Calculation Spreadsheet

50
Calculation Spreadsheet F INDEX Calculate Page 3 Phase Supplies Power 555 Timer Analogue 6 dB Splitter Match ac Resistance of a strait wire Windings Adjacent from Cosine Math Adjacent from Tangent Math Antenna Gain dB Area & Perimeter of a Rectangle Math Area of a circle (radius) Math Area of a circle (diameter) Math Attenuation dB (Volts) dB Attenuation dB (Watts) dB Binary Math Bridge PSU Power Capacitor Charging Times Resistor, Current Sour Time Circumference of a Circle (r) Math Circumference of a Circle (d) Math Coaxial Cable Capacitance Match Coaxial Cable Inductance Match Coaxial Cable Impedance from Diameters Match Coaxial Cable Impedance from L & C Match Cosine Angle Math Current from Watts dB Current from Watts Power DAC Resolution Math dc Resistance of a strait wire Windings Delay Time Diameter/Radius of a Circle Math dBm to Volts rms dB dBm to Watts dB dBuV to Volts rms dB dBuV to Watts dB Degrees to Radians Time Distance travelled at the speed of light Math Frequency Coherence Time Frequency to Wavelength Time Fundamental Frequency Time Harmonics Time Hexadecimal Math Hypotenuse from Cosine Math Hypotenuse from Sine Math Impedance of Capacitor and Resistor in Parallel Match Impedance of Capacitor and Resistor in Series Match Impedance of Inductor and Resistor in Parallel Match Impedance of Inductor and Resistor in Series Match Imperial and Metric Distance Math Inductor Charging Times Time

description

τεστ

Transcript of Calculation Spreadsheet

Page 1: Calculation Spreadsheet

Calculation Spreadsheet For Radio Frequency and Analogue Electronics

INDEX

Calculate Page Cell3 Phase Supplies Power555 Timer Analogue6 dB Splitter Matchac Resistance of a strait wire WindingsAdjacent from Cosine MathAdjacent from Tangent MathAntenna Gain dBArea & Perimeter of a Rectangle MathArea of a circle (radius) MathArea of a circle (diameter) MathAttenuation dB (Volts) dBAttenuation dB (Watts) dBBinary MathBridge PSU PowerCapacitor Charging Times Resistor, Current Source TimeCircumference of a Circle (r) MathCircumference of a Circle (d) MathCoaxial Cable Capacitance MatchCoaxial Cable Inductance MatchCoaxial Cable Impedance from Diameters MatchCoaxial Cable Impedance from L & C MatchCosine Angle MathCurrent from Watts dBCurrent from Watts PowerDAC Resolution Mathdc Resistance of a strait wire WindingsDelay TimeDiameter/Radius of a Circle MathdBm to Volts rms dBdBm to Watts dBdBuV to Volts rms dBdBuV to Watts dBDegrees to Radians TimeDistance travelled at the speed of light MathFrequency Coherence TimeFrequency to Wavelength TimeFundamental Frequency TimeHarmonics TimeHexadecimal MathHypotenuse from Cosine MathHypotenuse from Sine MathImpedance of Capacitor and Resistor in Parallel MatchImpedance of Capacitor and Resistor in Series MatchImpedance of Inductor and Resistor in Parallel MatchImpedance of Inductor and Resistor in Series MatchImperial and Metric Distance MathInductor Charging Times Time

E25AB1G38A14V19S10Y1M1M17M25A13D13E25A25A73 - L73M1M9D112G112A112J112S10G45G9E9A14P37M33A25D25G25J13L13E33L1D25A30A1E17V10V19G48A48G62A62A33A85

Page 2: Calculation Spreadsheet

Mean MathMedium Term Stability TimeMiles to Kilometres MathsMMIC dc Conditions AnalogueNarrowband Bridge Balun MatchNautical Miles and Kilometres MathNear/Far field Distance TimeNoise Figure (Cascaded Amplifier) dBNominal Frequency (Average) TimeOhms Law Current AnalogueOhms Law Resistance AnalogueOhms Law Voltage AnalogueOhms Law Current PowerOhms Law Resistance PowerOhms Law Voltage PowerOp-Amp Gain Non-Inverting AnalogueOp-Amp Gain Inverting Analogue

NOTES: 1) Click on link to bring required block to centre/left of page

2) Some calculations use complex numbers or functions and require the Analysis Toolpack and Analysis Toolpack - VBA, which can be found under Tools / Add-Ins (if any calculation result indicates #VALUE!, then the Analysis Toolpack may not be installed).

3) Blocks can be linked in order to make more complex calculations. Simply reference the output (RED text) of one block from the input (BLACK text) of another block.

4) No cells are locked so all calculations can be checked, studied or copied.

5) Some blocks have hidden calculations that could become corrupted. If extra calculations are required, use the scratch areas.

E1H37M37V1J38I37P1Q37A37A1A25A13M1M25M13D34G34

Page 3: Calculation Spreadsheet

Calculation Spreadsheet For Radio Frequency and Analogue Electronics

Calculate Page CellOpposite from Sine MathOpposite from Tangent MathParts per Million MathPeak to Peak into rms dBPeak to Peak into rms PowerPercentage MathPeriod to Frequency to Period TimePi Attenuator dBPi Attenuator MatchPotentiometer AnaloguePower in Resistor into Current dBPower in Resistor into Current PowerPower in Resistor into Voltage dBPower in Resistor into Voltage PowerPower in Resistor using Current dBPower in Resistor using Current PowerPower in Resistor using Voltage dBPower in Resistor using Voltage PowerPower in Watts dBPower in Watts PowerRadians to Degrees TimeReactance of a Capacitor MatchReactance of an Inductor MatchRegulator (Transistor/Zener) PowerRegulator (Resistor/Zener) PowerResistors in Parallel AnalogueResistors in Parallel dBResonance TimeReturn Loss and Mismatch Loss dBReturn Loss and Mismatch Loss Matchrms into Peak to Peak dBrms into Peak to Peak PowerSample Standard Deviation MathSchmitt Trigger AnalogueSchmitt Trigger (Inverting) AnalogueShort Term Stability TimeSine Angle MathSine Wave - Instantaneous Voltage TimeSine Wave - Phase Angle TimeSkin Effect Depth WindingsSpurs TimeStub Filter Frequency TimeTangent Angle MathT Attenuator dBT Attenuator MatchTolerance MathTransformer Ratio Windings

S28S37A25J37J1A1H25M1A1H1D50D14A50A14D37D1A37A1G37G1L19A38D38A36I36D1A61H1M37M1J49J13I1N1R1D37S19P13P25A1D1H13S1M19A19A17E14

Page 4: Calculation Spreadsheet

Via Inductance MatchVector Voltage Addition TimeVelocity Factor TimeVelocity Factor MatchVoltage from Watts dBVoltage from Watts PowerVoltage Regulator AnalogueVoltage Summing Resistors AnalogueVoltage Vector TimeVoltage Vector Addition TimeVolts rms to dBm dBVolts rms to dBuV dBWatts to dBm dBWatts to dBuV dBWavelength to Frequency TimeWheeler Formula for Air Spaced Inductors WindingsZener Regulator PowerZener Regulator with Transistor Power

2) Some calculations use complex numbers or functions and require the Analysis Toolpack and Analysis Toolpack - VBA, which can be found under Tools / Add-Ins (if any calculation result indicates #VALUE!, then the Analysis Toolpack may not be installed).

3) Blocks can be linked in order to make more complex calculations. Simply reference the output (RED text) of one block from

5) Some blocks have hidden calculations that could become corrupted. If extra calculations are required, use the scratch areas.

P112T13P51M112G53G17A34L1P13T13A1G1D1J1D13A1I36A36

Page 5: Calculation Spreadsheet

Ohms Law Current Resistors in Parallel Potentiometer

Tolerance 1 % Tolerance 2.2 Ohms R1

3 Volts 20 Ohms R2 9.9 Ohms Input (Vin)

Resistance = 1/(1/R1+1/R2)Current = V / R Output (Vout) = V / (R1 + R2) x R2

Resistance = 1.981981982 OhmsCurrent = 0.30303 Amps Maximum = 2.001801802 Ohms Output =

Minimum = 1.962162162 Ohms Maximum = Minimum =

Ohms Law Voltage Resistors in ParallelResistors in Parallel

1 %22 Ohms Tolerance

1.4 Amps 18 Ohms R1 2.3 Ohms 1E+16 Ohms R2

R3 Voltage = I x R Resistance = 1/(1/R1+1/R2 + 1/R3)) R4

Resistance = 9.9 Ohms R5 Voltage = 3.22 Volts Maximum = 9.999 Ohms R6

Minimum = 9.801 OhmsResistance =

Ohms Law Resistance Resistors in Parallel

3 Volts 22 Ohms Resistance = 0.3 Amps 10 Ohms Maximum =

Minimum = Resistance = V / I R2 = 1/(1/Total - 1/R10)

Resistance = 10 Ohms Resistance = 18.33333333 Ohms

Voltage Regulator Non-Inverting Op-Amp Gain Inverting Op-Amp Gain

R1 1800 Ohms R in 10 Ohms R in R2 220 Ohms R f 15 Ohms R f

Vref 1.25 Voltst Temperature 30 Degrees Gain = (Rin + Rf)/Rin Gain = l Res to Case 5 °C/W Gain = 2.5 Gain = Input Voltage 36 Volts

ulated Current 0.15 Amps Input 5 Volts Input ink Therm Res 10 °C/WJunction Temp 125 °C Output = 12.5 Volts Output =

Vout = Vadj x (1 + R1/R2)

Vout = 11.4773 Voltson Temperature 85.18 Degrees

Page 6: Calculation Spreadsheet
Page 7: Calculation Spreadsheet

Potentiometer Schmitt Trigger

1 %1000 Ohms1000 Ohms Input Resistor (R1)

10 Volts Ground Resistor (R2) Feedback Resistor (R3)

Output (Vout) = V / (R1 + R2) x R2 Inverting Input (V-) Supply Voltage (Vcc)

5 Volts5.05 Volts Input Voltage High Threshold =4.95 Volts V- + ( R1 * (( Vi / R3 ) + ( Vi / R2 )))

Resistors in Parallel Voltage Summing Resistors Input Voltage High =

1 % Voltage (Va) 10 Volts Input Voltage Low Threshold =3.3 Ohms Resistor Ra 1000 Ohms V- ( R1 * ((( Vcc - Vi ) / R3 ) - ( Vi / R2 ))2.2 Ohms Voltage (Vb) 10 Volts

2.20E+00 Ohms Resistor Rb 1000 Ohms Input Voltage Low = 3.30E+00 Ohms Resistor Rc 500 Ohms1.50E+00 Ohms Input Voltage Mid =1.00E+32 Ohms RcRb + RcRa + RaRb V- * (( R1 + R2 ) / R2)

Vsum = 5 Volts Input Voltage Mid =

0.458333333 Ohms0.462916667 Ohms

0.45375 Ohms

Inverting Op-Amp Gain

91 Ohms520 Ohms

Rf/Rin5.714285714

1 Volts

5.714285714 Volts

1/(1/R1+1/R2 + 1/R3 + 1/R4 + 1/R5 + 1/R6))

Page 8: Calculation Spreadsheet
Page 9: Calculation Spreadsheet

Schmitt Trigger Inverting Schmitt Trigger

Type Vcc

10000 Ohms Non-Inverting Input Resistor (R1) 10000 Ohms I bias 1E+11 Ohms Feedback Resistor (R2) 100000 Ohms Vd 100000 Ohms Non-Inverting Input Voltage (V+in) 11.5 Volts Series inductors

5 Volts Supply Voltage (Vcc) 24 Volts R bias (total) =24 Volts R bias resistors =

Input Voltage High Threshold = Inverting Input Voltage High Threshold (V-in) = Series ResistorsV- + ( R1 * (( Vi / R3 ) + ( Vi / R2 ))) Vcc - ( ( Vcc-V+in ) x ( R2 /(R2+R1))) R1

Power R1 =5.5000005 Volts Input Voltage High = 12.636364 Volts Calculated R2 =

Actual R2 Input Voltage Low Threshold = Inverting Input Voltage Low Threshold (V-in) = Power R2 =

V- ( R1 * ((( Vcc - Vi ) / R3 ) - ( Vi / R2 )) V+in x R2 /(R1 + R2) Actual Current =Parallel Resistors

3.1000005 Volts Input Voltage Low = 10.454545 Volts R1 Power R1 =

Inverting Input Voltage Mid = Calculated R2 =V- * (( R1 + R2 ) / R2) V+in * (( R1 + R2 ) / R2) Actual R2

Power R2 =5.0000005 Volts Input Voltage Mid = Volts Actual Current =

Page 10: Calculation Spreadsheet

MIMIC DC Conditions 555 Timer

ADA-4543 Monostable5.3 Volts MIMIC Tolerances

0.015 Amps RA 3300003.4 Volts Vd Max 3.8 Volts RA Tolerance 11.5 Ohms Vd Min 3.1 Volts Capacitance 1

126.6666667 Ohms Mantissa -6125.1666667 Ohms C Tolerance 10

Series Resistors Period = 1.1 x R x C68 Ohms R1 + R2 = 78 Ohms Period = 0.363

0.038840236 Watts Maximum Current = 0.027673 Amps Period = 36357.16666667 Ohms Minimum Current = 0.018868 Amps Min Period = 0.323433

10 Ohms Voltage R1 Max = 1.881761 Volts Min Period = 323.4330.005711799 Watts Voltage R1 Min = 1.283019 Volts Max Period = 0.4032930.023899371 Amps Voltage R1 Mean = 1.625157 Volts Max Period = 403.293

Parallel Resistors330 Ohms R1 || R2 = 138.9474 Ohms

0.010939394 Watts Maximum Current = 0.015664 Amps Astable201.6517494 Ohms Minimum Current = 0.01068 Amps

240 Ohms Voltage R1 Max = 2.176504 Volts RA 100000.015041667 Watts Voltage R1 Min = 1.48398 Volts RA Tolerance 10.013528199 Amps Voltage R1 Mean = 1.879708 Volts RB 10000

RB Tolerance 1Capacitance 470

Mantissa -9C Tolerance 5

Time High = 0.693(RA + RB) x CTime High = 0.006533Time High = 6.533

Min Time High = 0.006144Min Time High = 6.144287

Max Time High = 0.006928Max Time High = 6.928246

Time Low = 0.693 x RB x CTime Low = 0.003267Time Low = 3.2665

Min Time Low = 0.003072Min Time Low = 3.072143Max TimeLow = 0.003464Max TimeLow = 3.464123

Page 11: Calculation Spreadsheet

555 Timer

Ohms%Digits

%

1.1 x R x Csecondsmssecondsmssecondsms

Ohms%Ohms%Digits

%

0.693(RA + RB) x Cseconds

mssecondsmssecondsms

0.693 x RB x Cseconds

mssecondsmssecondsms

Page 12: Calculation Spreadsheet

Volts rms to dBm Watts to dBm Volts rms to dBuV

Zo 50 OhmsV1 0.7071067812 Volts P1 3.00 Watts V1

power = 20 Log (V1/(0.001 x Zo)^0.5) power = 10 Log (P1/0.001) power = 20 Log (V1/0.000001) dBuV

Power = 10 dBm Power = 34.7712125 dBm Power =

Attenuation (dB) Attenuation (dB) dBc to dBc/Hz

V1 1 Volts P1 50 Watts Measured RBW

V2 0.333333 Volts P2 1.1167 Watts Correction

Ratio = 20 Log (V1/V2) Ratio = 10 Log (P1/P2) noise = measured -10 Log RBW- Correction Factor

Ratio = 9.5424337803 dB Ratio = 16.5103349 dB noise =

dBm to Volts rms dBm to Watts dBuV to Volts rms

Zo 50 OhmsLevel 35 dBm Level 10 dBm Level

V1 = Alog(dBm/20) x (0.001 x Zo)^0.5 P1 = Alog(dBm/10) x 0.001 V1 = Alog(dBm/20) x 0.000001

Voltage = 12.574334297 Volts Power = 0.01 Watts Voltage =Current = 0.251487 Amps

Power in Resistor Using Voltage Power in Resistor Using Current Power in Watts

Voltage Voltage 17.6 Volts rms Current 4.50E-05 Amps rms Current

Resistance 3300 Ohms Resistance 1000 OhmsW = I x V

Current = Voltage / Resistance Power = I^2 x R Power =Current = 0.0053333333 Amps Power = 2.025E-06 Watts

Power = V^2 / RCurrent from Watts

Voltage Drop = I x RPower = 0.0938666667 Watts Drop = 0.045 Volts Voltage

Power

Power in Resistor Into Voltage Power in Resistor into Current I = W / VCurrent =

Page 13: Calculation Spreadsheet

Power 0.00 Watts Power 325.00 Watts Voltage from WattsResistance 50 Ohms Resistance 600 Ohms

Current Volts = (W x R)^0.5 Current = (W / R)^0.5 Power

Voltage = 0 Volts Current = 0.73598007 Amps V = W / IVoltage =

Resistors in Parallel

Tolerance 1 %R1 1570 OhmsR2 1570 OhmsR3 50 Ohms

Resistance = 1/(1/R1+1/R2 + 1/R3))Resistance = 47.005988024 Ohms

Maximum = 47.476047904 Ohms

Minimum = 46.535928144 Ohms

Page 14: Calculation Spreadsheet

Volts rms to dBuV Watts to dBuV Pie Attenuator---Preferred ValuesEMF

Zo 50 Ohms Zo IN 1 Volts P1 1.00E-01 Watts Zo OUT

Series Resistor Shunt Resistor IN

Shunt Resistor OUT Include Mismatch Losses

power = 20 Log (V1/0.000001) dBuV power = 10 Log (P1/(0.000001^2/Zo)) FORWARDTotal Resistance =

120 dBuV Power = 1.27E+02 dBuV Input Current = Input Voltage =

Output Voltage = dBc to dBc/Hz dBuV to Watts Attenuation =

Input Impedance = Zo 50 Ohms Reflection Coefficient =

-59.84 dBc Level 127 dBuV Input VSWR = 3 KHz Return Loss =

2.3 dBcTea Attenuator---Preferred Values

noise = measured -10 Log RBW P1 = Alog(dBm/10) x (0.000001^2/Zo) EMF- Correction Factor Zo IN

-96.91121255 dBc/Hz Power = 0.10023745 Watts Zo OUT Series Resistor IN

Shunt Resistor dBuV to Volts rms Scratch Area Series Resistor OUT

Include Mismatch Losses FORWARD

Total Resistance = 79 dBuV Input Current =

Input Voltage = Output Voltage =

Attenuation = V1 = Alog(dBm/20) x 0.000001 Input Impedance =

Reflection Coefficient = 0.0089125094 Volts VSWR =

Return Loss =

Power in Watts Peak to Peak into rms Return Loss and Mismatch Loss

17.7827941 Volts Zo 0.0075 Amps Voltage 2 Volts pp Real (R)

Imaginary (j) W = I x V0.1333709558 Watts Absolute Load Impedance =

Volts rms = Volts pp / 2.828Current from Watts Reflection Coefficient ( Γ ) =

Volts rms = 0.70710678 Volts175 Volts Reflection Coefficient ( Γ ) =375 Watts

rms into Peak to Peak VSWR =I = W / V VSWR =2.1428571429 Amps

Page 15: Calculation Spreadsheet

Voltage 12.57 Volts rms Return Loss = 20LOG((VSWR-1)/(VSWR+1))Voltage from Watts Return Loss =

0.0075 Amps Mismatch Loss =0.1333709558 Watts Volts pp = Volts rms x 2.828

V = W / I Volts pp = 35.5655882 Volts17.7827941 Volts Volts peak = 17.7827941 Volts

Page 16: Calculation Spreadsheet

Pie Attenuator---Preferred Values Pie Attenuator---Ideal Values Antenna Gain2 Volts EMF 2 Volts

100 Ohms Zo IN 50 Ohms A + B -6.3625 Ohms Zo OUT 50 Ohms B + C -4.94

1000.00 Ohms Attenuation 5 dB A + C -5.5198.00 Ohms198.00 Ohms Output Voltage = 0.562341325 Volts A = (A+B)+(A+C)-(B+C)

NO YES/NO 2Shunt Resistor IN = 178.49 Ohms

265.87077 Ohms Shunt Resistor OUT = 178.49 Ohms A = -3.460.00752245 Amps Series Resistor = 30.40 Ohms1.24775484 Volts B = (A+B)+(B+C)-(A+C)0.02709536 Volts REVERSE Output 0.108381425 Volts 225.0463894 dB Attenuation = 21.88273827 dB165.87077 Ohms Output Impedance = 166.9950425 Ohms B = -2.9

0.24775484 Reflection Coefficient = 0.7395766091.6587077 Output VSWR = 6.679801701 C = (B+C)+(A+C)-(A+B)

12.12 dB Return Loss = 2.62 dB 2Input 1.739576609 Volts

Tea Attenuator---Preferred Values Tea Attenuator---Ideal Values C = -2.042 Volts EMF 2 Volts

100 Ohms Zo IN 50 Ohms25 Ohms Zo OUT 50 Ohms

15.00 Ohms Attenuation 5 dB1000.00 Ohms

15.00 Ohms Output Voltage = 0.56 VoltsYES YES/NO

Series Resistor IN = 14.01 Ohms153.461538 Ohms Series Resistor OUT = 14.01 Ohms0.01303258 Amps Shunt Resistor = 82.24 Ohms0.69674185 Volts 0.31328321 Volts REVERSE Output = 1.253132832 Volts4.06065774 dB Attenuation = 4.06065774 dB53.4615385 Ohms Output Impedance = 118.1390135 Ohms-0.3032581 Reflection Coefficient = 0.6506892231.8705036 Output VSWR = 4.725560538

10.36 dB Return Loss = 3.73 dBInput Voltage = 1.650689223 Volts

Return Loss and Mismatch Loss Cascaded Amplifier Noise Figure

50 Ohms Gain Noise Figure54.30 Ohms Stage 1 20 3 dB

2 Ohms Stage 2 20 3 dBStage 3 20 3 dB

54.34 Ohms

((R-Zo)^2+j^2)^0.5 F = F1 + F2 - 1 + F3 - 1((R+Zo)^2+j^2)^0.5 G1 G1G2

0.045460Gain (x) Noise Factor

( 1 + Γ ) / ( 1 - Γ ) Stage 1 100 1.9952623151.095 Stage 2 100 1.995262315

Stage 3 100 1.995262315

Page 17: Calculation Spreadsheet

Return Loss = 20LOG((VSWR-1)/(VSWR+1))26.85 dB Total Noise Factor 2.005314464

Total Gain 60 dB0.009 dB Total Noise Figure 3.021824864 dB

Page 18: Calculation Spreadsheet

Antenna Gain

dBdBdB

(A+B)+(A+C)-(B+C)

dB

(A+B)+(B+C)-(A+C)

dB

(B+C)+(A+C)-(A+B)

dB

Page 19: Calculation Spreadsheet

Pie Attenuator---Preferred Values Pie Attenuator---Ideal ValuesEMF 2 Volts EMF 2

Zo IN 100 Ohms Zo IN 50Zo OUT 25 Ohms Zo OUT 50

Series Resistor 1000.00 Ohms Attenuation 5Shunt Resistor IN 198.00 Ohms

Shunt Resistor OUT 198.00 Ohms Output Voltage = 0.5623413252Include Mismatch Losses NO YES/NO Shunt Resistor IN = 178.49

FORWARD Shunt Resistor OUT = 178.49Total Resistance = 265.87077 Ohms Series Resistor = 30.40

Input Current = 0.00752245 AmpsInput Voltage = 1.24775484 Volts

Output Voltage = 0.02709536 Volts REVERSE Output 0.108381425Attenuation = 25.0463894 dB Attenuation = 21.882738265

Input Impedance = 165.87077 Ohms Output Impedance = 166.99504252Reflection Coefficient = 0.24775484 Reflection Coefficient = 0.7395766091

Input VSWR = 1.6587077 Output VSWR = 6.6798017006Return Loss = 12.12 dB Return Loss = 2.62

Input 1.7395766091Tea Attenuator---Preferred Values Tea Attenuator---Ideal Values

EMF 2 Volts EMF 2Zo IN 100 Ohms Zo IN 50

Zo OUT 25 Ohms Zo OUT 50Series Resistor IN 15.00 Ohms Attenuation 15

Shunt Resistor 1000.00 OhmsSeries Resistor OUT 15.00 Ohms Output Voltage = 0.18

Include Mismatch Losses NO YES/NO Series Resistor IN = 34.90FORWARD Series Resistor OUT = 34.90

Total Resistance = 153.461538 Ohms Shunt Resistor = 18.36Input Current = 0.01303258 AmpsInput Voltage = 0.69674185 Volts

Output Voltage = 0.31328321 Volts REVERSE Output = 1.2531328321Attenuation = 3.64168122 dB Attenuation = 1.6694307463

Input Impedance = 53.4615385 Ohms Output Impedance = 118.13901345Refection Coefficient = -0.3032581 Reflection Coefficient = 0.6506892231

VSWR = 1.8705036 Output VSWR = 4.7255605381Return Loss = 10.36 dB Return Loss = 3.73

Input Voltage = 1.6506892231

Reactance of a Capacitor Reactance of an Inductor 6 dB Splitter

Capacitance 12 Digits Inductance 470 Digits Zo Mantissa -12 Mantissa -6 R1 = R2 = R3

Frequency 46700000 Hz Frequency 1000 HzZ in = (R2 + Zo)/2 + R1

Xc = 1 / 2pi fc Xl = 2πflZ in =

Xc = -284.0023967 Ohms Xl = 2.95309709 Ohms

Impedance of Capacitor and Resistor in Series Impedance of Capacitor and Resistor in Parallel

Capacitance 820 Digits (Farads)

Page 20: Calculation Spreadsheet

Mantissa -6Resistor 820000000 Digits (Ohms)

Frequency 1000 Hz

Xc = 1 / 2π fc Z Complex = R - jXc

Xc = -0.194091394 Ohms Xc = Z Complex = 820000000-0.194091394014507j Ohms Z Complex = Z Absolute = 820000000 Ohms Z Absolute =

Impedance of Inductor and Resistor in Series Impedance of Inductor and Resistor in Parallel

Inductance 820 DigitsMantissa -3Resistor 22 Digits (Ohms)

Frequency 10 Hz

XL = 2π fL Z Complex = R - jXL XL = 2π fL

XL = 51.522119519 Ohms XL = Z Complex = 22+51.5221195188726j Ohms Z Complex = Z Absolute = 56.022574019 Ohms Z Absolute =

Reactance of Capacitor and Inductor in Series Reactance of Capacitor and Inductor in Parallel

Capacitance 820.000 Digits (Farads)Mantissa -6

Inductance 820.000 Digits (Henries)Mantissa -3

Frequency 1000 Hz

Xc = 1/2π fC XL = 2π fL XT = XL + Xc Xl = 2π fL

Xc = -0.194091394 Ohms Xc = XL = 5152.2119519 XL = XT = 5152.01786049325 Ohms XT =

Impedance of Capacitor, Inductor and Resistor in Series Impedance of Capacitor, Inductor and Resistor in Parallel

Capacitance 820 Digits (Farads)Mantissa -6

Inductance 820.000 Digits (Henries)Mantissa -9Resistor 1000000 Digits (Ohms)

Frequency 1000 Hz

Xc = 1/2π fC XL = 2π fL Z Complex = R + (Xl- jXc) Xc = 1/2π fC

Xc = XL =

Page 21: Calculation Spreadsheet

X = -0.188939182 Ohms X = Z Complex = 1000000-0.188939182062619j Ohms Z Complex = Z Absolute = 1000000 Ohms Z Absolute =

Coaxial Cable Capacitance Coaxial Cable Inductance

Outer (D) 4.335 mm Outer (D) 6 mm Outer (D) Inner (d) 1.3 mm Inner (d) 2.6 mm Inner (d)

Dielectric 2.07 εr Dielectric 1 εrConstant Constant

L = 0.4606 * LOG10 D/dZo = 138/εr^0.5 x LOG10(D/d) C = 24.16 * εr / LOG10 D/d

Impedance = 50.17 Ohms Capacitance = 66.52 pF/m Inductance =

Coaxial Cable Impedance from diameters

Page 22: Calculation Spreadsheet

Pie Attenuator---Ideal Values Return Loss and Mismatch LossVolts

Ohms Zo 60 Real (R) dB Imaginary (j)

VoltsOhms Complex Load Impedance = Ohms Absolute Load Impedance = Ohms

Reflection Coefficient ( Γ ) =

VoltsdB Reflection Coefficient ( Γ ) =Ohms

VSWR = ( 1 + Γ ) / ( 1 - Γ )

dB VSWR = Volts

Tea Attenuator---Ideal Values Return Loss = 20LOG((VSWR-1)/(VSWR+1))Volts

Ohms Return Loss = OhmsdB Mismatch Loss =

Volts EQUIVALENT CIRCUITSOhmsOhmsOhms Frequency

Scratch Area C = 1 /( 2 π Xc)Volts dB Equivalent Series CircuitOhms

Series Network = Real + Imaginary

dB 165.871Volts

Equivalent Parallel Circuit6 dB Splitter Narrowband Bridge Balun

Rp = 50 Ohms Source resistance 50 ohm

16.666 Ohms Load resistance 1500 ohmCentre frequency 21.4 MHz Xp =

Z in = (R2 + Zo)/2 + R1Component values 2036.7 nH

49.999 Ohms 27.2 pF166.739

Impedance of Capacitor and Resistor in Parallel

Capacitance 820.000 Digits (Farads)

Page 23: Calculation Spreadsheet

Mantissa -6Resistor 1000000.000 Digits (Ohms)

Frequency 50 Hz

Xc = 1 / 2π fc Z Complex = (R x Xc) / (R + Xc)

-3.88182788 or -3.88182788029013j Ohms1.50685876919707e-05-3.88182788023164j Ohms3.88183 Ohms

Impedance of Inductor and Resistor in Parallel

Inductance 470.000 DigitsMantissa -9Resistor 1000.000 Digits (Ohms)

Frequency 2000000 Hz

Z Complex = (R x XL^2) / (R^2 + XL^2) -(j)(R^2 x XL) / (R^2 + XL^2)

5.906194189 or 5.90619418874881j Ohms0.0348819130049114+5.90598816939693j Ohms5.90609 Ohms

Reactance of Capacitor and Inductor in Parallel

Capacitance 220.000 Digits (Farads)Mantissa -12

Inductance 220.000 Digits (Henries)Mantissa -6

Frequency 2000000 Hz

XL = 2π fL XT = -(j)(XL x Xc) / (XL + Xc)

-361.71578 Ohms2764.601535-416.166269141486 Ohms

Impedance of Capacitor, Inductor and Resistor in Parallel

Capacitance 1.000 Digits (Farads)Mantissa -13

Inductance 1.000 Digits (Henries)Mantissa 0Resistor 1000000.000 Digits (Ohms)

Frequency 2000000 Hz

XL = 2π fL X = (Xc x Xl) / (Xc + Xl)Z Complex = (R x X^2) / (R^2 + X^2) +(j)(R^2 x X) / (R^2 + X^2)

-795774.71512566370.61

Page 24: Calculation Spreadsheet

-849574.659 or -849574.659251941j Ohms419204.728041903-493428.945268938j Ohms### Ohms

Coaxial Cable Inductance Velocity Factor

6 mm Er 2.6 mm Capacitance 66.52 pF/m

Inductance 0.167 uH/m vf = 1 / Er^0.5

L = 0.4606 * LOG10 D/d Impedance = (L/C)^0.5

0.167 uH/m Inductance = 50.07 Ohms vf =

Coaxial Cable Impedance from capacitance and inductance

Page 25: Calculation Spreadsheet

Return Loss and Mismatch Loss

Zo 50 OhmsReal (R) 165.87 Ohms

Imaginary (j) -12 Ohms

Complex Load Impedance = 165.870769999706-12j OhmsAbsolute Load Impedance = 166.30 Ohms

Reflection Coefficient ( Γ ) = ((R-Zo)^2+j^2)^0.5((R+Zo)^2+j^2)^0.5

Reflection Coefficient ( Γ ) = 0.538799

VSWR = ( 1 + Γ ) / ( 1 - Γ )

VSWR = 3.337

Return Loss = 20LOG((VSWR-1)/(VSWR+1))

Return Loss = 5.37 dB

Mismatch Loss = 1.489 dB

EQUIVALENT CIRCUITS

Frequency 1 MHz

C = 1 /( 2 π Xc) or L = Xl /( 2 π f)

Equivalent Series Circuit

Series Network = Real + Imaginary

Ohms + 13262.912 pF

Equivalent Parallel Circuit

Rs^2 + Xs^2Rs

Rs^2 + Xs^2Xs

Xp = -2304.75936169128 Ohms

Ohms + 69.055 pF

Page 26: Calculation Spreadsheet

Velocity Factor Via Inductance(Rule of thumb!)

2.07Length (h) 1.6 mm

vf = 1 / Er^0.5 Diameter (d) 1 mm

L = 0.2 x h x (ln(4h/d)+1)

0.6950480469 Inductance = 0.914015 nH

Page 27: Calculation Spreadsheet

Percentage Mean Sample Standard DeviationTRUE/FALSE

Large 2.12 Maximum 1.19 62.9Small 1.39 Minimum 1.1 60

67.7Large as a percentage of small 0

= 152.51799 % Mean = 1.145 00

Percentage DAC Resolution 00

Large 185.5 Number of Bits 8 0Small 50 Full Output 10 Volts 0

0Small as a percentage of large One bit resolution = Full Voltage / 2^nBits 0

= 26.954178 % One bit resolution = 0.0390625 Volts 00

Tolerance Hexadecimal 00

Mean Value 197.5 HEX c 0

Tolerance 19.5 % DECIMAL = 12 00

Maximum = 236.0125 DECIMAL 13 0Minimum = 158.9875 HEX = D 63.53333333

Enter Zero for all unused cellsParts Per Million 8 Bit Binary Use identical units in all cells

Mean Value 90 Binary 1101

Tolerance 9000 ppm DECIMAL = 13

Maximum = 90.81 DECIMAL 12Minimum = 89.19 Binary 00001100

Maximum = Imperial and Metric Distance Distance travelled at the speed of light Minimum =

Median = Imperial Length 0.63 inches Time 0.00011 sec Standard Deviation (S) = Metric Length = 15.875 mm Speed = 2.997925 x 10^8 m/s

1 inch = 25.4 mmDistance = 32,977 m Nautical Miles and Kilometres

32.977 kmMetric Length = 18.70 mm Nautical Miles

Imperial Length = 0.7362205 inches Kilometres =I Digit Fraction = 3/4 Distance 30,000 m

2 Digit Fraction = 67/91

3 Digit Fraction = 187/254 Time = 0.00010007 sec Nautical Miles =

Page 28: Calculation Spreadsheet

Sample Standard Deviation Area & Perimeter of a Rectangle Circumference of a CircleX X-M^2 n

62.9 0.401111 1 Width 1.422 Radius 3.7560 12.48444 1 Length 1.422

67.7 17.36111 1 c = 2 x π x r0 0 0 Area = w x l0 0 0 Perimeter = 2w + 2l c = 23.561940 0 00 0 0 Area = 2.022084 Circumference of a Circle0 0 0 Perimeter = 5.6880 0 0 Diameter 10.962350 0 0 Width & Perimeter of Square0 0 0 c = π x d0 0 0 Area 10.96234880 0 0 c = 34.439230 0 0 Width = A^0.50 0 0 Perimeter = 4 x A^0.5 Area of a Circle0 0 00 0 0 Width = 3.310943793 Radius 1.780762

0 0 0 Perimeter = 13.243775170 0 0 a = π x r^20 0 0 Scratch Area

190.600000 ### 3 a = 9.962349Enter Zero for all unused cellsUse identical units in all cells Area of a Circle

Diameter 3.736

a = π x (d/2)^2

Average = 63.5333333333333 a = 10.96235Maximum = 67.7Minimum = 0 Diameter/Radius of a Circle

Median = 0Standard Deviation (S) = 3.88887301584062 Area 9.962349

Nautical Miles and Kilometres Miles and Kilometres r = (a / π)^0.5

Nautical Miles 24 NM Miles 60 m r = 1.780762

Kilometres = 43.8052 km Kilometres 96.56064 kmConversion = 1.609344 d = (a / π)^0.5 x 2

Kilometres 4.000 km Kilometres 100 km

Nautical Miles = 2.19152 NM Miles 62.14 m d = 3.561524

Page 29: Calculation Spreadsheet

Circumference of a Circle Sine Angle Hypotenuse from Sine

Opposite 3 Opposite 3Hypotenuse 5 Angle 36.8699 degrees

c = 2 x π x rAngle θ = arcsine (O / H) Hypotenuse = O / sine θ

Angle θ = 36.869898 degrees Hypotenuse = 5Circumference of a Circle

Cosine Angle Hypotenuse from Cosine

Adjacent 3 Adjacent 3c = π x d Hypotenuse 5 Angle 53.1301 degrees

Angle θ = arccosine (A / H) Hypotenuse = A / cosine θ

Area of a Circle Angle θ = 53.130102 degrees Hypotenuse = 5

Tangent Angle Adjacent from Cosine

a = π x r^2 Opposite 3 Hypotenuse 5Adjacent 4 Angle 36.8699 degrees

Angle θ = arctangent (O /A) Adjacent = H x cosine θArea of a Circle

Angle θ = 36.869898 degrees Adjacent = 4

Opposite from Sine Adjacent from Tangenta = π x (d/2)^2

Hypotenuse 5 Opposite 3Angle 53.130102 degrees Angle 36.8699 degrees

Diameter/Radius of a Circle Opposite = H x sine θ Adjacent = O / tan θ

Opposite = 4 Adjacent = 4

r = (a / π)^0.5 Opposite from Tangent

Adjacent 4

Angle 53.130102 degreesd = (a / π)^0.5 x 2

Opposite = A / tan θ

Opposite = 3

Page 30: Calculation Spreadsheet

Power in Resistor Using Voltage Power in Resistor Using Current Power in Watts

Voltage 10.8Voltage 0.666667 Volts rms Current 8.50E-08 Amps rms Current 0.202

Resistance 50 Ohms Resistance 120000 OhmsW = I x V

Current = Voltage / Resistance Power = I^2 x R Power = 2.1816Current = 0.013333 Amps Power = 8.67E-10 Watts

Current from WattsPower = V^2 / R Voltage Drop = I x R

Power = 0.008889 Watts Drop = 0.0102 Volts Voltage 10.8Power 2.5

Power in Resistor Into Voltage Power in Resistor into Current I = W / VCurrent = 0.231481481

Power 1.00 Watts Power 325.00 Watts Voltage from WattsResistance 50 Ohms Resistance 600 Ohms

Current 0.202Volts = (W x R)^0.5 Current = (W / R)^0.5 Power 2.1816

Voltage = 7.071068 Volts Current = 0.73598 Amps V = W / IVoltage = 10.8

Bridge PSU 3 Phase Supplies

Primary 483 Turns Single Phase to Neutral 240 Volts rmsSecondary 376 Turns

Primary Voltage 25.03 Volts rms Phase to Phase = Phase to Neutral * 3^0.5Individual Diode Drop 1.1 Volts

Phase to Phase = 415.69219 Volts rmsSecondary Voltage = 19.49 Volts rmsSecondary Voltage = 27.55 Volts pp

Bridge Output = 25.35 Volts dc

Zener Diode + Power Transistor on Heatsink, Voltage Regulation

Zener ZD1 28 VoltsZD1 Voltage Tolerance 5 %

Resistor R1 120 OhmsSupply Voltage 36 Volts

Required O/P Current 0.28 ATR1 Vbe @ Ic<0.1 A 0.2 Volts

TR1 Vbe @ Ic>0.1 A 0.5 VoltsTR1 hfe 80

Ambient Temperature 30 °CTR1 Therm Resistance 1.66 °C/W

Heatsink Therm Res 21 °C/W

ZD1 Max Voltage 29.4 Volts ZD1 Min Voltage 26.6 VoltsTR1 Vbe 0.5 Volts TR1 Vbe 0.5 Volts

Current in R1 = (Supply Voltage - Zener Voltage) / RR1 0.055 A R1 0.0783333 A

Page 31: Calculation Spreadsheet

R1 Voltage 6.6 Volts R1 Voltage 9.4 VoltsTR1 base current (Ib) 0.0035 A TR1 base current (Ib) 0.0035 A

ZD1 current 0.0515 A ZD1 current 0.0748333 AOutput Voltage TR1 Ve 28.9 Volts Output Voltage TR1 Ve 26.1 Volts

R1 0.363 Watts R1 0.7363333 WattsZD1 1.5141 Watts ZD1 1.9905667 Watts

TR1 Ptot 1.988 Watts TR1 Ptot 2.772 WattsTR1 Junction Temp 75.04808 °C TR1 Junction Temp 92.81352 °C

Page 32: Calculation Spreadsheet

Power in Watts Peak to Peak into rms Ohms Law Current

VoltsAmps Voltage 2 Volts pp

Voltage 7 VoltsW = I x V Resistance 14.1 Ohms

WattsVolts rms = Volts pp / 2.828 Current = V / R

Current from WattsVolts rms = 0.70710678119 Volts Current = 0.496454 Amps

VoltsWatts

rms into Peak to Peak Ohms Law VoltageI = W / V

AmpsVoltage 7.07 Volts rms

Voltage from Watts Current 1.4 AmpsResistance 96 Ohms

AmpsWatts Volts pp = Volts rms x 2.828 Voltage = I x R

V = W / I Volts pp = 20 Volts Voltage = 134.4 VoltsVolts

3 Phase Supplies 2 Phase Supplies Ohms Law Resistance

Single Phase = 115 Volts rms

Phase to Phase = Voltage 175 VoltsSingle Phase x 2 Current 1.1 Amps

Phase to Phase = 230 Volts rms Resistance = V / I

Resistance = 159.0909 Ohms

Zener Diode + Resistor, Voltage Regulation

Zener ZD1 24 VoltsZD1 Voltage Tolerance 5 %

Resistor R1 180 OhmsSupply Voltage 36 Volts

Required O/P Current 0.01 A

ZD1 Max Voltage 25.2 Volts ZD1 Min Voltage 22.8

Current in R1 = (Supply Voltage - Zener Voltage) / R, or Required Output Current

Page 33: Calculation Spreadsheet

R1 0.06 A R1 0.07333333Output Voltage 25.2 Volts Output Voltage 22.8

ZD1 current 0.05 A ZD1 current 0.06333333Output Current 0.01 A Output Current 0.01

R1 0.648 Watts R1 0.968ZD1 1.26 Watts ZD1 1.444

Page 34: Calculation Spreadsheet

Scratch Area

Zener Diode + Resistor, Voltage Regulation

Volts

Current in R1 = (Supply Voltage - Zener Voltage) / R, or Required Output Current

Page 35: Calculation Spreadsheet

AVoltsAAWattsWatts

Page 36: Calculation Spreadsheet

Harmonics Spurs

RF Frequency 10 MHz Fundamental 10 MHz LO Frequency 2 MHz

Harmonic 24 RF Harmonic 4LO Harmonic 4

Frequency = Fundamental x HarmonicFrequency = 240 MHz RF Harmonic = 40 MHz

LO Harmonic = 8 MHzHarmonic 2 20 MHz Sum = 48 MHz Harmonic 3 30 MHz Difference = 32 MHz Harmonic 4 40 MHz Harmonic 5 50 MHz Wavelength to FrequencyHarmonic 6 60 MHz Harmonic 7 70 MHz Wavelength 0 mHarmonic 8 80 MHz Harmonic 9 90 MHz Frequency = 3 x 10^8 / Wavelength

Harmonic 10 100 MHz Harmonic 11 110 MHz Frequency = 10000 HzHarmonic 12 120 MHz 10 KHzHarmonic 13 130 MHz 0.01 MHzHarmonic 14 140 MHz 0.00001 GHzHarmonic 15 150 MHz Harmonic 16 160 MHz Harmonic 17 170 MHz Frequency to WavelengthHarmonic 18 180 MHz Harmonic 19 190 MHz Frequency 300000000 HzHarmonic 20 200 MHz

Wavelength = 3 x 10^8 / FFundamental Frequency

Wavelength = 1 mFrequency 300 MHz Quarter wave = 0.25 mHarmonic 30 MHz Quarter wave = 250 mm

Half wave = 0.5 mFundamental = 10 MHz Half wave = 500 mm

Nominal Frequency Short-Term Stability(Average) (Corresponds to Allen Deviation)

Count (fi(2)-fi(3)/fi(2)^2 n1 892 1 0.0004 100 98 12 809 1 0.0004 100 98 13 823 1 0.0004 100 98 14 798 1 0.0004 100 98 15 671 1 0.0004 100 98 16 644 1 0.0004 100 98 17 883 1 0.0004 100 98 18 903 1 0.0004 100 98 19 677 1 0.0004 100 98 1

10 0 0 0.0004 100 98 111 0 0 0 0 0 012 0 0 0 0 0 013 0 0 0 0 0 0

fi(1) fi(2) fi(3)

Page 37: Calculation Spreadsheet

14 0 0 0 0 0 015 0 0 0 0 0 016 0 0 0 0 0 017 0 0 0 0 0 018 0 0 0 0 0 019 0 0 0 0 0 020 0 0 0 0 0 0

0.004 10Enter Zero for all unused frequencies Enter Zero for all unused frequencies

Use identical units in all cells Use identical units in all cellsfi(2) and fi(3) are +ve and -ve phase transitions

9Nominal Frequency (fo) = 788.888889 Short-Term Stability (σ) = 0.0141421356

Charging Capacitor, Time Charging Capacitor, Capacitance

Capacitance 10 Digits Time 0.00001 SecondsMantissa -9 Resistance 11000 Ohms

Resistance 8300 Ohms

T = C x R C = T / R

Time = 0.000083 s C = 0.00090909 uF= 0.083 ms

Charging Inductor, Time

Inductance 220 DigitsMantissa -9

Resistance 1000 Ohms

T = L / R

Time = 2.2E-10 s= 0.00000022 ms

Page 38: Calculation Spreadsheet

Tank Circuit Resonance Frequency Coherence

Capacitance 8.2 Digits Duty Ratio 0.3443Mantissa -9 Measured Total Power (dBT) -18.94 dBm

Inductance 820 Digits Power in Bandwidth (dBc) -27.76 dBmMantissa -9

Percentage Power in Measured Bandwidth = Resonant Frequency = Alog ((dBc -dBT)/10) x 100

1/(2 x Pi x SQRT(C x L))Percentage = 38.1121086 %

Frequency = 1,940,914 Hz= 1.94091394 MHz

Stub Filter Frequency Degrees to Radians

Mechanical Length 5 mm Degrees 30 Degreesεr 4.2

Radians = 0.52359878 Radians Velocity Factor = 1 / εr^0.5

Vf = 0.49 Radians to DegreesElectrical Length = Mechanical Length / Vf

Elec l = 10.25 mm Radians 1 Radians Frequency = (3 x 10^8 ) / ( Elec l x 2 )

Frequency = 14638.50109 MHz Degrees = 57.2957795 Degrees

Period to Frequency to Period Scratch Area

Period 1 SecondsMantissa -6

Frequency = 1000000 Hz1 MHz

Frequency 46.7 HzMantissa 6Period = 2.14133E-08 SecondsPeriod = 0.021 us

Medium-Term Stability

sec Difference

n fi tifi ti ti^2 (fi-Ati-B)^2 Delta fi fi ^21 892 892.000000 1 1 3882.674568 -52.111111 ###1 809 1618.000000 2 4 110.016790 30.888889 ###1 823 2469.000000 3 9 187.994568 16.888889 ###1 798 3192.000000 4 16 1.185679 41.888889 ###1 671 3355.000000 5 25 ### 168.888889 ###1 644 3864.000000 6 36 ### 195.888889 ###1 883 6181.000000 7 49 ### -43.111111 ###1 903 7224.000000 8 64 ### -63.111111 ###1 677 6093.000000 9 81 5053.630123 162.888889 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.000000

Page 39: Calculation Spreadsheet

0 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000000 0 0.000000 0 0 0.000000 0.000000 0.0000009 7100 34888 45 285 ### 459.000000 ###Enter Zero for all unused frequencies

Use identical units in all cells

Allen Deviation (σy^2(τ)) = 91.229450

Mean Slope (A) = -10.2Ordinate at Origin of Least Squares Straight Line (B) = 839.888888888889

Residual Frequency Deviation (σ) = 91.486786

Charging Capacitor, Resistance Charging Capacitor, Current Source

Capacitance 220 Digits Capacitance 220 DigitsMantissa -9 Mantissa -6

Time 0.000083 Seconds Current 0.215 AmpsFinal Voltage 10 Volts

R = T / C S = I / CT = V/S

Resistance 377.2727 Ohms Ramp Rate = 977.272727 V/sRamp Period = 0.01023256 s

Page 40: Calculation Spreadsheet

Near/Far Field Distance

Largest Antenna Dimension 75 mFrequency 1 MHz

Wavelength = 3 x 10^8 / FWavelength = 300 m

Near/Far = 37.5 m

Sine Wave - Instantaneous Voltage Vector Voltage Addition

Peak Voltage 1 Volts Peak Voltage 1 1 VoltsPhase Angle 135 Degrees Phase Angle 1 90 Degrees

Peak Voltage 2 1 VoltsPhase Angle 2 -90 Degrees

y = A sin θ y = A sin θInstantaneous Voltage 1 = 1 VoltsInstantaneous Voltage 2 = -1 Volts

Instantaneous Voltage = 0.7071067812 Volts Sum Voltage = 0 Volts

Sine Wave - Phase Angle

Peak Voltage 1 VoltsInstantaneous Voltage 0.7071067812 Volts

θ = asin (y/A)

Phase = 45 Degrees

Delay

Mechanical Length 0.0043473 m

Velocity Factor 0.6900655593

Electrical length = 0.0062998362 m

Speed of Light (c) = 3 x 10^8 m/s

Delay = L / c

Delay = 2.099945E-11 sDelay = 0.020999454 nsDelay = 20.999454043 ps

Velocity Factor

Near/Far = 2D^2/λ

Page 41: Calculation Spreadsheet

Er 2.1

vf = 1 / Er^0.5

vf = 0.6900655593

Page 42: Calculation Spreadsheet

Wheeler Formula (Single Layer Air Inductor) Wheeler Formula (Single Layer Air Inductor) Least Accurate! Accurate

Number of Turns (N) 5 (N) Number of Turns (N) 5Thickness (d) 0.71 mm Mean Radius (R) 3.655Mean Radius 3.655 mm Coil Length (l) 6.35

Coil Length (l) 6.35 mmL = N^2 x R^2

L = 0.0315 x N^2 x R^2 (9 x R) + (10 x l) uH(6 x R) + (9 x l) + (10 x d) uH Where

Where R is the inner radius R&l are in inches

Inductance = 0.143393486 uH Inductance = 0.1364038

Conductor Properties Transformer RatioLink from Skin Depth Cells

ρ x 10^-8 μ Primary Turns 5Secondary Turns 2

Aluminium 2.6548 1.00002 Primary Voltage 1Copper 1.678 0.999991 Primary Impedance 470

Gold 2.24 1Nickel 6.84 600 Secondary Voltage = Vp x Tp / TsSilver 1.586 0.99998

Secondary Voltage = 0.4Skin Depth

Secondary Impedance = Zp x Tp^2 / Ts^2Frequency 145000000 Hz

Resistivity (ρ) 1.678 x10^-8 Ωm Secondary Impedance 75.2Relative Permeability (μr) 0.999991

Skin Depth (δ) =(ρ / (π x f x μo x μr)) ^0.5 m

Skin Depth (δ) = 5.414197115 μm

dc Resistance of a strait wire

Length 1000 mmDiameter 1.5 mm

Rdc = pl/A

Rdc = 0.009495538 Ohms

Approximate ac Resistance of a strait wire

Only usable when r >> δ

Rac = p x 10^-8 x l Skin Depth x π x d

Page 43: Calculation Spreadsheet

Rac = 0.000657683 Ohms/mmRac = 0.65768322 Ohms

Page 44: Calculation Spreadsheet

Wheeler Formula (Single Layer Air Inductor) Wheeler Formula (Single Layer Air Inductor) Most Accurate

(N) Number of Turns (N) 5 (N)mm Relative Permeability (μr) 0.999991mm Mean Radius (R) 3.655 mm

Coil Length (l) 6.35 mm

L = μ x π x N^2 x R^2R&l are in inches l ( 1 + 0.4502(2R/l)) Henrys

uH Inductance = 0.1367572088 uH

Transformer Ratio Scratch Area

Volts Ohms

Secondary Voltage = Vp x Tp / Ts

Volts

Secondary Impedance = Zp x Tp^2 / Ts^2

Ohms

I7
a: Formula from David Knight g3ynh comps/part_2.html Zint.pdf formula Li - ACA3.74ML SI Units
H8
a: Formula from http://h0me.earthlink.net/~jimlux/hv/wheeler.htm
I8
a: Formula from David Knight g3ynh comps/part_2.html Zint.pdf formula Li - ACA3.74ML SI Units