DFT Superconductors

download DFT Superconductors

of 34

Transcript of DFT Superconductors

  • 8/13/2019 DFT Superconductors

    1/34

  • 8/13/2019 DFT Superconductors

    2/34

    Co-workers

    L. Fast, N. Lathiotakis,

    A. Floris, E. K. U. Gross

    Institut f ur Theoretische Physik,

    FU Berlin, Germany

    G. Profeta, A. Conti-

    nenza

    Universit a degli studi dellAquila,

    Italy

    S. Massidda, C. Fran-

    chini

    Universit a degli Studi di Cagliari,

    Italy

    M. Luders

    Daresbury Laboratory, Warring-ton WA4 4AD, UK

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 2 / 25

  • 8/13/2019 DFT Superconductors

    3/34

    Outline

    1 DFT for superconductors

    2 ResultsSimple MetalsMgB2Li and Al under pressure

    3 Conclusions

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 3 / 25

  • 8/13/2019 DFT Superconductors

    4/34

  • 8/13/2019 DFT Superconductors

    5/34

    Outline

    1 DFT for superconductors

    2 ResultsSimple MetalsMgB2Li and Al under pressure

    3 Conclusions

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 3 / 25

  • 8/13/2019 DFT Superconductors

    6/34

    DFT for superconductors

    Goal

    We want to describeConventional Superconductivity

    Our goal isTo have a theory able to predict , fully ab-initio material specic

    properties like T c and the gap 0

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 4 / 25

    f

  • 8/13/2019 DFT Superconductors

    7/34

    DFT for superconductors

    Goal

    We want to describeConventional Superconductivity

    Our goal isTo have a theory able to predict , fully ab-initio material specic

    properties like T c and the gap 0

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 4 / 25

    DFT f d

  • 8/13/2019 DFT Superconductors

    8/34

    DFT for superconductors

    State of the Art

    BCS Theory

    The attractive interaction between the Cooper pairs is an empirical parameterBCS reproduces common features ( not material specic) of weak el-ph couplingsuperconductors (e.g. the ratio 2 0 / k B T c )

    Eliashberg Theory

    Strong coupling theory

    But el-ph and Coulomb interactions are not treated on the same footing

    Coulomb repulsion is normally included through the parameter , usually tted to the

    experimental T c

    Not possible to perform a fully ab-initio calculation of superconductingproperties

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 5 / 25

    DFT for s percond ctors

  • 8/13/2019 DFT Superconductors

    9/34

    DFT for superconductors

    State of the Art

    BCS Theory

    The attractive interaction between the Cooper pairs is an empirical parameterBCS reproduces common features ( not material specic) of weak el-ph couplingsuperconductors (e.g. the ratio 2 0 / k B T c )

    Eliashberg Theory

    Strong coupling theory

    But el-ph and Coulomb interactions are not treated on the same footing

    Coulomb repulsion is normally included through the parameter , usually tted to the

    experimental T c

    Not possible to perform a fully ab-initio calculation of superconductingproperties

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 5 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    10/34

    DFT for superconductors

    State of the Art

    BCS Theory

    The attractive interaction between the Cooper pairs is an empirical parameterBCS reproduces common features ( not material specic) of weak el-ph couplingsuperconductors (e.g. the ratio 2 0 / k B T c )

    Eliashberg Theory

    Strong coupling theory

    But el-ph and Coulomb interactions are not treated on the same footing

    Coulomb repulsion is normally included through the parameter , usually tted to the

    experimental T c

    Not possible to perform a fully ab-initio calculation of superconductingproperties

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 5 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    11/34

    DFT for superconductors

    SCDFT

    DFT for Superconductors

    Coulomb and el-ph interactions enter the theory on the same footing

    No empirical parameter, like , is used

    Allows to predict T c and 0 from rst principles

    The order parameter of the singlet superconducting state

    (r , r ) = (r ) (r )

    is the most important ingredient of SCDFT, entering the theory as an extradensity

    cond-mat/0408685, cond-mat/0408686(accepted in Phys. Rev. B)

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 6 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    12/34

    DFT for superconductors

    SCDFT

    DFT for Superconductors

    Coulomb and el-ph interactions enter the theory on the same footing

    No empirical parameter, like , is used

    Allows to predict T c and 0 from rst principles

    The order parameter of the singlet superconducting state

    (r , r ) = (r ) (r )

    is the most important ingredient of SCDFT, entering the theory as an extradensity

    cond-mat/0408685, cond-mat/0408686(accepted in Phys. Rev. B)

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 6 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    13/34

    p

    Hamiltonian

    Our starting Hamiltonian is

    H = H e + H n + H en ,with

    H e = T e + W ee + Z d3 r n (r )v (r ) Z d3 r Z d3 r (r , r ) (r , r ) + H.c.H n =

    T n +

    W nn + Z d

    3

    N n (R )V (R ) ,

    v (r ) = external potential acting on the electrons (e.g. applied voltage) (r , r ) = external pairing potential (e.g. proximity induced)

    V (R ) = external potential acting on the nuclei

    n (r ) = X (r ) (r ) ; (r , r ) = (r ) (r )(R ) = (R 1 ) (R 2 ) (R 2 )(R 1 )

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 7 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    14/34

    p

    Hohenberg-Kohn theorem

    TheoremThere is the one-to-one correspondence

    n (r ), (r , r ), (R ) v (r ), (r , r ), V (R )

    As a consequence:

    Theorem

    All physical observables are functionals of {n (r ), (r , r ), (R )}

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 8 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    15/34

    Hohenberg-Kohn theorem

    TheoremThere is the one-to-one correspondence

    n (r ), (r , r ), (R ) v (r ), (r , r ), V (R )

    As a consequence:

    Theorem

    All physical observables are functionals of {n (r ), (r , r ), (R )}

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 8 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    16/34

    Kohn-Sham scheme

    Electronic KS equation

    2

    2 + v s(r ) u i (r ) + d3 r s(r , r )v i (r ) = E i u i (r )

    2

    2 + v s(r ) v i (r ) + d3 r s (r , r )u i (r ) = E i v i (r )

    Nuclear KS equation

    2

    2M + V s(R ) n (R ) = E n n (R )

    There exist functionals v s[n , ], s[n , ], and V s [n , ] such that the aboveequations reproduce the exact densities of the interacting system.

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 9 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    17/34

    Kohn-Sham potentials

    The 3 KS potentials are dened as

    v s(r ) = 0

    |{z} v Z d3 R ZN (R )|r R |

    | {z } v enH+ Z d3 r n (r )|r r |

    | {z } v eeH+

    F xcn (r )

    | {z } v xc s(r , r ) = 0

    |{z} + (r , r )|r r |

    | {z } H+ F xc (r , r )

    | {z } xcV s(R ) = 0

    |{z} V

    + XZ Z

    |R R |

    | {z } W nn

    X Z d3 r n (r )| r R |

    | {z } V enH

    + F xc

    (R )

    | {z } V xc

    Until here the theory is, in principle, exact: no approximation yet .

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 10 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    18/34

    Harmonic Approximation

    In a solid, the atoms remain close to their equilibrium positions , so we canexpand all quantities around these values. For example

    V s(R ) = V s(R 0 + U )

    = V s(R 0) + V s |R 0 U + 1

    2

    3

    ij

    i

    j V s R 0U i U

    j

    The linear term in U vanishes, as the atoms are in equilibrium, so we obtain

    H n, KS =

    q

    q b q b q + 32

    + O(U 3 )

    Similarly, we obtain a electron-phonon coupling term in H e, KS by expandingthe v enH + v xc terms.

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 11 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    19/34

    Decoupling approximation

    The KS equations for the electrons involve two very different energy scales, the Fermi energy,and the gap energy. It is possible to decouple them with the help of the decoupling

    approximation . We writeu i (r ) u i i (r ) ; v i (r ) v i i (r )

    where the i are solutions of the normal state KS equation

    Near the transition temperature, 0, the equation for s can be cast into a BCS-like gapequation .

    s( j ) = 12 X j w eff (i , j )

    tanh 2 j j

    s( j )

    where the matrix elements of the effective interaction w eff (r , r , x , x ) , and

    w eff (r , r , x , x ) = 2 F xc [n , ]

    (r , r ) (x , x ) = 0

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 12 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    20/34

    Decoupling approximation

    The KS equations for the electrons involve two very different energy scales, the Fermi energy,and the gap energy. It is possible to decouple them with the help of the decoupling

    approximation . We writeu i (r ) u i i (r ) ; v i (r ) v i i (r )

    where the i are solutions of the normal state KS equation

    Near the transition temperature, 0, the equation for s can be cast into a BCS-like gapequation .

    s( j ) = 12 X j w eff (i , j )

    tanh 2 j j

    s( j )

    where the matrix elements of the effective interaction w eff (r , r , x , x ) , and

    w eff (r , r , x , x ) = 2 F xc [n , ]

    (r , r ) (x , x ) = 0

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 12 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    21/34

    Construction of an approximate F xc

    We apply Gorling-Levy perturbation theory

    H = H KS + H 1

    In rst order we have 4 contributions to F xc

    F xc = +

    + +

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 13 / 25

    DFT for superconductors

  • 8/13/2019 DFT Superconductors

    22/34

    The gap equation

    ( n , k ) = Z ph

    (n , k )( n , k ) n k

    K ph

    + K el

    ( n , k )

    2E n ,k tanh

    E n ,k

    2

    where E n , k = q ( n , k )2 + |( n , k ) |2

    Features

    BCS form but parameter free

    effective interaction K = K ph + K el is calculated ab-initio

    static (frequency independent) but with retardation effects included in theZ and K functionals

    k-space formalism allows to calculate the (possibly) anisotropic nature ofthe gap

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 14 / 25

    DFT for superconductors

    Th i

  • 8/13/2019 DFT Superconductors

    23/34

    The gap equation

    ( n , k ) = Z ph

    (n , k )( n , k ) n k

    K ph

    + K el

    ( n , k )

    2E n ,k tanh

    E n ,k

    2

    where E n , k = q ( n , k )2 + |( n , k ) |2

    Features

    BCS form but parameter free

    effective interaction K = K ph + K el is calculated ab-initio

    static (frequency independent) but with retardation effects included in theZ and K functionals

    k-space formalism allows to calculate the (possibly) anisotropic nature ofthe gap

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 14 / 25

    Results Simple Metals

    O li

  • 8/13/2019 DFT Superconductors

    24/34

    Outline

    1 DFT for superconductors

    2 ResultsSimple MetalsMgB2Li and Al under pressure

    3 Conclusions

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 15 / 25

    Results Simple Metals

    Si l M t l

  • 8/13/2019 DFT Superconductors

    25/34

    Simple Metals

    0 2 4 6 8 10Experimental T c [K]0

    2

    4

    6

    8

    10

    C a l c u

    l a t e d

    T c

    [ K ]

    Al

    TF-METF-SKTF-FE

    Ta

    Pb Nb

    Mo

    0 0.5 1 1.5 2Experimental 0 [meV]0

    0.5

    1

    1.5

    2

    C a l c u

    l a t e d

    0

    [ m e V

    ]

    TF-METF-SKTF-FE

    Al

    TaPb

    Nb

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 16 / 25

    Results Simple Metals

    G f Pb

  • 8/13/2019 DFT Superconductors

    26/34

    Gap of Pb

    0 2 4 6 8T [K]

    0.0

    0.4

    0.8

    1.2

    0

    [ m e V

    ]

    ExperimentTF-SKTF-ME

    Pb

    0.0001 0.001 0.01 0.1 1 10 [eV]

    -0.4

    -0.2

    0.0

    0.20.4

    0.6

    0.8

    1.0

    1.2

    1.4

    [ m

    e V ]

    ExperimentTF-ME, T = 0 KTF-SK, T = 0 KTF-SK, T = 6 KTF-SK, T = 7 K

    Pb

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 17 / 25

    Results MgB 2

    Outline

  • 8/13/2019 DFT Superconductors

    27/34

    Outline

    1 DFT for superconductors

    2 ResultsSimple MetalsMgB2Li and Al under pressure

    3 Conclusions

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 18 / 25

    Results MgB 2

    MgB

  • 8/13/2019 DFT Superconductors

    28/34

    MgB2

    Why such a high T c (39.5 K)?

    Strong coupling of bands with the optical E2g phonon mode forq along the -A line (for bands el-ph is roughly 3 times smaller)Strong anisotropy, which leads to a k-dependent gap = ( k )

    Phys. Rev. Lett. 94, 037004 (2005)

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 19 / 25

    Results MgB 2

    MgB Results

  • 8/13/2019 DFT Superconductors

    29/34

    MgB2 - Results

    0 10 20 30 40T [K]

    0

    2

    4

    6

    8

    [ m e V

    ] Iavarone et al.Szabo et al.Schmidt et al.Gonnelli et al.present work

    0 0.5 1T/T c

    0

    0.5

    1

    1.5

    2

    2.5

    C e l

    ( T ) / C

    e l , N

    ( T ) Bouquet et al.

    Putti et al.Yang et al.

    present work

    (a)

    (b)

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 20 / 25

    Results MgB 2

    Gap of MgB 2

  • 8/13/2019 DFT Superconductors

    30/34

    Gap of MgB 2

    0.001 0.01 0.1 1 10 [eV]

    -2

    0

    2

    4

    6

    8

    [ m e V

    ]

    Average Average

    Experiments

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 21 / 25

    Results Li and Al under pressure

    Outline

  • 8/13/2019 DFT Superconductors

    31/34

    Outline

    1 DFT for superconductors

    2 Results

    Simple MetalsMgB2Li and Al under pressure

    3 Conclusions

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 22 / 25

    Results Li and Al under pressure

    Li and Al under pressure

  • 8/13/2019 DFT Superconductors

    32/34

    Li and Al under pressure

    0 10 20 30 40 50 60Pressure (GPa)

    0

    4

    8

    12

    16

    20

    T c

    ( K )

    SCDFT, this work

    Mc-Millan, this work Lin [5]Shimizu [6]Struzhkin [7]Deemyad [8]

    0 2 4 6 8Pressure (GPa)

    00.2

    0.4

    0.6

    0.8

    1

    1.2

    SCDFT, this work Mc-Millan, this work Gubser [11]Sundqvist [12]

    fcc hR1 cI16

    LiAl

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 23 / 25

    Conclusions

    What can we learn?

  • 8/13/2019 DFT Superconductors

    33/34

    What can we learn?

    Suppose we had a very good approximation for the functional F xc [n , ].What could we learn about the mechanism leading tosuperconductivity in the high- T c materials?

    Remember: The functional F xc [n , ] is universal , i.e., the samefunctional for all materials.

    By solving the KS equation for the particular material we canunderstand the mechanism in retrospect by studying the effective

    interaction w eff (i , j ) = w elxc (i , j ) + w phxc (i , j )

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 24 / 25

    Conclusions

    Outlook

  • 8/13/2019 DFT Superconductors

    34/34

    Outlook

    DFT of superconductivity offers, for the rst time, the possibility to performfully ab-initio calculations of superconducting properties, like the transitiontemperature, the gap, or the specic heat. Until now, we obtained verypromising results for

    simple metals

    MgB2

    Li and Al under pressure

    However, further work is necessary

    More applications to benchmark the theory: doped fullerenes,nanotubes, high-

    T cs, etc.

    Replace the Thomas-Fermi interaction by a RPA.

    Development of new (better) functionals for the electron-phononinteraction.

    M. A. L. Marques (IMPMC) DFT for superconductors GDR-DFT 25 / 25