Spreadsheet

43
Description Loading Details Load ID LC Q101 Secondary Steel on DRILL DECK Handrail Nominal value 0.2 kN/m SC-HNRL Secondary Beam W10x22x800mm = 0.405 kN/m use 0.41 SC-SECBM Grating Nominal value 0.2 SC-GRTG CD-GRTG Padeyes Nominal value 20 kN SCPDEYE Conductor guild Nominal value 3.0 kN SC-CG 4.0 kN Stabing point Nominal value 6.0 kN SCSTABPT 30 kN FDSTABPT Star Plate Nominal value 30 kN SC-SP Staircase CD-SC Staircase 60.0 kN SC-STAIR CD-SC-TJ Staircase 60.0 kN Stabing point Nominal value 6.0 kN STABPT LC Q103 Piping Weight on DRILL DECK Piping Weight Nominal value 1.0 CD-NORMP (To be removed for lifting and transportation analysis) Nominal value 0.25 SC-NORMP (To be removed for lifting analysis) LC Q104 E&I Loading on DRILL DECK TUTU MES In-house data 25.00 kN 25.00 kN TUTU1 MES In-house data 25.00 kN 25.00 kN TUTU2 MES In-house data 25.00 kN 25.00 kN TUTU3 Open Drain Tank Pump MES In-house data 25.00 kN 25.00 kN ODTPUMP 25.00 kN LC Q123 Live Load on Cellar Deck (DRILL DECK) Nominal value 2.5 CD-NORM LC 124 Live Load on Sub-Cellar Deck Nominal value 2.5 SC-NORM (22 x 1.5 / 0.8) x 9.81 x 10 -3 kN/m 2 kN/m 2 kN/m 2 kN/m 2 kN/m 2 kN/m 2

description

Lifting Loadings for offshore deck

Transcript of Spreadsheet

Page 1: Spreadsheet

Description Loading Details Load IDLC Q101 Secondary Steel on DRILL DECK LC Q101Handrail Nominal value 0.2 kN/m SC-HNRL Sub-Cellar Deck

Handrail = 12.192 kNSecondary Beam = 59.707 kN

Secondary Beam W10x22x800mm Grating = 44.593 kNPadeye = 80.000 kN

= 0.405 kN/m use 0.41 SC-SECBM Conductor Guild = 52.000 kNCD-SC Staircase = 60.000 kN

Grating Nominal value 0.2 SC-GRTG CD-SC-TJ Staircase = 60.000 kNCD-GRTG Fac. Deck Stabbing Point = 60.000 kN

Stabing Point = 24.000 kNPadeyes Nominal value 20 kN SCPDEYE Starplate = 120.000 kN

572.492 kNConductor guild Nominal value 3.0 kN SC-CG

4.0 kN Cellar DeckGrating = 16.329 kN

Stabing point Nominal value 6.0 kN SCSTABPT30 kN FDSTABPT Top of Jacket Stair = 25.000 kN

Star Plate Nominal value 30 kN SC-SP TOTAL = 637.821 kN

Staircase CD-SC Staircase 60.0 kN SC-STAIRCD-SC-TJ Staircase 60.0 kN

Stabing point Nominal value 6.0 kN STABPT Stabing Point = 24.000 kN

LC Q103 Piping Weight on DRILL DECK LC Q103Piping Weight Nominal value 1.0 CD-NORMP Cellar Deck

(To be removed for lifting and transportation analysis) Piping Weight = 81.644 kN

Nominal value 0.25 SC-NORMP Sub-Cellar Deck(To be removed for lifting analysis) Piping Weight = 55.739 kN

TOTAL = 137.383 kN

LC Q104 E&I Loading on DRILL DECK LC Q104TUTU MES In-house data 25.00 kN 25.00 kN TUTU1 Tutu = 75.000 kN

MES In-house data 25.00 kN 25.00 kN TUTU2MES In-house data 25.00 kN 25.00 kN TUTU3 Open Drain Tank Pump = 50.000 kN

TOTAL = 125.000 kNOpen Drain Tank Pump MES In-house data 25.00 kN 25.00 kN ODTPUMP

25.00 kN

LC Q123 Live Load on Cellar Deck (DRILL DECK) LC Q123Nominal value 2.5 CD-NORM Cellar Deck = 204.109 kN

LC 124 Live Load on Sub-Cellar Deck LC 124Nominal value 2.5 SC-NORM Sub-Cellar Deck = 557.418 kN

(22 x 1.5 / 0.8) x 9.81 x 10-3

kN/m 2

kN/m 2

kN/m 2

kN/m 2

kN/m 2

kN/m 2

Page 2: Spreadsheet

Load Case Description Deck Area UDL (kPa)

1 SACS Generated Dead Weight Cellar Deck 2.5

Q101 Deck Secondary Steel Sub-Cellar Deck 2.5

Q103 Piping Weight

Q104 E&I Weight

Q123 Live Load on Cellar Deck

124 Live Load on Sub-Cellar Deck

QO00 Wind Load Towards Platform West (+x)

QO90 Wind Load Towards Platform South (+Y)

LComb Basic Load Cases & Contingency factors

1 Q101 Q103 Q104 Q123 124

400 1.2 1.2 1.2 1.2 1.0 1.0

Basic LC Load Combinations Operating Conditions

501 502 503 504 505 506 507 508

400 1 1 1 1 1 1 1 1

QO00 1 0.71 -0.71 -1 -0.71 0.71

QO90 0.71 1 0.71 -0.71 -1 -0.71

Basic LC Load Combinations Extreme Conditions

511 512 513 514 515 516 517 518

400 1 1 1 1 1 1 1 1

QO00 3.11 2.199 -2.199 -3.11 -2.199 2.199

QO90 2.199 3.11 2.199 -2.199 -3.11 -2.199

Factor to convert orthogonal winds to diagonal wind (1yr) = 0.71Factor to convert orthogonal winds to diagonal wind (100 yr) = 2.199

Page 3: Spreadsheet

Load Case Description

1 SACS Generated Weight

Q101 Deck Secondary Weight

Q103 Piping Weight

Q104 E&I Weight

J01 Coupling Load to Shift C.o.G 1m Towards Joint 7001

J02 Coupling Load to Shift C.o.G 1m Towards Joint 7002

J03 Coupling Load to Shift C.o.G 1m Towards Joint 7003

J04 Coupling Load to Shift C.o.G 1m Towards Joint 7004

LComb Basic Load Cases & Contingency factors

1 Q101 Q103 Q104

400 1.2 1.2 1.2 1.2

Basic LCLoad Combinations and Load Factors

401 402 411 412 413 414 421 422 423 424

400 1.35 2.0

401 1.0 1.0 1.0 1.0

402 1.0 1.0 1.0 1.0

J01 1.35 2.0

J02 1.35 2.0

J03 1.35 2.0

J04 1.35 2.0

Page 4: Spreadsheet

Transportation

Load Case Description

1 SACS Generated Weight

Q101 Deck Secondary Weight

Q103 Piping Weight

Q104 E&I Weight

Loadcase Load description

P+ +ve pitch

P- -ve pitch

R+ +ve roll

R- -ve roll

H1+Heave with barge oriented at P+

H1-

H2+Heave with barge oriented at P+ and R-

H2-

H3+Heave with barge oriented at R-

H3-

H4+Heave with barge oriented at P- and R-

H4-

H5+Heave with barge oriented at P-

H5-

H6+Heave with barge oriented at P- and R+

H6-

H7+Heave with barge oriented at R+

H7-

H8+Heave with barge oriented at P+ and R+

H8-

Loadcase Load description

21 Transportation wind load on deck at 0 deg

22 Transportation wind load on deck at 45 deg

23 Transportation wind load on deck at 90 deg

24 Transportation wind load on deck at 135 deg

25 Transportation wind load on deck at 180 deg

26 Transportation wind load on deck at 225 deg

27 Transportation wind load on deck at 270 deg

28 Transportation wind load on deck at 315 deg

Basic LCLoad combinations

Page 5: Spreadsheet

Basic LC101 102 103 104 105 106 107 108

P+ 1 1

P- 1 1

R+ 1 1

R- 1 1

H1+ 1

H1- 1

H3+ 1

H3- 1

H5+ 1

H5- 1

H7+ 1

H7- 1

21 1 1

23 1 1

25 1 1

27 1 1

Load combinations

109 110 111 112 113 114 115 116

P+ 0.8 0.8 0.8 0.8

P- 0.8 0.8 0.8 0.8

R+ 0.6 0.6 0.6 0.6

R- 0.6 0.6 0.6 0.6

H2+ 1

H2- 1

H4+ 1

H4- 1

H6+ 1

H6- 1

H8+ 1

H8- 1

22 1 1

24 1 1

26 1 1

28 1 1

Load combinations

117 118 119 120 121 122 123 124

P+ 0.6 0.6 0.6 0.6

P- 0.6 0.6 0.6 0.6

Basic LC

Basic LC

Page 6: Spreadsheet

R+ 0.8 0.8 0.8 0.8

R- 0.8 0.8 0.8 0.8

H2+ 1

H2- 1

H4+ 1

H4- 1

H6+ 1

H6- 1

H8+ 1

H8- 1

22 1 1

24 1 1

26 1 1

28 1 1

Page 7: Spreadsheet

Transportation Inertia Loads

Roll: amplitude period 10 sec

Pitch: amplitude period 10 sec

Heave:

X-axis : Surge and Roll axis

Y-axis : Sway and Pitch axis

Z-axis : Yaw and heave axis

The orientation of the deck on the barge that was assumed for the preliminary analysis is shown in the figure on the next page.

This orientation has been chosen to maximise the inertia loads on the structure and is not the finalised orientation.

The transportation model is adopted from the in-place model. The elevations in the in-place model has been retained in the transportation model.

This has been accounted for in the calculation of the coordinates of the centre of motion which is assumed to be at the waterline.

The transportation elevation of the bottom of the deck columns is assumed to be 8.00 m above waterline.

This elevation in the model is EL(+)12.000 m. Hence the centre of motion elevation is 4.000 m.

The deck C.o.G is located at:-

X = #REF! Y = #REF! Z = 15.210 m

91400 m

1000

x = 44.70 m

1000 y = 6.60 m

20°

12.5°

± 0.2 g

Deck Origin

y

Y

X

x

Page 8: Spreadsheet

The deck C.o.G is located at:-

X = #REF! Y = #REF! Z = 15.210 m

91400 m

1000

x = 44.70 m

1000 y = #VALUE! m

Deck Dimension

Length 18.288 m

Width 12.192 m

Deck Originy

Y

X

x

Page 9: Spreadsheet

The orientation of the deck on the barge that was assumed for the preliminary analysis is shown in the figure on the next page.

This orientation has been chosen to maximise the inertia loads on the structure and is not the finalised orientation.

The transportation model is adopted from the in-place model. The elevations in the in-place model has been retained in the transportation model.

This has been accounted for in the calculation of the coordinates of the centre of motion which is assumed to be at the waterline.

The transportation elevation of the bottom of the deck columns is assumed to be 8.00 m above waterline.

91400 m

27400 m

Page 10: Spreadsheet

91400 m

27400 m

Page 11: Spreadsheet
Page 12: Spreadsheet

Inplace

DescriptionsBasic Load

Load FactorFactored Load

(kN) (kN)

Deck Main Steel (Model weight) 1.20 0.000

Deck Secondary Steel 1.20 0.000

Equipment Weight (Operating) 1.20 0.000

1.87 0.000

E&I Bulk Weight 1.20 0.000

Live Load 1.00 0.000

Total Basic Gravity Loads 0 0

Note

Lifting

DescriptionsBasic Load

Load FactorFactored Load

(kN) (kN)

Deck Main Steel (Model weight) 1.20 0.000

Deck Secondary Steel 1.20 0.000

Equipment Weight (Dry) 1.20 0.000

1.87 0.000

E&I Bulk Weight 1.20 0.000

Crane 1.20 0.000

Total Basic Gravity Loads 0 0.000

Piping Dry Weight1

1. Load factor for piping

Contingency = 1.20, Factor to account for contents = 1.30, Factor to account for pipe supports = 1.09, Factor for growth = 1.10. Hence load factor = 1.20 x 1.30 x 1.09 x 1.10 = 1.87

Piping Dry Weight1

Page 13: Spreadsheet

Joint Diameter Thickness Yield Strength Load U.C Strength U.C.

(cm) (cm) (N/mm2)

Page 14: Spreadsheet

Windload LC000 (Wellbay Top)

12.192 m

EL (+) 18.0m

Centre of wind area EL(+) 11.0 m

EL(+) 14.8m

Operating Condition (1yr) Extreme Condition (100 yrs Monsoon)Wind Speed 22.5 m/s Wind Speed 39.7Area 19.51 Factor to convert 1 yr operating wind to 100 yr wind Design Wind Speed 22.77 m/s 3.11Wind Load 6.14 kN

Applied wind load on 8 pts on Row 1 and Row 2Wind load at each point Fx 0.77 kN

Windload LC000 (Bottom half)

12.192 m

EL (+) 18.0m

Centre of wind area EL(+) 11.0 m

EL(+) 14.8m

m2

= (39.7/22.5)2

Page 15: Spreadsheet

Operating Condition (1yr) Extreme Condition (100 yrs Monsoon)Wind Speed 22.5 m/s Wind Speed 39.7Area 53.64 Factor to convert 1 yr operating wind to 100 yr wind Design Wind Speed 22.77 m/s 3.11Wind Load 16.88 kN

Applied wind load on 8 pts on Row 1 and Row 2Wind load at each point Fx 2.11 kN

Windload LC090 (Bottom)

18.288 mEL (+) 18.0m

Centre of wind area EL(+) 11.0 m

EL(+) 14.8m

Inplace Condition Extreme Condition (100 yrs Monsoon)Wind Speed 22.5 m/s Wind Speed 39.7 m/sArea 51.21 Factor to convert 1 yr operating wind to 100 yr wind Design Wind Speed 22.77 m/s 3.11Wind Load 16.11 kN

Applied wind load on 8 pts on Row 1 and Row 2Wind load at each point Fy 2.01 kN

Windload LC090 (Wellbay)

9.296 mEL (+) 18.0m

m2

= (39.7/22.5)2

m2

= (39.7/22.5)2

Page 16: Spreadsheet

Centre of wind area EL(+) 11.0 m

EL(+) 14.8m

Inplace Condition Extreme Condition (100 yrs Monsoon)Wind Speed 22.5 m/s Wind Speed 39.7 m/sArea 29.75 Factor to convert 1 yr operating wind to 100 yr wind Design Wind Speed 22.77 m/s 3.11Wind Load 9.36 kN

Applied wind load on 8 pts on Row 1 and Row 2Wind load at each point Fy 1.17 kN

Windload LC090 (Open)

8.992 mEL (+) 18.0m

Centre of wind area EL(+) 11.0 m

EL(+) 14.8m

Inplace Condition Extreme Condition (100 yrs Monsoon)Wind Speed 22.5 m/s Wind Speed 39.7 m/sArea 8.99 Factor to convert 1 yr operating wind to 100 yr wind Design Wind Speed 22.77 m/s 3.11Wind Load 2.83 kN

Applied wind load on 8 pts on Row 1 and Row 2Wind load at each point Fy 0.35 kN

m2

= (39.7/22.5)2

m2

= (39.7/22.5)2

Page 17: Spreadsheet

Date 10-Jul-09By JX

1.60 m

Extreme Condition (100 yrs Monsoon) Transportation Conditionm/s Wind Speed 30 m/s

Factor to convert 1 yr operating wind to 100 yr wind Area 19.51Design Wind Speed 30.36 m/sWind Load 10.91 kN

Applied wind load on 4 pts on Row 1 and Row 2Wind load at each point Fx 2.73 kN

4.40 m

m2

Page 18: Spreadsheet

Extreme Condition (100 yrs Monsoon) Transportation Conditionm/s Wind Speed 30 m/s

Factor to convert 1 yr operating wind to 100 yr wind Area 53.64Design Wind Speed 30.36 m/sWind Load 30.00 kN

Applied wind load on 4 pts on Row 1 and Row 2Wind load at each point Fx 7.50 kN

2.80 m

Transportation ConditionWind Speed 30 m/s

Factor to convert 1 yr operating wind to 100 yr wind Area 51.21Design Wind Speed 30.36 m/sWind Load 28.64 kN

Applied wind load on 4 pts on Row A and Row BWind load at each point Fy 7.16 kN

m2

m2

Page 19: Spreadsheet

3.20 m

Transportation ConditionWind Speed 30 m/s

Factor to convert 1 yr operating wind to 100 yr wind Area 29.75Design Wind Speed 30.36 m/sWind Load 16.64 kN

Applied wind load on 12 pts on Row A and Row BWind load at each point Fy 1.39 kN

8.992 m

1.00 m

Transportation ConditionWind Speed 30 m/s

Factor to convert 1 yr operating wind to 100 yr wind Area 8.99Design Wind Speed 30.36 m/sWind Load 5.03 kN

Applied wind load on 4 pts on Row A and Row BWind load at each point Fy 1.26 kN

m2

m2

Page 20: Spreadsheet

HSD Topside

Shift of Centre of Gravity (C.o.G.) during Lifting

1 2

B6081 6088

A6011 6018

COORDINATES OF JOINTS

Joint

Coordinates (m)

Distance to C.o.G.X Y Z

6081 -4.489 4.52 18.95 5.053 location of the actual padeye hole

6088 4.486 4.52 18.95 5.519 location of the actual padeye hole

6011 -4.516 -4.49 18.95 7.526 location of the actual padeye hole

6018 4.511 -4.49 18.95 7.849 location of the actual padeye hole

DIMENSIONS

Length of A-B = 9.027 m

Width of module (R-side) = 9.014 m

Width of module (L-side) = 9.006 m

SELF WEIGHT AND MISCELLANEOUS WEIGHT OF SKID (WITH CONTINGENCY)

Total Weight = 9331.66 kN (b4 cog shifting) (since it is follow-on other ppl's proj, hence use WCR's cog)

Centre of Gravity (C.o.G.)

x = -0.27 m (b4 cog shifting de co (since it is follow-on other ppl's proj, hence use WCR's cog) (but in SACS input the lift joint use model cog x & y, onli Z use this elev hook elev.)

y = 1.73 m (b4 cog shifting de co (since it is follow-on other ppl's proj, hence use WCR's cog)

min hook elevation = 32.55 m (60 deg sling)

Envelope of C.O.G Shift

Shift towards each lift point: 1.00 m (3ft)

(6137) (6222)B1 (6081) B2 (6088)

α = 33.493 α = 30.404 (this values are to tally wif the drawings angle)x ecc. = -0.834 x ecc. = 0.862y ecc. = 0.552 y ecc. = 0.506

New C.O.G., (x, y)= (-1.11, 2.28) New C.O.G., (x, y)= (0.59, 2.23)COG = (-0.274, 1.728)

New C.O.G., (x, y)= (-0.84, 0.9) New C.O.G., (x, y)= (0.34, 0.94)α = 55.700 α = 52.431 (this values are to tally wif the drawings angle)

x ecc. = -0.564 x ecc. = 0.610y ecc. = -0.826 y ecc. = -0.793

A1 (6011) A2 (6018)

(6122) (6210)

APPLIED FORCE TO MAINTAIN EQUILIBRIUM DUE TO C.O.G. SHIFT

Horizontal span to distributed My across joint 7001 and 7002 = 21.03 m (location of applied force =distance between forces applied for cog shift, near main members of lift pt, can anyhow define, but cannot b the pt attached to the sling (i.e. padeye)) x-axis

Horizontal span to distributed Mx across joint 7001 and 7003 = 9.14 m (location of applied force =distance between forces applied for cog shift, near main members of lift pt, can anyhow define, but cannot b the pt attached to the sling (i.e. padeye)) y-axis

Description Eccentricity (m) Moment Induced (kN.m) Force To Counter Induced Moment (kN)

x-dir y-dir My Mx (6210) (6222) (6122) (6137)

1. Shift towards 6081 -0.83 0.55 7782.19 5149.50 466.59 -96.56 96.56 -466.59

2. Shift towards 6088 0.86 0.51 -8048.35 4722.70 66.90 -449.58 449.58 -66.90

3. Shift towards 6011 -0.56 -0.83 5258.60 -7708.89 -296.51 546.55 -546.55 296.51

4. Shift towards 6018 0.61 -0.79 -5689.61 -7396.50 -539.71 269.18 -269.18 539.71

C.O.G.

Envelope of C.O.G.

a

b

a

a

a

a

y

x

Page 21: Spreadsheet

Lifting analysisTo locate and find the location for maximum sling angle.

hook pt (9999)

Sling Sling

1

2

Elevation view = Row B

B

A

Plan view - Row 1

Coordinates of lift points (after offset of padeye/trunnions)

PointsCoordinates (ft)

X Y Z-13.330 -12.422 62.521 22.154 60.91213.078 -12.583 62.521 22.992 60.000

-11.307 12.896 61.688 12.737 72.60511.438 12.547 61.688 13.913 71.108

From lcomb 300 (basic loads):the C.O.G:X = -0.730 ftY = 5.800 ftZ = 46.430 ftFind hook height.

Hook pointf = 60 deg

=

= 22.992 (rem see this formula correct or nt for each lifting analysis)= o/a

f Rel. Hook ht =B c.o.g = 39.822

C (2190)

D (4110)

C (2190)D (4190)

B (4110)A (2110)

Rel. Dist from CoG

Hook angle (deg)

A (6011)B (6018)C (6081)D (6088)

lb √(x2)+(y2)

hb

tan flb tan f

ft from pt B

lb

X

Z

X

Y

Page 22: Spreadsheet

Hook Elevation = 102.343 ft

Page 23: Spreadsheet

update with deck picture

Side workingestimated elevation of hook point = 200' ft(note: make this est. elev hook ht until est. angle = 60deg)Actual Hook Height = 102.343 ft (change this z val to the red col)

PointsCoordinates (ft)

X Y Z length est. angle Act. angleA (6011) -13.330 -12.422 62.521 22.154035 80.846 60.912B (6018) 13.078 -12.583 62.521 22.991521 80.506 60.000C (6081) -11.307 12.896 61.688 12.736957 84.739 72.605D (6088) 11.438 12.547 61.688 13.912885 84.256 71.108

(rem see this formula correct or nt for each lifting analysis)

Estimated angle must be above 60o

Page 24: Spreadsheet

(change this z val to the red col)

Page 25: Spreadsheet

Deck Level 14800 mmCentre of Gravity (C.o.G.)

x = 9.580 m

y = 0.090 m

18288

x1 x29580 8708

7001 0.559987 0.6037869 7003

32 deg 35 deg vertical anglea b a = 60 deg

y2 6006 11307 mm 10578 mm b = 62 deg

c = 60 deg

12192 d = 62 deg

minimum angle = 60 deg

y1 6186 11404 mm 10682 mm vertical height = 19752 mm

c d SLING LENGTH

33 deg 35 deg SLa = 22759 mm

7002 0.573361 0.61765933 7004 SLb = 22406 mm

SLc = 22807 mm

lift weight 20826.63 kN SLd = 22455 mm

vertical load (BASE)a 5031.60 kNb 5535.45c 4885.19d 5374.38 total 20826.63 kN

vertical load (1m shf twds a) total 20826.63 kNa 5995.25 kN x1 8732.74 mmb 5479.17 x2 9555.26c 4886.42 y1 6717.17d 4465.79 y2 5474.83

vertical load (1m shf twds b) total 20826.63 kNa 4974.10 kN x1 10403.19 mmb 6562.82 x2 7884.81c 4005.23 y1 6753.76d 5284.48 y2 5438.24

vertical load (1m shf twds c) total 20826.63 kNa 5033.22 kN x1 8739.92 mmb 4607.20 x2 9548.08c 5840.27 y1 5643.54d 5345.94 y2 6548.46

vertical load (1m shf twds d) total 20826.63 kNa 4133.59 kN x1 10395.24 mmb 5444.18 x2 7892.76c 4854.80 y1 5606.87d 6394.06 y2 6585.13

Page 26: Spreadsheet
Page 27: Spreadsheet
Page 28: Spreadsheet
Page 29: Spreadsheet