Solid State 041

23
Pa e 1 Ph s 661 - Baski - #1: Review of Solid State Physics Types of Solids   Ionic, Covalent, and Metallic. Classical Theory of Conduction   Current density  j, drift velocity v d , resistivity r. Band Theory and Band Diagrams   Energy levels of separated atoms form energy “band” when brought close together in a crystal.  Fermi Function for how to “fill” bands.   Metal, Insulator, and Semiconductor band diagrams.   Donor and Acceptor dopants (Hall Effect). Devices   pn junction, diode

Transcript of Solid State 041

Page 1: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 1/23

Pa e 1Ph s 661 - Baski -

#1: Review of Solid State Physics

• Types of Solids

 –  Ionic, Covalent, and Metallic.

• Classical Theory of Conduction

 –  Current density  j, drift velocity vd , resistivity r. 

• Band Theory and Band Diagrams  – Energy levels of separated atoms form energy “band” when

brought close together in a crystal.

 – Fermi Function for how to “fill” bands. 

 –  Metal, Insulator, and Semiconductor band diagrams.

 –  Donor and Acceptor dopants (Hall Effect).

• Devices

 –  pn junction, diode

Page 2: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 2/23

Pa e 2Ph s 661 - Baski -

Types of Solids: Ionic Solid Properties 

• Formed by Coulombic attraction between ions.

 –  Examples include group I alkali cations paired with group VIIhalide anions, e.g. Na+ Cl-.

• Large cohesive energy (2-4 eV/ atom).

 –  Leads to high melting and boiling points.

• Low electrical conductivity. 

 – No “free” electrons to carry current. 

• Transparent to visible light.

 – Photon energy too low to “free” electrons. 

• Soluble in polar liquids like water.

 –  Dipole of water attracts ions.

Page 3: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 3/23

Pa e 3Ph s 661 - Baski -

Types of Solids: Ionic Solid Crystal Spacing 

• Potential Energy: Utot

= Uattract

(+, –) + Urepulse

( –, –)

Repulsive Potential  1/rm 

Attractive CoulombicPotential -1/r 

Total Potential

Page 4: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 4/23

Pa e 4Ph s 661 - Baski -

Simple Cubic Body-Centered Cubic Face-CenteredCubic

FCC

structure:

NaClNa+ 

Cl-

Types of Solids: Example Crystalline Structures 

Page 5: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 5/23

Pa e 5Ph s 661 - Baski -

Types of Solids: Covalent Solid

• Examples include group IV elements (C, Si) and III-V elements

(GaAs, InSb).

• Formed by strong, localized bonds with stable, closed-shell structures.

• Larger cohesive energies than for ionic solids (4-7 eV/atom).

 –  Leads to higher melting and boiling points.

• Low electrical conductivity.

 –  Due to energy band gap that charged carriers must overcome in

order to conduct.

Page 6: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 6/23

Pa e 6Ph s 661 - Baski -

Types of Solids: Example Crystalline Structures 

Diamond Tetrahedral sp3 bonding

(very hard!) 

Graphite 

Planar sp2 bonding

(good lubricant) 

Vertical p-bonds Bond angle = 109.5º

Page 7: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 7/23

Pa e 7Ph s 661 - Baski -

Types of Solids: Metal

• Formed by Coulombic attraction between (+) lattice ions and

( –) electron “gas.” 

• Metallic bonds allows electrons to move freely through lattice.

• Smaller cohesive energy (1-4 eV).

• High electrical conductivity. 

• Absorbs visible light (non-transparent, “shiny” due to re-emission).

• Good alloy formation (due to non-directional metallic bonds).

Page 8: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 8/23

Pa e 8Ph s 661 - Baski -

Current: (Amps)dq

dt i

q t id 

i R

 R L A

 r 

Macroscopic Microscopic

2Current Density: (A/m )

dA J i

d i A J 

where resistivityconductivity

 E 

 E  J  r 

  r 

 

where carrier densitydrift velocity

d  nv

n e J  v

2where scattering timem

ne  r 

 

Classical Theory of Conduction (E&M Review) 

• Drift velocity vd is net motion of electrons (0.1 to 10-7 m/s).

• Scattering time is time between electron-lattice collisions.

Page 9: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 9/23Pa e 9Ph s 661 - Baski -

Classical Theory of Conduction: Electron Motion

• Electron travels at fast velocities for a time  and then “collides” with

the crystal lattice.

• Results in a net motion opposite to the E field with drift velocity vd.

• Scatter time decreases with increasing temperature T, i.e. more

scattering at higher temperatures (leads to higher resistivity).

Page 10: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 10/23Pa e 10Ph s 661 - Baski -

2

1

( )

 E 

F  ma E me e

 J ne v ne a ne n   

 r  

• Metal: Resistance increases with Temperature.

• Why? Temp   , n same (same # conduction electrons)  r • Semiconductor: Resistance decreases with Temperature.

• Why? Temp   , n (“free-up” carriers to conduct)  r

Classical Theory of Conduction: Resistivity vs. Temp.

Page 11: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 11/23Pa e 11Ph s 661 - Baski -

Band Theory: Two Approaches 

• There are two approaches to finding the electron energies associated

with atoms in a periodic lattice.• Approach #1: “Bound” Electron Approach (single atom energies!)

 –  Isolated atoms brought close together to form a solid.

• Approach #2: “Unbound” or Free Electron Approach (E = p2 /2m)

 –  Free electrons modified by a periodic potential (i.e. lattice ions).

• Both approaches result in grouped energy levels with allowed and

forbidden energy regions.

 –  Energy bands overlap for metals.

 –  Energy bands do not overlap (or have a “gap”) for semiconductors. 

Page 12: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 12/23Pa e 12Ph s 661 - Baski -

Solid of N atomsTwo atoms Six atoms

Band Theory: “Bound” Electron Approach 

• For the total number N of atoms in a solid (1023 cm – 3), N energy

levels split apart within a width E.

 –  Leads to a band of energies for each initial atomic energy level

(e.g. 1s energy band for 1s energy level).

Electrons must occupy

different energies due toPauli Exclusion principle.

Page 13: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 13/23Pa e 13Ph s 661 - Baski - Step function behavior “smears” out at higher temperatures. 

1

1

F FD  E 

 E 

 f E 

e

Band Diagram: Fermi-Dirac “Filling” Function 

• Probability of electrons (fermions) to be found at various energy levels.

• Temperature dependence of Fermi-Dirac function shown as follows:

• At RT, E –  EF = 0.05 eV f(E) = 0.12E –  EF = 7.5 eV  f(E) = 10  – 129

• Exponential dependence has HUGE effect!

Page 14: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 14/23Pa e 14Ph s 661 - Baski -

• At T = 0, all levels in conduction band below the Fermi energy EF arefilled with electrons, while all levels above EF are empty.

• Electrons are free to move into “empty” states of conduction bandwith only a small electric field E, leading to high electricalconductivity!

• At T > 0, electrons have a probability to be thermally “excited” from

below the Fermi energy to above it.

Band Diagram: Metal

EF 

EC,V

Conduction band(Partially Filled)

T > 0 

Fermi “filling”

function 

Energy bandto be “filled” 

E = 0

Page 15: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 15/23Pa e 15Ph s 661 - Baski -

Band Diagram: Insulator

• At T = 0, lower valence band is filled with electrons and upper

conduction band is empty, leading to zero conductivity.

 –  Fermi energy EF is at midpoint of large energy gap (2-10 eV) between

conduction and valence bands.

• At T > 0, electrons are usually NOT thermally “excited” from valence

to conduction band, leading to zero conductivity.

EF 

EC

EV

Conduction band(Empty)

Valence band(Filled)

Egap

T > 0 

Page 16: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 16/23Pa e 16Ph s 661 - Baski -

Band Diagram: Semiconductor with No Doping

• At T = 0, lower valence band is filled with electrons and upper

conduction band is empty, leading to zero conductivity.

 –  Fermi energy EF is at midpoint of small energy gap (<1 eV) between

conduction and valence bands.

• At T > 0, electrons thermally “excited” from valence to conduction

band, leading to measurable conductivity.

EF EC

EV

Conduction band(Partially Filled)

Valence band(Partially Empty)

T > 0 

Page 17: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 17/23Pa e 17Ph s 661 - Baski -

Band Diagram: Donor Dopant in Semiconductor

• For group IV Si, add a group V element

to “donate” an electron and make n-type 

Si (more negative electrons!).

• “Extra” electron is weakly bound, with

donor energy level ED just below

conduction band EC.

 –  Dopant electrons easily promoted to

conduction band, increasing electrical

conductivity by increasing carrierdensity n.

• Fermi level EF moves up towards EC. 

• Increase the conductivity of a semiconductor by adding a small amount

of another material called a dopant (instead of heating it!)

EC

EV

EFED

Egap~ 1 eV 

n-type Si

B d Di A D i S i d

Page 18: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 18/23Pa e 18Ph s 661 - Baski -

Band Diagram: Acceptor Dopant in Semiconductor

• For Si, add a group III element to“accept” an electron and make p-type 

Si (more positive “holes”). 

• “Missing” electron results in an extra

“hole”, with an acceptor energy levelEA just above the valence band EV.

 –  Holes easily formed in valence

band, greatly increasing the

electrical conductivity. 

• Fermi level EF moves down towards EV.

EA

EC

EV

EF

p-type Si

B d Di O h V i bl

Page 19: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 19/23Pa e 19Ph s 661 - Baski -

Band Diagram: Other Variables

Metal Semiconductor

Work Function j Electron Affinity c Surface State

Bending 

J i B d Di

Page 20: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 20/23Pa e 20Ph s 661 - Baski -

pn Junction: Band Diagram

• Due to diffusion, electrons 

move from n to p-side andholes from p to n-side.

• Causes depletion zone at junction where immobilecharged ion cores remain.

• Results in a built-in electricfield (103 to 105 V/cm),which opposes furtherdiffusion.

• Note: EF levels are alignedacross pn junction underequilibrium.

Depletion Zone

pn regions “touch” & free carriers move 

electrons

pn regions in equilibrium

holes

EV

EF

EC

EF

EV

EF

EC

+++

++++

++++

+ –  –  –  – 

 –  –  –  – 

 –  –  –  – 

p-type

n-type

J ti IV Ch t i ti

Page 21: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 21/23Pa e 21Ph s 661 - Baski -

• Current-Voltage Relationship

• Forward Bias: current

exponentially increases.

• Reverse Bias: low leakage

current equal to ~Io.

• Ability of pn junction to passcurrent in only one direction is

known as “rectifying” 

behavior.

pn Junction: IV Characteristics

 / [ 1]eV kT  

o I I e

Reverse

Bias

ForwardBias

J ti B d Di d Bi

Page 22: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 22/23Pa e 22Ph s 661 - Baski -Minority Carriers

pn Junction: Band Diagram under Bias

Forward Bias Reverse BiasEquilibrium

e – e – 

• Forward Bias: negative voltage on n-side promotes diffusion of 

electrons by decreasing built-in junction potential higher current.

• Reverse Bias: positive voltage on n-side inhibits diffusion of electrons

by increasing built-in junction potential lower current.

e – 

Majority Carriers

p-type n-type p-type n-type p-type n-type

 –V +V

S i d t D t D it i H ll Eff t

Page 23: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 23/23

• Why Useful? Determines carrier type (electron vs. hole) and

carrier density n for a semiconductor.

• How? Place semiconductor into external B field, push current along one

axis, and measure induced Hall voltage VH along perpendicular axis.

• Derived from Lorentz equation FE (qE) = FB (qvB).

Carrier density n = (current  I ) (magnetic field  B)

(carrier charge q) (thickness t )(Hall voltage V  H 

)

Semiconductor: Dopant Density via Hall Effect

Hole Electron

+ charge  – charge

 BF qv B