SPL Intercavity support

27
SPL Intercavity support Conceptual design review 04/11/2011 1 A. Vande Craen TE/MSC-CMI

description

SPL Intercavity support. Conceptual design review. Summary. Introduction Requirements Concept scheme Conceptual design Proposed design Conclusion. Introduction. Helium tank/double walled tube not stiff enough for cantilever  Support on tuner side Easiest way : connect on next cavity - PowerPoint PPT Presentation

Transcript of SPL Intercavity support

Page 1: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

1

SPL Intercavity supportConceptual design review

04/11/2011

Page 2: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

2

Summary

•Introduction•Requirements•Concept scheme•Conceptual design•Proposed design•Conclusion

04/11/2011

Page 3: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

3

Introduction•Helium tank/double walled tube not stiff

enough for cantilever Support on tuner side

•Easiest way : connect on next cavity

•Require special design:▫Cryogenic temperature▫Vacuum▫Thermal contraction

04/11/2011

Page 4: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

4

Summary

•Introduction•Requirements •Concept scheme•Conceptual design•Proposed design•Conclusion

04/11/2011

Page 5: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

5

Requirements• Mechanical aspect

▫ Sustain any load case (static, transport, thermal transient…)▫ Allow alignment▫ Keep alignment in steady state (warm cold)▫ Minimum stress in helium tank

• Cryogenic temperature▫ Designed to work at 2K (transient)▫ Allow contraction of helium tank

• Installation and access▫ Installation out of clean room▫ Accessibility to tune alignment▫ No accessibility required after alignment

04/11/2011

Page 6: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

6

Summary

•Introduction•Requirements•Concept scheme•Conceptual design•Proposed design•Conclusion

04/11/2011

Page 7: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

7

Concept scheme•Ideal

▫Low degree of hyperstaticity▫Can be used in both plane (vertical and

horizontal)

• Extremity of cavities▫2 supports needed

04/11/2011

Double walled tubeInter-cavity support

Next cavity

Free space for supports

Helium tank

Page 8: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

8

Concept scheme•Support in vertical plane

▫Free longitudinal contraction▫No displacement in vertical direction▫Free rotation

04/11/2011

Beam Axis

Beam Axis

Page 9: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

9

Concept scheme•Support in horizontal plane

▫Free transversal contraction (transient)▫Blocked transversal displacement of cavity▫Free rotation

04/11/2011

Beam Axis

Beam Axis

Page 10: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

10

Concept scheme•Space available

04/11/2011

34 mm

Page 11: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

11

Vertical support Horizontal support

Concept scheme04/11/2011

Beam Axis

Beam Axis Beam Axis

Beam Axis

Page 12: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

12

Summary

•Introduction•Requirements•Concept scheme•Conceptual design•Proposed design•Conclusion

04/11/2011

Page 13: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

13

Conceptual design•Contacts

▫Sphere-cylinder 1 free sliding, 2 blocked Free rotation

▫Sphere-plane 2 free sliding, 1 blocked Free rotation

▫Redundancy ▫Limit maximum displacement

04/11/2011

Page 14: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

14

• Thermal contraction▫Longitudinal

4.5 mm

▫Transversal 1.15 mm Max displacement of beam axis = 0.6 mm (transient)

deformation of helium tank

▫Vertical 1.2 mm Blocked

deformation of helium tank

Conceptual design04/11/2011

Page 15: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

15

Conceptual design•Deformation

▫Alignment process not yet defined Possible procedure

Alignment on a structure (supports not loaded) Load transfer to vacuum vessel (supports

loaded) Alignment directly depends on supports

Limit deformations when loaded

04/11/2011

Page 16: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

16

Conceptual design•Deformation

▫Steady state Displacement allowed : 0.02 mm

10% of alignment tolerance Load : 500 N

1/4 of total weight (200 kg) Length : 250 mm

▫Transport Displacement allowed : 0.1 mm Load : 1540 N (0.5 g)

04/11/2011

Page 17: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

17

Conceptual design•Cylinder

Minimum diameter = 67 mm

•Rectangle

•Triangle

04/11/2011

Width[mm]

Height [mm]

10 10615 9220 8425 78

Width[mm]

Height[mm]

10 15215 13220 12125 112

Page 18: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

18

Summary

•Introduction•Requirements•Concept scheme•Conceptual design•Proposed design•Conclusion

04/11/2011

Page 19: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

19

Proposed design•Contacts

▫Sphere-cylinder and sphere plane Non standard components High stresses at contact point

Sphere-cylinder : 430 Mpa Sphere-plane : 1300 MPa

Plastic deformation

▫Solutions Decrease stresses Increase elastic limit

04/11/2011

Page 20: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

20

Proposed design• Proposed solution

▫Spherical plain bearing Rotation freedom (= sphere-sphere contact) Standard components Support very high load Bad thermal contact

▫Sliding cylinder in spherical plain bearing Cylinder-cylinder contact low stresses Easy to machine with standard tooling Bad thermal contact

Has to be tested at low temperature under vacuum

04/11/2011

Page 21: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

21

•Proposed solution▫Sphere-cylinder

Cylinder sliding in a spherical plain bearing Spherical plain bearing sliding in a cylinder

Proposed design04/11/2011

Spherical plain bearing

Cylinder

Page 22: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

22

•Proposed solution▫Sphere-plane

Spherical plain bearing sliding (on longitudinal and lateral axis) on a support

Cylinder sliding in a spherical plain bearing; spherical plain bearing sliding laterally on a support

Proposed design04/11/2011

Page 23: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

23

•Proposed solution

Proposed design04/11/2011

Page 24: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

24

Summary

•Introduction•Requirements•Concept scheme•Conceptual design•Proposed design•Conclusion

04/11/2011

Page 25: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

25

•Concept scheme and design▫Acceptable stresses▫Limited displacement

•Next step▫Test spherical plain bearing solution

Displacement Friction

▫Define interface to helium tank▫Design final solution

Conclusion04/11/2011

Page 26: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

26

Thank you for your attention

04/11/2011

Page 27: SPL  Intercavity  support

A. Vande Craen TE/MSC-CMI

27

• Reaction forces▫Weight of the cavity

200 kg▫Acceleration during transport (0.5 g)

Max lateral force = 525 N Max vertical force = 1540 N

▫Helium tank deformation (transient) Vertical Horizontal

• Redundancy▫Helium tank never in cantilever▫Each support All forces

Conceptual design04/11/2011