Phys. Rev. Lett. 84, 4958 (2000).A. Suter et al., Phys. Rev. Lett. 92, 087001 (2004).A. Suter et al., Phys. Rev. B72, 024506 (2005).

    ~ 90

    0 50 100 150

    1E-3

    0.01

    0 50 100 150

    1E-3

    0.01

    0 50 100 150

    1E-3

    0.01Lead, Tc=7.0(2) K, hext = 91.5(3)G,

    0 = 90(5)nm, 0 = 58(3)nm

    6.66K

    6.19K

    2.85K

    z (nm)

    B (T

    )

    Non-local: non-exponential

    ~ 0.6

    1st experimental determination of x0 in a non-local superconductor; confirmation of some predictions of BCS (~50 years after theory!!)

  • 22

    Zuoz 2008

    AppendixGinzburg-Landau Equations

    Coherence Length

    Masterschool PSI

    Ginzburg-Landau Equations (1950)

    Powerful phenomenological theory, based on the Landau theory of second order transition.

  • 23

    Masterschool PSI

    SCOrder

    parameter

    x

    2nd Nano-scale Param.: Coherence Length

    Zuoz 2008

    AppendixPairing symmetry

  • 24

    Masterschool PSI

    T-Dependence of the SC carrier density

    Masterschool PSI

    • BCS conventional pairing:isotropic s-wave pairing

    • The temperature dependence of the penetration depth provides information on the SC gap function.

    Mo3Sb7R. Khasanov et al,

    Phys. Rev. B 82, 016501 ( 2009)

    B. Mühlschlegel, Z. Phys. 155, 313 (1959)

  • 25

    Masterschool PSI

    High-Tc‘s Cuprates

    Example: YBa2Cu3O7-2 CuO2 planesCuO chains: charge reservoirs

    From A. Mourachkine Room –Temperature SuperconductivityCambridge Int. Science Publ., 2004

    Masterschool PSI

    High-Tc‘s Cuprates

    Example: YBa2Cu3O7-2 CuO2 planesCuO chains: charge reservoirs

    Charges reservoirUnderdoped Optimally doped Overdoped

    Superconductor

    Tem

    pera

    ture

    Hole doping in CuO2 planes

    Normalmetal?

    “Strangemetal”

    Mot

    tin

    sula

    tor

    Without doping:Band calculation predicts metallic state

    BUT:

    Strong on-site Coulomb repulsion ( large U ): blocks the motion of the 3d9 Cu-electrons in the CuO2 plane(“Mott insulator”)

    AFM via superexchange

  • 26

    Masterschool PSI

    Pairing Symmetry in Cuprates

    As the gap disappears along some directions of the Fermi surface (“nodes”), extremely-low-energy quasiparticles excitations (and therefore significant pair-breaking) may occur at very low temperature

    BCS High-Tc‘s

    Masterschool PSI

    Pairing Symmetry in High-Tc‘s

    Single crystal YBa2Cu3O6.95J.E. Sonier et al, PRL 72, 744 (1994)

    • BCS conventional pairing:isotropic s-wave pairing

    • The temperature dependence of the penetration depth provides information on the SC gap function.

    B. Mühlschlegel, Z. Phys. 155, 313 (1959)

  • 27

    Masterschool PSI

    Hirschfeld & Goldenfeld, PRB 48, 4219 (1993)

    Pairing Symmetry in High-Tc‘s

    µSR penetration depth on single crystal YBa2Cu3O6.95J.E. Sonier et al, PRL 72, 744 (1994)

    ab

    (µm)

    80

    0.22

    0.20

    0.18

    0.16

    0.146040200

    T (K)

    Microwave measurementsW.N. Hardy et al., PRL 70, 3999 (1993)

    Zuoz 2008

    AppendixTwo-gap superconductivity

  • 28

    Masterschool PSI

    • Metallic SC with highest TcJ. Nagamatsu et al., Nature 410 (2001) 63

    • SC mediated by phonon-coupling• two-gap SC ( and )

    Two Gaps Superconductivity – MgB2

    From A. Mourachkine Room –Temperature SuperconductivityCambridge Int. Science Publ., 2004

    Masterschool PSI

    • Metallic SC with highest TcJ. Nagamatsu et al., Nature 410 (2001) 63

    • SC mediated by phonon-coupling• two-gap SC ( and )

    In-plane E2g Boron mode strongly couples to the boron -band

    Two Gaps Superconductivity – MgB2

  • 29

    Masterschool PSI

    Niedermayer et al., Phys. Rev. B 65, 094512 (2002)

    Two Gaps Superconductivity – MgB2

    Similar results found recently by µSR on the “Sequicarbides” (Ln2C3 with Ln = La, Y) Kuroiwa et al., Phys. Rev. Lett. 100, 097002 (2008)

    0 10 20 30 40 500

    2

    4

    6

    8

    (M

    Hz)

    T (K)

    Masterschool PSI

    Two Gaps Superconductivity – MgB2

    Evidence of two coherence lengths from field dependence of the second moment of the FLL

    S. Serventi et al., PRL 93, 217003 (2004)