Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex...

39
Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References Spectral theorem for compact normal operator on Quaternionic Hilbert spaces Santhosh Kumar Pamula IIT Hyderabad. [email protected] (joint work with G. Ramesh) OTOA - 2014 ISI Bangalore, India. December 16, 2014

Transcript of Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex...

Page 1: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Spectral theorem for compact normaloperator on Quaternionic Hilbert spaces

Santhosh Kumar PamulaIIT Hyderabad.

[email protected](joint work with G. Ramesh)

OTOA - 2014ISI Bangalore, India.

December 16, 2014

Page 2: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Overview

1 IntroductionQuaternion ring.Quaternionic Hilbert space.

2 Quaternion MatricesEigenspheres.Standard eigenvalues.

3 Spherical spectrum

4 Slice Representation

5 Spectral theoremCompact self-adjoint.Compact normal.

6 References

Page 3: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternion ring

Definition:

H := {q = q0 + q1i + q2j + q3k : q` ∈ R and ` = 0, 1, 2, 3}, thering of all real quaternions.

Here i · j = k = −j · i , j · k = i = −k · j , k · i = j = −i · kand i2 = j2 = k2 = −1.

H is a division ring (non-commutative).

Properties:

Let q = q0 + q1i + q2j + q3k ∈ H. Thenq = q0 − q1i − q2j − q3k, the conjugate of q.

|q| =√q · q =

√q20 + q21 + q22 + q23 . This defines norm on H.

Re(H) := {q ∈ H : q = q} and Im(H) := {q ∈ H : q = −q}.

Page 4: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternion ring

Properties:

Let p, q ∈ H. Then1 p · q = q · p2 |p · q| = |p| · |q|3 |p| = |p|.

Imaginary unit sphere:

S := {q ∈ Im(H) : |q| = 1}.q ∈ S⇔ q2 = −1.

Page 5: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Relation on H

p ∼ q if and only if s−1ps = q, for some 0 6= s ∈ H.It is an equivalance relation on H.[p] = {s−1ps : 0 6= s ∈ H}.Since p = Re(p) + |Im(p)|. Im(p)

|Im(p)| , we have

[p] = Re(p) + |Im(p)| s−1 Im(p)

|Im(p)|s, ∀ 0 6= s ∈ H

= Re(p) + |Im(p)| · S.

Page 6: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Equivalant condition:

p ∼ q ⇔ [p] = [q]

⇔ Re(p) + S · |Im(p)| = Re(q) + S · |Im(q)|⇔ Re(p) = Re(q) and |Im(p)| = |Im(q)|.

Let α + iβ ∈ C. Then α + iβ ∈ [q]⇔ α = Re(q) andβ = ±|Im(q)|.

complex parts:

For every q ∈ H, we have

q = (q0 + q1i) + (q2 + q3i) · j= a1 + a2 · j ,

where a1, a2 ∈ C.

Page 7: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Identification

Define ψ : H −→ M2(C) by

ψ(q = a1 + a2 · j) =

(a1 a2−a2 a1

)ψ is a bijective onto its range.

det (ψ(q)) = |q|2

Re(q)± |Im(q)|i are the eigenvalues of ψ(q).

Page 8: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternionic Hilbert space

Definition:

Let H be right H− module with the innerproduct〈 | 〉 : H× H −→ H satisfies

1 〈u|u〉 = 0⇔ u = 0.

2 〈u|v〉 = 〈v |u〉.3 〈u + v · q|w〉 = 〈u|w〉+ q 〈v |w〉 , ∀u, v ,w ∈ H & q ∈ H.

Define ‖u‖ =√〈u|u〉, ∀ u ∈ H. If (H, ‖.‖) is complete then H is

called right quaternionic Hilbert space.

Example:

`2(N,H) = {(q1, q2, q3, · · · ) :∞∑n=1

|qn|2 <∞}.

Page 9: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Definition:

A map T : H −→ H is said to be

righ H− linear, if T (u + v · q) = Tu + Tv · q, for all u, v ∈ Hand q ∈ H.bounded, if there exists K > 0, such that ‖Tu‖ ≤ K‖u‖, forall u ∈H.

If T is bounded, then

‖T‖ = sup{‖Tu‖ : u ∈ H, ‖u‖ = 1}.

Notation:

B(H)− All bounded right H− linear operators on H.

Page 10: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Definition

If T ∈ B(H) then there exists unique operator T∗∈ B(H) such that

〈u|Tv〉 = 〈T∗u|v〉 , for all u, v ∈ H

called the adjoint of T.

Definition:

Let T ∈ B(H). Then T is said to be

1 self-adjoint, if T∗ =T.

2 anti self-adjoint, if T∗ = -T.

3 normal, if TT∗ = T∗T.

4 unitary, if T∗T = TT∗ = I.

Page 11: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Definition:

Let T ∈ B(H). Then T is said to be compact if T(U) is compactfor every bounded subset U of H.

Notation:

K(H)− All compact operators on quaternionic Hilbert sapceH.

Example:

Define D : `2(N,H) −→ `2(N,H) by

D(qn) = (qnn

), for all (qn) ∈ `2(N,H).

Then D ∈ K(`2(N,H)).

Page 12: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternion Matrices

Mn(H) - Ring of all n × n quaternion matrices.

If A ∈ Mn(H). Then A = A1 + A2 · j , where A1,A2 ∈ Mn(C).

How to find eigenvalues of A ?

Define

χA =

(A1 A2

−A2 A1

)∈ M2n(C).

If λ ∈ C is an eigenvalue of A ∈ Mn(H), then there existsx = x1 + x2 · j ∈ Hn, where x1, x2 ∈ Cn such that Ax = x · λ.Then

(A1 + A2 · j)(x1 + x2 · j) = (A1x1 − A2x2) + (A1x2 + A2x1) · j= x1 · λ+ x2 · λ · j

Page 13: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternion Matrices

Mn(H) - Ring of all n × n quaternion matrices.

If A ∈ Mn(H). Then A = A1 + A2 · j , where A1,A2 ∈ Mn(C).

How to find eigenvalues of A ?

Define

χA =

(A1 A2

−A2 A1

)∈ M2n(C).

If λ ∈ C is an eigenvalue of A ∈ Mn(H), then there existsx = x1 + x2 · j ∈ Hn, where x1, x2 ∈ Cn such that Ax = x · λ.Then

(A1 + A2 · j)(x1 + x2 · j) = (A1x1 − A2x2) + (A1x2 + A2x1) · j= x1 · λ+ x2 · λ · j

Page 14: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternion Matrices

Mn(H) - Ring of all n × n quaternion matrices.

If A ∈ Mn(H). Then A = A1 + A2 · j , where A1,A2 ∈ Mn(C).

How to find eigenvalues of A ?

Define

χA =

(A1 A2

−A2 A1

)∈ M2n(C).

If λ ∈ C is an eigenvalue of A ∈ Mn(H), then there existsx = x1 + x2 · j ∈ Hn, where x1, x2 ∈ Cn such that Ax = x · λ.Then

(A1 + A2 · j)(x1 + x2 · j) = (A1x1 − A2x2) + (A1x2 + A2x1) · j= x1 · λ+ x2 · λ · j

Page 15: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternion Matrices

Upon comparision, we get

A1x1 − A2x2 = x1 · λ (1)

A1x2 + A2x1 = x2 · λ. (2)

From equations (1) & (2), we have(A1 A2

−A2 A1

)(x1−x2

)= λ

(x1−x2

)and (

A1 A2

−A2 A1

)(x2x1

)= λ

(x2x1

)

Page 16: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Quaternion Matrices

Upon comparision, we get

A1x1 − A2x2 = x1 · λ (1)

A1x2 + A2x1 = x2 · λ. (2)

From equations (1) & (2), we have(A1 A2

−A2 A1

)(x1−x2

)= λ

(x1−x2

)and (

A1 A2

−A2 A1

)(x2x1

)= λ

(x2x1

)

Page 17: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Standard eigenvalues

Both λ and λ are the eigenvalues of χA.

similarly eigenvalues of χA are also an eigenvalues of A.

Eigensphere:

Let Ax = x · q for some q ∈ H. Then, for every 0 6= s ∈ H, we have

A(x · s) = Ax · s = x · q · s = x · s(s−1qs).

Therefore, we have

[q] is an eigensphere and E[q] := {x : Ax = x · [q]} is aneigenspace corresponding to [q].

Page 18: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Standard eigenvalues

Both λ and λ are the eigenvalues of χA.

similarly eigenvalues of χA are also an eigenvalues of A.

Eigensphere:

Let Ax = x · q for some q ∈ H. Then, for every 0 6= s ∈ H, we have

A(x · s) = Ax · s = x · q · s = x · s(s−1qs).

Therefore, we have

[q] is an eigensphere and E[q] := {x : Ax = x · [q]} is aneigenspace corresponding to [q].

Page 19: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Standard eigenvalues

The complex number Re(q) + i · |Im(q)| ∈ [q] called thestandard eigenvalue of A.

Theorem:

If A ∈ Mn(H), then A has exactly n− standard eigenvalues.

Corollary:

If A ∈ Mn(H), then A has exactly n− eigenvalues upto equivalance.

Page 20: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Standard eigenvalues

The complex number Re(q) + i · |Im(q)| ∈ [q] called thestandard eigenvalue of A.

Theorem:

If A ∈ Mn(H), then A has exactly n− standard eigenvalues.

Corollary:

If A ∈ Mn(H), then A has exactly n− eigenvalues upto equivalance.

Page 21: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

sphereical spectrum

Let T ∈ B(H) and q ∈ H.Define ∆q(T) := T2 − T(q + q) + I|q|2.The spherical spectrum,σS(T) = {q ∈ H : ∆q(T) is not invertible }The spherical point spectrum,σpS (T) = {q ∈ H : N(∆q(T)) 6= {0}}.

Properties:

If T = T∗, then σS(T) ⊂ R.If T = −T∗, then σS(T) ⊂ Im(H).

If TT∗ = T∗T = I and T∗ = -T, then σpS (T) = σS(T) = S.

Page 22: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

compact operators

Proposition:(Fashandi, 2014.)

If T∈ K(H), then N(∆q(T)) is finite dimensional, for all0 6= q ∈ H.

Theorem:(Fashandi, 2014.)

If T∈ K(H) and inf{‖∆q(T)h‖ : ‖h‖ = 1} = 0, for 0 6= q ∈ H,then q ∈ σpS (T).

corollary:

If T ∈ K(H), then σS(T) \ {0} = σpS (T) \ {0}.

Page 23: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Slice Representation

R. Ghiloni, V. Moretti and A. PerottiSpectral properties of compact normal quaternionic operatorsHypercomplex Analysis: New Perspectives and ApplicationsTrends in Mathematics 2014, pp 133-143.

Slice:

Fix m ∈ S, then Cm = {α + mβ : α, β ∈ R} called the slicecomplex plane.

Let J ∈ B(H) be anti self-adjoint, unitary. ThenHJm± = {u ∈ H : Ju = ±um} are closed HJm

± are closed Cm-linear subspaces.

The orthonormal basis of HJm+ is also an orthonormal basis of

H.

H as Cm- Hilbert space, H = HJm+ ⊕ HJm

− .

Page 24: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Slice Representation

R. Ghiloni, V. Moretti and A. PerottiSpectral properties of compact normal quaternionic operatorsHypercomplex Analysis: New Perspectives and ApplicationsTrends in Mathematics 2014, pp 133-143.

Slice:

Fix m ∈ S, then Cm = {α + mβ : α, β ∈ R} called the slicecomplex plane.

Let J ∈ B(H) be anti self-adjoint, unitary. ThenHJm± = {u ∈ H : Ju = ±um} are closed HJm

± are closed Cm-linear subspaces.

The orthonormal basis of HJm+ is also an orthonormal basis of

H.

H as Cm- Hilbert space, H = HJm+ ⊕ HJm

− .

Page 25: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Slice Representation

R. Ghiloni, V. Moretti and A. PerottiSpectral properties of compact normal quaternionic operatorsHypercomplex Analysis: New Perspectives and ApplicationsTrends in Mathematics 2014, pp 133-143.

Slice:

Fix m ∈ S, then Cm = {α + mβ : α, β ∈ R} called the slicecomplex plane.

Let J ∈ B(H) be anti self-adjoint, unitary. ThenHJm± = {u ∈ H : Ju = ±um} are closed HJm

± are closed Cm-linear subspaces.

The orthonormal basis of HJm+ is also an orthonormal basis of

H.

H as Cm- Hilbert space, H = HJm+ ⊕ HJm

− .

Page 26: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Slice Representation

Let T ∈ B(H) be normal and JT = TJ, JT∗ = T∗ J. ThenHJm± are invariant under T.

Define T± = T |HJm±

: HJm± −→ HJm

± are Cm linear.

If T∈ K(H), then also T±.

Let {en} be an orthonormal basis of HJm+ . For u ∈ H, we have

T+u =∞∑n=1

enλn 〈en|u〉

Then

Tu =∞∑n=1

enλn 〈en|u〉 .

Page 27: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Slice Representation

Example:

Let H = `2(N,H). Define T : H→ H by

T(qn) = (i · q1, j · q2, k · q3,k

4· q4,

k

5· q5, · · · ), for all (qn) ∈ H.

Then, we define J: H→ H by

J(qn) = (i · q1, j · q2, k · q3, k · q4, · · · ), for all (qn) ∈ H.

Page 28: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Slice Representation

Example:

Define HJj± := {(qn)n∈N : J((qn)n∈N) = (qn · j)n∈N} .

f1 = (1 + i + j − k

2, 0, 0 · · · ) ; f2 = (0, 1, 0 · · · ),

f3 = (0, 0,1 + i + j + k

2, 0, 0 · · · ) ;

fn = (0, 0, · · · , 1 + i + j − k

n, 0, 0 · · · ), forn ≥ 4.

{fn : n ∈ N} is a set of eigenvectors of T+, which forms an

orthonormal basis for HJj+ .

Page 29: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Slice Representation

Example:

For every u ∈H, we have

Tu = T (∞∑n=1

fn 〈fn|u〉)

= f1 · j ·(

1 + i + j − k

2

)· q1 + f2 · j · q2+

f3 · j ·(

1 + i + j + k

2

)· q3+

∑n≥4

fn ·j

n·(

1 + i + j + k

2

)· qn

Page 30: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Proposition:

If T= T∗, then

1 N(∆r (T)) = N(T− r · I), for all r ∈ R.2 σpS (T) = σp(T).

3 σS(T) = σ(T).

Lemma:

If T ∈ K(H) and T∗ = T. Then ±‖T‖ ∈ σpS (T).

Page 31: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

compact self-adjoint operator

Theorem:

Let T ∈ K(H) be self-adjoint. Then there exists a system ofeigenvectors φ1, φ2, φ3, · · · correspoding to the eigenvaluesλ1, λ2, λ3, · · · such that |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · and

Tu =∞∑n=1

φnλn 〈φn|u〉 , for all u ∈ H.

Moreover, if (λn) is infinite then λn −→ 0, as n→∞

Page 32: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Simultaneous diagnolization

Theorem:

If A, B ∈ K(H) be self-adjoint and AB = BA, then there exists asystem of eigenvectors φ1, φ2, φ3, · · · correspoding to theeigenvalues λ1, λ2, λ3, · · · of A and µ1, µ2, · · · of B such that

Au =∞∑n=1

φnλn 〈φn|u〉 ; Bu =∞∑n=1

φnµn 〈φn|u〉 , for all u ∈ H.

Page 33: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Theorem:

If T ∈ B(H) be normal, then there exists three mutuallycommuting operators A, B and J such that

T = A + J · B.

Moreover, A = A∗,B ≥ 0 and J is anti self-adjoint, unitary.

Lemma:

If J be anti self-adjoint, unitary and B ≥ 0 such that JB = BJ then

σpS (JB) = S · σpS (B) = {m · r : m ∈ S, r ∈ σpS (B)}.

Page 34: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Compact normal operator

Theorem:

Let T ∈ K(H) be normal. Then there exists a system ofeigenvectors φ1, φ2, φ3, · · · correspoding to the eigenvaluesq1, q2, q3, · · · such that

Tu =∞∑n=1

φn · qn 〈φn|u〉 , ∀ u ∈ H.

Moreover,

1 if (qn) is infinite then qn → 0.

2 σS(T) = {[qn] : n ∈ N} = α + S · β;α ∈ σpS (A) andβ ∈ σpS (B).

3 {α + i · β : α ∈ σpS (A), β ∈ σpS (B)}, the standard spectralvalues.

Page 35: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

comparision

Define

B((qn)) = (q1, q2, q3,q44,q55, · · · ), for all (qn) ∈ `2(N,H).

Then T = JB.

en(j) = δnj is an orthonormal basis of eigenvectors of B. Wehave

T((qn)) =∞∑n=1

enαn 〈en|(qn)〉 , for all (qn) ∈ H.

where α1 = i , α2 = j , α3 = k and αn = kn for n ≥ 4.

Page 36: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

References

A. Baker (1999)

Right eigenvalues for quaternionic matrices: A topologival approach

Linea Algebra Appl. 286(1999), 1-3, 303-309.

J. L. Brenner

Matrices of quaternions

Pacific J. Math.1 (1951) 329-335.

D. R. Farenick and D. A. F. Pidkowich

The spectral theorem in quaternions

Linear Algebra Appl. 371 (2003), 75-102.

M. Fashandi

Compact operators on quaternionic Hilbert spaces

Fact. Univ. ser. Math. Inform. 28(2013), no. 3, 249-256.

Page 37: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

References

M. Fashandi

Some properties of bounded linear operators on quaternionic Hilbertspaces.

Kochi J. Math. 9 (2014), 127-135.

R. Ghiloni, V. Moretti and A. Perotti

Continuous slice functional calculus in quaternionic Hilbert spaces.

Rev. Math. Phys. 25 (2013), no. 4.

R. Ghiloni, V. Moretti and A. Perotti

Spectral properties of compact normal quaternionic operators

Hypercomplex Analysis: New Perspectives and Applications Trends inMathematics 2014, pp 133-143.

I. Gohberg, S. Goldberg and M. A. Kaashoek

Basic classes of linear operators

Birkhauser, Basel, 2003.

Page 38: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

References

H. C. Lee

Eigenvalues and canonical forms of matrices with quaternion coecients

Proc.Roy. Irish Acad. Sect. A. 52 (1949), 253-260

Zhang Fuzhen

Quaternions and matrices of quaternions.

Linear Algebra Appl. 251 (1997), 21-57.

Page 39: Spectral theorem for compact normal operator on ...jay/OTOA2014/ctalks/SKP.pdf · Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics 2014, pp 133-143.

Introduction Quaternion Matrices Spherical spectrum Slice Representation Spectral theorem References

Thank you