Sponsors - usherbrooke.ca · 2. The standard approaches : - Quasiparticles, Fermi surface, Fermi...

41
1 Electronic correlations André-Marie Tremblay Sponsors: CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES DE MATÉRIAUX AVANCÉS

Transcript of Sponsors - usherbrooke.ca · 2. The standard approaches : - Quasiparticles, Fermi surface, Fermi...

  • 1

    Electronic correlations

    André-Marie Tremblay

    Sponsors:

    CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES

    DE MATÉRIAUX AVANCÉS

  • Steve Allen (PhD)

    Bumsoo Kyung (postdoc)

    Yury Vilk (now at Chicago)

    Acknowledgements:

    Samuel Moukouri (postdoc)

    François Lemay (PhD)

    David Poulin

    Hugo Touchette

    Liang Chen (now at U. Ottawa)

  • 4

    1. Motivation

    H = kinetic + Coulomb

    - Many new ideas and concepts needed for progress(Born-Oppenheimer, H-F, Bands...)

    - Successfull program - Semiconductors, metals- Magnets

    - Is there anything left to do?- Unexplained materials: High Tc, Organics...- Strong correlations:

    strong interactions, low dimension

    Theory of solids

  • 5

    Outline 1. Motivation

    2. The standard approaches : - Quasiparticles, Fermi surface, Fermi liquid- Fermi liquids and phase transitions- Heisenberg and related

    3. Experimental evidence for failure :- d=1 spin-charge separation- d=2 disappearing act of Fermi surface

    4. Theoretical reasons for failure :- Effects of strong coupling - Effects of low d in weak to intermediate coupling

  • 6

    5. The Hubbard model

    6. A non-perturbative approach (U > 0 and U < 0 )- Proof that it works- How it works

    7. Results:- Mechanism for pseudogap- Spectral weight rearrangement

    8. Conclusion.

  • 7

    2. The standard approaches :

    A. Quasiparticles, Fermi surface and Fermi liquids- LDA (Nobel prize 1998)

    L.F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).

    La2CuO4

  • 8

    2. The standard approaches :

    - Matrix elements of H in LDA basis- In practice, from general considerations:

    - Short range- Single Slater determinant not eigenstate

    - Phase space + Pauli restricts possible scatterings:- Quasiparticles m*, effective fields,

    - «See» the quasiparticles with ARPES: ePhoton

    = E + ω + µµµµ - W k2m

    2

    k

    ph

  • 9

    R. Claessen, R.O.Anderson, J.W. Allen,C.G. Olson, C.Janowitz, W.P. Ellis,S. Harm, M. Kalning,R. Manzke,and M. Skibowski,Phys. Rev. Lett. 69,808 (1992).

  • 10

    T. Valla, A. V. Fedorov, P. D. Johnson, and S. L. HulbertP.R.L. 83, 2085 (1999).

  • 11

    2. The standard approaches :

    B. Thermodynamics and phase transitions

    - Thermodynamics of Fermi liquids -particle-hole excitations

    - Phase transitionsχ ∼ N(0) / ( 1 + Foa)

    - Superconducting transition

    C. Heisenberg model and related models

    - Band for s-p- Localized (often) for d-f

    Only spin degrees of freedomUse symmetry to write H

  • 123. Experimental evidence for failure : - d=1 spin-charge separation

    C. Bourbonnaiset al.(cond-mat/9903101).

  • 13

    3. Experimental evidence for failure :

    - d=2 partial vanishing act of the Fermi surface.

    D.S. Marshall, D.S. Dessau, A.G.Loeser, C.-H. Park,A.Y. Matsuura, J.N. Eckstein, I.Bozovic, P. Fournier,A. Kapitulnik, W.E. Spicer, andZ.X. Shen, Phys. Rev.Lett. 76, 4841 (1996).

  • 14

    Optimally doped BISCCONormal Superconductor

    A. V. Fedorov, T. Valla, P. D. Johnson et al. P.R.L. 82, 2179 (1999)

  • 15

    d = 2, Mermin-Wagner

    (rµ)2! q2µqµ¡q

    Dµ2E/Zd2q

    kT

    q2!1

    4. Theoretical reasons for failure :

    A. Strong interactions (localized states)

    B. Thermal and quantum fluctuations in d = 2

    d = 1 : R.G., Bosonization, Conformal Field Theory...d = 2 : Slave bosons, R.G., strong coupling p.t., TPSC

  • 16

    H = ¡ X¾

    ti;j³cyi¾cj¾ + c

    yj¾ci¾

    ´+ U

    Xi

    ni"ni#

    5. Hubbard model (Kanamori, Gutzwiller, 1963) :

    tU

    - Screened interaction U- U, T, n- a = 1, t = 1, h = 1

    - 2001 vs 1963: Numerical solutions to check analytical approaches

    t

    t

  • 17

    A(k,ω)

    ω- U/2 U/2

    ω

    k

    π/a−π/a

    ω

    k

    π/a−π/a

    ω

    A(k,ω)

    - 4 t

    ω

    A(k,ω)

    + 4 t

    U = 0 t = 0

    U

    -U/2

    +U/2

    0

  • 18

  • 19http://www.physique.usherb.ca/~tremblay/articles/PiC.pdfFor first part of this talk :

    S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière, M. Fourmigué, and P. Batail

  • 20

    6. A non-perturbative approach for both U > 0 and U < 0

    q0.0

    0.4

    (0,0) (π,π)(π,0) (0,0) q0

    20.0

    0.4

    0

    2

    n S c

    h(q)

    n S s

    p(q)

    U = 8

    U = 8

    U = 4

    U = 4n = 0.26

    n = 0.94n = 0.60

    n = 0.45n = 0.20

    n = 0.80n = 0.33n = 0.19

    n = 1.0n = 0.45n = 0.20

    (a)

    (b) (c)

    (d)

    U > 0

    QMC + cal.: Vilk et al. P.R. B 49, 13267 (1994)

    Notes: -F.L. parameters-Self also Fermi-liquid

    - Proofs that it works

  • 21

    0.50 0.75 1.00T

    0.0

    0.5

    1.0

    1.5

    2.0U=4.0n=0.87

    Monte Carlo

    8x8 (BWS)

    8*8 (BW)

    This work

    FLEX no AL

    FLEX

    π,π

    χ(

    ,0)

    sp

    U = + 4

    QMC: Bulut, Scalapino, White, P.R. B 50, 9623 (1994).Calc.: Vilk, et al. J. Phys. I France, 7, 1309 (1997).

    Proofs...

  • 22

    -5.00 0.00 5.00 -5.00 0.00 5.00ω/t

    (0,0)

    (0, )π

    ( , )π2π2

    ( , )π π4 4( , )π π4 2

    (0,0) (0, )π

    ( ,0)π

    Monte Carlo Many-Body

    -5.00 0.00 5.00

    Flex

    U = + 4

    Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

    Proofs...

  • 23

    -1 0 10.0

    0.5

    1.0

    A(ω

    )

    -1 0 1 -1 0 1

    Monte Carlo Many-Body Σ(s) FLEX

    -0.5

    0.0

    G(τ

    )

    0 β

    a) b) c)L=4

    L=6

    L=8

    L=10

    β/2

    U = + 4

    Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

    Proofs...

  • 24

    I

    II ωωωω

    kF

    A(ωωωω)

    E

    k

    A(ωωωω)

    ωωωω

    kF

    III

    99-aps/Explication...

    E

    k

    A(ωωωω)

    ωωωω

    kF

    TX

    T = 0nc

    T

    kF

    kF

    2∆2∆

  • 25

    U = - 4

    Calc. : Kyung et al. cond-mat/0010001QMC : Moreo, Scalapino, White, P.R. B. 45, 7544 (1992)

    Moving to the attractive case....

    Proofs...

  • 26

    U = - 4

    Calc. : Kyung et al. cond-mat/0010001QMC : Trivedi and Randeria, P.R. L. 75, 312 (1995)

    2nd order perturbation theory

    S.C. T-matrix

    Proofs...

  • 27

    -4.0 0.0 4.0ω

    0.0

    0.2

    0.4T = 0.25, n = 0.8, U = -4

    QMCMany-Body

    -4.0 0.0 4.0ω

    0.0

    0.4

    0.8

    1.2N( )ω A(k, )ω

    (a) (b)

    (c) (d)

    -4.0 0.0 4.00.0

    0.1

    0.2

    0.3T = 0.2, n=0.8, U = -4

    Many-BodyQMC

    -4.0 0.0 4.00.0

    0.2

    0.4

    0.6

    τ-0.6

    -0.4

    -0.2

    0.0

    T = 0.25, n = 0.8, U = -4QMC

    Many Body

    τ-0.6

    -0.4

    -0.2

    0.0G(k, )τ G(k, )τ

    (a) (b)

    (c) (d)

    -0.6

    -0.4

    -0.2

    0.0

    T = 0.2, n=0.8, U = -4

    Many-Body

    QMC

    -0.6

    -0.4

    -0.2

    0.0

    Σk

    U = - 4

    Kyung et al. cond-mat/0010001

    Proofs...

  • 28

    §(1)¾

    ³1; 1

    ´G(1)¾

    ³1; 2

    ´= AG

    (1)¡¾

    ³1; 1+

    ´G(1)¾ (1; 2)

    where A depends on external ¯eld and is chosen such that the exact result

    §¾³1; 1

    ´G¾

    ³1; 1+

    ´= U

    Dn"n#

    Eis satis¯ed. One ¯nds

    A = U

    Dn"n#

    EDn"E Dn#E

    Functional derivative ofDn"n#

    E=³Dn"E Dn#E´drops out of spin vertex

    Usp = A = U

    Dn"n#

    EDn"E Dn#E

    First step: Two-Particle Self-ConsistentHow it works...

  • 29

    To close the system of equations, while satisfying conservation laws and

    the Pauli principle¿³n" ¡ n#

    ´2À=

    Dn"E+Dn#E¡ 2

    Dn"n#

    ET

    N

    Xeq

    Â0(q)

    1¡ 12UspÂ0(q)= n¡ 2hn"n#i (1)

    Recall

    Usp = U

    Dn"n#

    EDn"E Dn#E (2)

    To have charge °uctuations that satisfy Pauli principle as well,

    T

    N

    Xq

    Â0(q)

    1 + 12UchÂ0(q)= n+ 2hn"n#i ¡ n2 (3)

    (Bonus: Mermin-Wagner theorem)

    How it works...

  • 30

    §¾³1; 1

    ´G¾

    ³1; 2

    ´= ¡U

    DÃy¡¾

    ³1+´Ã¡¾ (1)þ (1)Ãy¾ (2)

    §¾³1; 1

    ´G¾

    ³1; 2

    ´= ¡U

    "±G¾ (1; 2)

    ±Á¡¾ (1+; 1)¡G¡¾

    ³1; 1+

    ´G¾ (1; 2)

    #

    Last term is Hartree Fock (lim! ! 1). Multiply by G¡1, replace lowerenergy part results of TPSC

    §(2)¾ (1; 2) = UG

    (1)¡¾

    ³1; 1+

    ´± (1¡ 2)¡ UG(1)

    "±§(1)

    ±G(1)±G(1)

    ±Á

    #Transverse+longitudinal for crossing-symmetry

    §(2)¾ (k) = Un¡¾ +

    U

    8

    T

    N

    Xq

    h3UspÂ

    (1)(q) + UchÂ(1)(q)

    iG(1)¾ (k+ q): (4)

    Second step: improved self-energyHow it works...

  • 31

    = +

    1

    32 2

    1

    33

    12

    2

    3

    4

    5

    =Σ1 2 +

    -

    2

    45

    2

    1

    1

    21

  • 32

    Results of the analogous procedure for U < 0

    Upp = Uh(1¡ n")n#ih1¡ n"ihn#i

    : (5)

    Â(1)p (q) =

    Â(1)0 (q)

    1 + UppÂ(1)0 (q)

    (6)

    T

    N

    XqÂ(1)p (q) exp(¡iqn0¡) = h¢y¢i = hn"n#i : (7)

    §(1) ' U2¡ Upp (1¡ n)

    2(8)

    §(2)¾ (k) = Un¡¾ ¡ U T

    N

    XqUppÂ

    (1)p (q)G

    (1)¡¾(q ¡ k) (9)

  • 33

    Satis¯es Pauli principle and generalization of f¡sum ruleZd!

    ¼ImÂ(1) (q; !) =

    Dh¢q (0) ;¢

    yq (0)

    iE= 1¡ n ; 8q (10)

    Zd!

    ¼! ImÂ(1) (q; !) =

    24 1N

    Xk

    ³"k + "¡k+q

    ´ ³1¡ 2

    Dnk"

    E´35 (11)¡2

    µ¹(1) ¡ U

    2

    ¶(1¡ n) ; 8q (12)

    Internal accuracy check (For both U > 0 and U < 0).

    1

    2Trh§(2)G(1)

    i= lim

    ¿!0¡T

    N

    Xk

    §(2)¾ (k)G

    (1)¾ (k) e

    ¡ikn¿ = UDn"n#

    ECheck : Tr

    h§(2)G(1)

    i~ Tr

    h§(2)G(2)

    i

  • 34

    U = - 47. Results:

    - Mechanism for pseudogap

    - Enter the renormalized-classical regime. N.B. d = 2

    - (analogous to U > 0 ) : Vilk et al. Europhys. Lett. 33, 159 (1996) Pines, Schmalian (98)

    32

  • 35

    U = - 47. Results:

    - Mechanism for pseudogap

    - Pairing correlation length larger than single-particle thermal de Broglie wavelength (vF / T)

    ξ ∼ 1.3 ξth

  • 36

    0.00 0.50 1.00 1.50 2.00ω

    T=1/3

    T=1/4

    T=1/5

    Even part of the pair susceptibility at q = 0, for different temperatures

    U = - 4

    Allen, et al. P.R. L 83, 4128 (1999)

    Mechanism for pseudogap formation in the attractive model:

    d = 2 is crucial

  • 37

    U = - 47. Results:

    - Spectral weight rearrangement

    - Pseudogap appears first in total density of states- Fills in instead of opening up- Rearrangement over huge frequency scale compared with either T or ∆ T. (∆ T ~ 0.03, T ~ 0.2, ∆ω ∼ 1 )

  • 38

    U = - 47. Results:

    - Crossover diagram

  • 39

    8. Conclusion :

    U > 0

    - Evidence against renormalized classical regime for spin fluctuations in pseudogap regime.

    Philippe Bourges cond-mat/0009373

    T

    δ

    pseudogap

    AF

    SC QCP ?

  • 40

    - Quantum critical point, d = 2: - Instability at incommensurate q- Largest doping : 0.315

    Freericks, Jarrell cond-mat/9405025

    d = infinity

    U < W

    U > W

    U > 0 Tδ

    U SDW?

    0.3

    U

    U

    Vilk et al. P.R. B 49, 13267 (1994)

    - Decreases with increasing U

  • 41

    - Slightly Overdoped High-Tc Superconductor TlSr2CaCu2O6.8Guo-qing Zheng et al., P. R. L. 85, 405 (2000) - Pseudogap in Knight shift and NMR relaxation strongly H dependent, contrary to underdoped (up to 23 T).

    - Underdoped in a range ∆Τ ∼ 15 Κ near Tc see evidence for renormalized classical regime (KT behavior).

    Corson et al.Nature, 398, 221 (1999).

    - Higher symmetry group creates large range of T where there is a pseudogap.

    n = 1 n = 0

    SO(2)

    KT

    Pseudogap

    T

    SO(3)Allen et al. P.R.L. 83, 4128 (1999)

    U < 0 Pairing-fluctuation induced pseudogap

  • 42

    - How can we understand electronic systems that show both localized and extended character?- Why do both organic and high-temperature superconductors show broken-symmetry states where mean-field-like quasipar- ticles seem to reappear? - Why is the condensate fraction in this case smaller than what would be expected from the shape of the would-be Fermi surface in the normal state? - Are there new elementary excitations that could summarize and explain in a simple way the anomalous properties of these systems? - Do quantum critical points play an important role in the Physics of these systems?- Are there new types of broken symmetries? - How do we build a theoretical approach that can include both strong-coupling and d = 2 fluctuation effects? - What is the origin of d-wave superconductivity in the high- temperature superconductors?