SPIRE Herschel-SPIRE: Design, Ground Test Results, and...

24
SPIE meeting, Marseille June 23 2008 1 SPIRE Scientific goals Instrument overview Current status Performance estimates Herschel-SPIRE: Design, Ground Test Results, and Predicted Performance Matt Griffin for the SPIRE Consortium

Transcript of SPIRE Herschel-SPIRE: Design, Ground Test Results, and...

  • SPIE meeting, Marseille June 23 2008 1

    SPIRE

    • Scientific goals• Instrument overview• Current status• Performance estimates

    Herschel-SPIRE: Design, Ground Test Results, and Predicted

    Performance

    Matt Griffin for the SPIRE Consortium

  • SPIE meeting, Marseille June 23 2008 2

    SPIRE

    • Cardiff University, UK• CEA Service d’Astrophysique, Saclay, France• Institut d’Astrophysique Spatiale, Orsay, France • Imperial College, London, UK• Instituto de Astrofisica de Canarias, Tenerife, Spain• Istituto di Fisica dello Spazio Interplanetario, Rome, Italy • Jet Propulsion Laboratory/Caltech, Pasadena, USA• Laboratoire d’Astronomie Spatiale, Marseille, France• Mullard Space Science Laboratory, Surrey, UK• NAOC, Beijing, China• Observatoire de Paris, Meudon, France• Rutherford Appleton Laboratory, Oxfordshire, UK• Stockholm Observatory, Sweden• UK Astronomy Technology Centre, Edinburgh, UK• University of Colorado, USA• University of Lethbridge, Canada• Università di Padova, Italy

    The SPIRE ConsortiumCanada China France Italy Spain Sweden UK USA

  • SPIE meeting, Marseille June 23 2008 3

    SPIRE Herschel/SPIRE Science GoalsνI

    νW

    m-2

    Sr-1

    10-9

    10-8

    10-7

    10-6

    10-10

    10-11

    1011 1012 1013 1014 1015 1016

    FIR/Submm Visible/UV

    ν (Hz)

    νIν

    W m

    -2Sr

    -1

    10-9

    10-8

    10-7

    10-6

    10-10

    10-11

    1011 1012 1013 1014 1015 1016

    FIR/Submm Visible/UV

    ν (Hz)

    PlanckHerschel

    Herschel range

  • SPIE meeting, Marseille June 23 2008 4

    SPIRE

    • 3-band imaging photometer

    - 250, 350, 500 μm (simultaneous)

    - λ/Δλ ~ 3- 4 x 8 arcminute field of view

    - Diffraction limited beams (19, 24, 35”)

    • Imaging Fourier Transform Spectrometer- 194 - 672 μm

    (complete range covered simultaneously)

    - 2.6 arcminute field of view

    - Spectral resolution up to Δσ = 0.04 cm-1 (λ/Δλ ~ 1000 at 250 μm)

    Spectral and Photometric Imaging Receiver

  • SPIE meeting, Marseille June 23 2008 5

    SPIRE SPIRE Block Diagram

    FPU

    Cryostat Wall

    SpacecraftElectronics

    FCU

    Power

    Cooler, Mechanisms, Calibrators, Thermometers Detector Arrays

    Commandingand Telemetry

    DPU

    JFETs

    DCU

    SPIRE WarmElectronics

  • SPIE meeting, Marseille June 23 2008 6

    SPIRE

    Herschel focal

    surface

    2-Kcoldstop

    M3

    M4

    M5

    M6

    M7

    M8

    Beam steering mirror

    Relay optics

    Dichroics and

    arrays

    M9

    3He cooler

    Detector array

    modules

    Beam steering mirror

    SPIRE optical bench (4 K)

    2-K box

    M3

    M4

    M5 M7

    M6M8

    Photometer Layout and Optics

  • SPIE meeting, Marseille June 23 2008 7

    SPIRE FTS Layout and Optics

    Telescope input port

    Calibrator input portOutput

    port

    Output port

    Intensity beam

    dividers

    Fore-optics shared with photometer

    Mirrormechanism 2nd-port

    calibrator

    Beam divider

    4-Kbox

    Baffle

    2-Kbox

    Detector array

    modules

  • SPIE meeting, Marseille June 23 2008 8

    SPIRE SPIRE Subsystems

  • SPIE meeting, Marseille June 23 2008 9

    SPIRE Instrument Assembly and Testing• Instrument assembled in stages and tested in dedicated

    facility at RAL, UK• Started February 2005• Finished March 2007 - instrument delivered April 2007• Five cooldowns• Two cold vibrations• All major requirements and most goals are met

  • SPIE meeting, Marseille June 23 2008 10

    SPIRE Photometer Observing Modes

    Point source: 7-point

    θ

    Small map: 4 x 4 arcmin jiggle-map

    Large map:Scan-map

  • SPIE meeting, Marseille June 23 2008 11

    SPIRE SPIRE-PACS Parallel Mode

    • • Scan map with SPIRE and PACS simultaneously

    • • Suitable for large areashallow surveys (~ 20 mJy rms)

    • • SPIRE- Three bands; no loss of data

    • • PACS- Two bands- Enhanced data compression- Some beam smearing at high

    scan speed

  • SPIE meeting, Marseille June 23 2008 12

    SPIRE FTS Observing Modes • Δσ = 0.04 - 2 cm-1 by adjusting scan length

    • Continuous scan (nominal mode):- Calibrator in 2nd port nulls telescope background

    • Imaging spectroscopy (full spatial sampling)- Beam steering mirror adjusts pointing between scans to

    acquire fully-sampled spectral image

    • Point source or sparse map spectroscopy/spectrophotometry- Also produces sparse map – background characterised by adjacent pixels

  • SPIE meeting, Marseille June 23 2008 13

    SPIRE FTS Spectral Line Resolving Power(Δσ = 0.04 cm-1)

    100 200 300 400 500 600 7000

    300

    600

    900

    1200

    1500High Res Unapodised Resolving Power

    Wavelength (microns)

    Res

    olvi

    ng P

    ower

    a

    FWHM = 0.048 cm-1 = 1.4 GHz

    Unapodised

    Apodised

  • SPIE meeting, Marseille June 23 2008 14

    SPIRE FTS Spectrophotometry Resolving Power (Δσ = 1 cm-1)

    100 200 300 400 500 600 7000

    10

    20

    30

    40

    50

    60Low Res Unapodised Resolving Power

    Wavelength (microns)

    Res

    olvi

    ng P

    ower

    a

  • SPIE meeting, Marseille June 23 2008 15

    SPIRE

    Instrument Performance

    Estimates

  • SPIE meeting, Marseille June 23 2008 16

    SPIRE Telescope Emissivity and Stray Light Model

    • Two reflectors• Stray light component equivalent to10% of a

    70-K; 3% emissive telescope

    100 200 300 400 500 600 7000

    0.20.40.60.8

    11.21.41.61.8

    2

    Wavelength (um)

    Em

    issi

    vity

    (%

    )

    Total (two reflectors + stray light

    One reflector

    Stray light

  • SPIE meeting, Marseille June 23 2008 17

    SPIRE

    150 200 250 300 350 400 450 500 550 600 650 7000

    0.10.20.30.40.50.60.70.8

    Wavelength (microns)

    Filt

    er S

    tack

    Tra

    nsm

    issi

    onPhotometer Filter Bands

    PSWλo ≈ 250 μmλo/Δλ = 3.3

    PMWλo ≈ 350 μmλo/Δλ = 3.4

    PLWλo ≈ 500 μmλo/Δλ = 2.5

    Typical

  • SPIE meeting, Marseille June 23 2008 18

    SPIRE FTS Bandsu

    100 200 300 400 500 600 700 8000

    0.10.20.30.40.50.60.70.8

    Wavelength (microns)

    Filt

    er S

    tack

    Tra

    nsm

    issi

    on SLW316 – 672 μm

    SSW194 – 324 μm

    Typical

  • SPIE meeting, Marseille June 23 2008 19

    SPIRE Photometer SensitivityPoint Source 7-Point Observation

    • Typical observation- Nod sequence A-B-B-A with 64 s

    each on source = 256 s- 8 BSM positions per nod position

    (centre observed twice) with 8 sec. each

    - Chop freq = 2 Hz → 16 chop cycles per position

    - Instrument overheads = 143 s- Slewing overhead = 180 s- Total time = 579 s (44% efficient)

    • Predicted 1-σ sensitivities: - (1.4, 1.6, 1.3) mJy at (250, 350, 500) μm- Anticipated 1-σ extragalactic confusion level ~ 7 mJy

    θ

  • SPIE meeting, Marseille June 23 2008 20

    SPIRE Photometer SensitivitySmall (4x4 arcmin) Jiggle Map

    • Typical observation- 64-point jiggle map with 9” spacing

    - Over-sampled at 350, 500 μm - Half-beam sampling at 250 μm

    - Nod cycle A-B-B-A-A-B-B-A- 64 s per nod position

    → 512 s integration time - 16 BSM positions per A-B pair

    → 4 sec. per BSM position→ 8 chop cycles per BSM position

    • Instrument overheads = 433 s• Slewing overhead = 180 s• Total time = 1135 s (45% efficiency) • Predicted 1-σ sensitivities:

    - (3.3, 4.5, 3.8) mJy at (250, 350, 500) μm• Can do it quicker (687 s; 37% efficiency)

    - (4.7, 6.3, 5.3) mJy at (250, 350, 500) μm

  • SPIE meeting, Marseille June 23 2008 21

    SPIRE Photometer SensitivityLarge Scan Map

    • Typical observation- 30”/s scan speed- 30 x 30 arcmin- Cross-linked with 1 repeat

    • 944 s on-source• Instrument overheads = 651 s• Slewing overhead = 180 s• Total time = 1775 s (53% efficiency) • Predicted 1-σ sensitivities:

    - (10, 13, 11) mJy at (250, 350, 500) μm• Larger maps are more efficient

  • SPIE meeting, Marseille June 23 2008 22

    SPIRE FTS SensitivityPoint Source; Line Spectroscopy (Δσ = 0.04 cm-1)

    (W m-2 x 10-17 5-σ 1 hr)

  • SPIE meeting, Marseille June 23 2008 23

    SPIRE FTS SensitivityPoint source; Spectrophotometery

    (Δσ = 1 cm-1; mJy 5-σ 1 hr)

  • SPIE meeting, Marseille June 23 2008 24

    SPIRE Current Status• System-level testing of

    Herschel is in progress

    • Spacecraft mechanical qualification tests done

    • First operation in Herschel at 0.3 K in July- Verification of performance

    • Some technical concerns to be evaluated:- Detector temperatures- Microphonic and EMI susceptibility- SMEC friction and microvibration

    sensitivity

    • Planning for operations in progress

    Herschel/SPIRE Science GoalsSPIRE Block DiagramFTS Resolution