Solar Power

103
Photovoltech NV Grijpenlaan 18, 3300 Tienen, Belgium 1 Photovoltaic Solar Energy : present and future Johan Nijs

description

detailed study on Renewable Energy

Transcript of Solar Power

Page 1: Solar Power

Photovoltech NVGrijpenlaan 18, 3300 Tienen, Belgium 1

Photovoltaic Solar Energy : present and future

Johan Nijs

Page 2: Solar Power

2

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech

Page 3: Solar Power

3

Enormous potential of solar energy

Annual total light energy received on earth equals

5.000 to 10.000 TIMES

the annual worldwide primary energy needs !

Page 4: Solar Power

4

Renewable energy sources -

Energy ReservesAnnual world energy consumption

Gas reservesPetroleum reserves

Uranium reserves

Coal reserves

Exploitable hydroelectric power

Photosynthesis

Wind energyAnn

ual s

olar

en

ergy

Ener

gy r

eser

ves

Source: World Energy Council

Page 5: Solar Power

5

Solar Energy Supply –

Global Irradiation

Source: Plug in the Sun, Energy for the 21st Century, The Association for Science Education, Herts, UK, 2000

Page 6: Solar Power

6

Types of solar energyPassive Solar Energy

Thermal Solar Energy

Photovoltaic

Solar Energy

Page 7: Solar Power

7

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech

Page 8: Solar Power

8

Working principle of a cell Direct conversion of light into electricity

Efficiency = electrical power out / light power in

Front Contact (“fingers”)

n-type silicon

p-type silicon

Back contact

incident lightincident light

p-n-junction

Incident light creates extra charge carriersInternal p-n-junction separates charge carriers of opposite signUseable voltage/current by external connection of metal front and back contacts

Page 9: Solar Power

9

Solar Cell technologiesCrystalline silicon (90-95% of the market)

Monocrystallinehighest yield, black-blue

Polycrystalline/multicrystalline lower yield, blue veined

Amorphous siliconlower yield (half i.c.w. mono Si)cheaper production

Other thin film cellsCIS (CuInSe2)CdTeMicrocrystalline thin film Si“plastic”

solar cells

Space applicationsGaAs on Ge,....(Cells 100 times more expensive)

Page 10: Solar Power

10

From sand to silicon

11

Schematic presentation of a silicon fabrication process from the earth’s crust (sand) to hyper-pure polycrystalline silicon

Si =2nd

most abundantelement on earth

Quartzrock (SiO2)

MG Si (98-99%)

approx 20%

EG/SG Si (99.9999...%)

Page 11: Solar Power

11

From Silicon feedstock to a wafer

Ceramic crucible loaded with silicon feedstock Schematic of Cz -Si growth

PV crystalline silicon wafers are monocrystalline Si grown by the Czochralski process or multicrystalline fabricated by a casting process.

Schematic of a multi-Si ingot growth process

Page 12: Solar Power

12

Solar Cell Material

Multicrystalline Si wafer/substrate

Page 13: Solar Power

13

Technology for the production of silicon wafers

Meervoudige-draad-zaagMultiple wire saw

Page 14: Solar Power

14

From Wafer to Cell

Isotextured Si wafer

SiNx anti-reflection coating

Silver electrode

Aluminium coating + silver electrode

Page 15: Solar Power

15

Types of Solar Cells –

(Bulk) crystalline silicon

Conversion efficiency typically: 13-17 %Crystalline silicon approx. 90-95% of the PV market

monocrystalline -

Si multicrystalline -

Si

Page 16: Solar Power

16

Types of Solar Cells Amorphous silicon tandem cells

i-1 (a-Si:H or a-SiGe:H)

i-2 (a-Si:H or a-SiGe:H)

i-3 (a-SiC:H or a-Si:H)p-3

no-3p-2

no-2p-1

no-1

ITO

Barrier coating

Reflective coating

substrate

contacts

Blue cell

Green cell

Red cell

Absorption of light

light

Page 17: Solar Power

17

Types of Solar Cells - Other thin film solar cell

-CdTe-CuInSe2

-Thin

film crystalline

silicon

Page 18: Solar Power

18

Types of Solar Cells -

Organic solar cells

Source: Imec; J.K.J. van Duren,

Organic-based composite solar cells, EUROPV 2003, Granada, Sept.2003

C60

Prototype cell (IMEC)

Cross-section

Page 19: Solar Power

19

Concentration

source: Fraunhofer ISE

principle

cell

module

Page 20: Solar Power

20

Efficiency

Definition of energy conversion efficiency and unitsEfficiency = electrical power out / light power in

measured under 1000 W/m2 standard artificial sun, at 25º

cell temperature (“Standard Test Conditions”

full sun) Wp (Watt peak)

1 cell = approx. 0.5 Volt, 30-35 mA/cm2 at full sun and approx. 15 mWp/cm2 capacity at full sun

1 module of 100 Wp = 100 Watt at full sun

Page 21: Solar Power

21

EfficiencyYield of solar cell

depending on technology and producer:varies from 6% (amorphous Si) to 42.8% (new record July 07, multi-

layer laboratory cell under concentration)±

15%

for commercial poly/multi-crystalline silicon cells

Yield of PV moduleLower because of surface losses

Page 22: Solar Power

22

Present PV technologies (terrestrial application)

Cell Technology Type of junction Lab efficiency[%]

Industrial efficiency[%]

Market share[%]

Bulk crystalline Si solar cells p-n homojunction 24.7 13 -

17 90-95

a-Si:H

(a-Si:H; a-SiGe:H, mc-Si:H))

p-i-n homojunctionmultijunction

13 6-7 single junction9-10 multijunction

5

CuIn(Ga)Se2

(S2

)=CIS

= CISp-nheterojunction with CdS

18.8 9 -

13

CdTe p-nheterojunction with CdS

17 9 -

12

3

Page 23: Solar Power

23

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech

Page 24: Solar Power

24

From Solar Cell to PV ModuleSolar cells are encapsulated in “PV modules”

to obtain specific voltage and powerfor mechanical strength, weather resistance, humidity insulation of contacts

(25-year guarantee!)front plate: transparent (tempered glass, synthetic)back plate: opaque (synthetic, metal) or transparent (glass)

Types of PV modules (with crystalline silicon solar cells)

Standard modules

= up to more than 200 Wp

with opaque back plate Semi-transparent modules: cells in widened grid between 2 glass platesWith or without aluminium frame

Page 25: Solar Power

25

From Solar Cell to PV Module

Glass

EVA

Solar cells (connected in series)

EVA (encapsulation material)

Tedlar (protective foil)

Page 26: Solar Power

26

Amorphous Silicon Modules

“Shingle”

PV module (BESS/Unisolar)

Amorphous Si-film on synthetic roof roll

Technical information materials: EVA + PVC +

amorphous Si length: 24 mwidth: 1.05 of 1.55 m

power: max 40 Wp/m2

Page 27: Solar Power

27

PV Modules

Page 28: Solar Power

28

PV Module TypesTransparent PV modules:

front: glassrear: glass (also double)

Opaque PV modules:front: glassrear: opaque plastic

Page 29: Solar Power

29

Semi-transparent ModulesAmorphous siliconfilm on glass,Semi-transparent

Commercial building RWE Schott Solar

Page 30: Solar Power

30

From PV Module to PV System

Photovoltaic system (PV system)

PV module+ Structure

+ Cables

+ Peripherals

Two typesAutonomous PV system = PV module(s) + charge controller + batteryGrid-connected PV system = PV module(s) + inverter (230 V, 50 Hz.)

Page 31: Solar Power

31

Autonomous PV System Block Diagram

PV modulesDC/DC

transformerstorage

unit

Load

AC generator

DC ACcontrol

unit

generator

AC Load

(local) network on AC voltage

Page 32: Solar Power

32

Grid connected PV Systems

AC modules String inverters Central inverter

Page 33: Solar Power

33

Inverters (converters)

module inverter100 WAC

string inverter850 WAC

central inverter1800 WAC

Page 34: Solar Power

34

Good practice –

Electrical Connections

standard waterproof connections -

work can be done by a roofer

Page 35: Solar Power

35

PV System on private home

mains network

PV module

connection box

inverter

meter box

1 kWp = 1 kiloWatt peaksurface area: 8 m2average yield (Belgium):

±

850 kWh/kWp per yearor: >100 kWh/m2 (multicr. Si)

average consumptionper family = 4000 kWh100% = 5 kWp = 40 m2

Page 36: Solar Power

36

PV Efficiency and YieldYield of PV system

system efficiency is lower than module efficiencygeographically determined by light intensitycharacteristic values for Belgium (for a PV system facing south)

per year850 kWh/kWp –

approx. independent of technology

(angle of gradient 30-60 °) = > 100 kWh per m2 per year (with multicrystalline Si)

PV system on vertical wall: ±500 -

600 kWh/kWp

Southern Europe per year: 1700-1800-2000 kWh/kWp

1 kWp = 7 -

10 m2(depending on cell efficiency and PV module type)

Page 37: Solar Power

37

Energy Payback TimeWorking life of modules (guarantee) = 25 years

Page 38: Solar Power

38

PV SystemsSustainable energy creation

the sun = free and inexhaustible energy source

Net positive energy yieldlife of PV modules = >30 years, 25 year-guarantee by manufacturerenergy consumption for production rapidly paid back

extensive raw material reserves:

>silicon production from sand

>future: less expensive silicon, thin film cells,

other materials

Page 39: Solar Power

39

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech

Page 40: Solar Power

40

PV System –

Parts and TypesPV system

PV module(s) + supporting structure + peripheral equipment

Autonomous PV system PV module(s) + charge controller + battery

Grid-connected PV system PV module(s) + transformer (230 V, 50 Hz.)

Page 41: Solar Power

41

Autonomous PV SystemIndependent of electricity gridWith battery storageGreat potential in developing countriesAlso economically cost-effective

Page 42: Solar Power

42

Autonomous PV System

Modules + batteries + controller + cabling and structure

Page 43: Solar Power

43

Autonomous PV Systems

Remote Areaslighting“solar home systems”remote villagesremote homescooling of vaccines

Industrial Systemstelecommunicationssignalisationcathodic protectionsafety systemsenvironmental monitoring

Consumer Applicationsportable lampsbattery chargers

etc.

Page 44: Solar Power

44

Solar Home Systems

Basic electricity supply, less expensive than grid extension

Page 45: Solar Power

45

Autonomous PV SystemsPV streetlight (Ecolux)

Timetable with waiting times (MIVB, Brussels)

Page 46: Solar Power

46

Grid-connected PV Systems

Page 47: Solar Power

47

Grid-connected PV Systems

PV plantlarge surface areaerected in rowspossibly with sun-

following system

Home / Office / Industryfrom 1 to >10 000 kWpdecentral arrangementfaçades, roofs, sunshadesbest building integration

Roofing and structuresplatform roof (Morges, CH)swimming pool (Atlanta, US)car park roof

not integrated (surface-mounted)

building-integrated surface-mounted

Page 48: Solar Power

48

PV PlantPV plant Electrawinds Solar,

Middelkerke1 308 kWp, 7 695 PV panels (170 Wp) surf. 6 ha, 400 families

Page 49: Solar Power

49

Building Integrated PV -

Potential

residential area with PV in Japan

Big potentialno use of open spaceroofs, façades, sunshadestechnical potential: 30% of total electricity consumption

Architectural added valuedouble function: energy + building componentspecial PV modules: slates, glazing, sunshadesmaterial cost savings

Page 50: Solar Power

50

PV Potential –

IEA Estimate

0

10

20

30

40

50

60

70

Spain Italy

Austria

Switzerl

and

Netherl

ands

Denmark UK

German

ySwed

enFinl

and US

Austra

liaCan

ada

Japa

n

[% o

f ele

ctric

ity c

onsu

mpt

ion

1998

]

Ground surface 1 m2

Roof surface 1,2 m2

Percentage suitable buildings 60%

Percentage sufficient irradiation 55%

NET PV-SURFACE 0,40 m2

Roof surface/inh. Surf. PV-surf.Type of building [m2] [m2]Residential 23 9,1

Agriculture 7 2,8

Industry 6 2,4

Tertiary sector 6 2,4

Other 3 1,2

TOTAL 45 17,8Available surface area/resident West/central Europe: 18 m2 on roofs, 6.5 m2 on façadesPV potential Belgium: 27%

Source: M. Gutschner, Potential for building integrated photovoltaics, Report IEA-T7-04: 2002

Page 51: Solar Power

51

BIPV PossibilitiesIntegration on various types of buildings

homes and officestertiary sector (e.g. hospitals)

Industry

Integration in various partssloping roofflat roofskylight, atriumfaçade Sunshade

Integration on other structures

Page 52: Solar Power

52

BIPV Global ConceptPV = no technical additions

determining part of architectural designinfluence on plan, façades, wall construction, modular sizes

Production/consumption balance decoupled because mains-connectedthe lower the electrical consumption, the higher the annual PV share

Page 53: Solar Power

53

BIPV –

Prevention of shadowingOwn volumesBuilding parts (chimneys, technical construction)Plants, adjacent buildings

Page 54: Solar Power

54

BIPV Surface Mounted –

Tiled RoofTiled roof: surface-mounted

roof hooks metal structure

Page 55: Solar Power

55

BIPV Surface Mounted –

Slate Roof

Page 56: Solar Power

56

BIPV -

PV on farms

Hoogstraten, MARPA bvba 119 kWp, 890 m2 source: SolarAccess

Page 57: Solar Power

57

BIPV –

Built-in tiled roof

Tiled roof: prefab elements

Page 58: Solar Power

58

BIPV –

Built-in slate roof

Home, Merchtem (Asse)

Slate roof: built-inSpecial panels To the size of the slates

Page 59: Solar Power

59

BIPV –

Built-in metal roof

Home Zoerle-Parwijs (Zonnige Kempen)

Amorphous Si metal roof strips with standing seam (Unisolar cells)

Page 60: Solar Power

60

BIPV –

Fully sloping roof

SolarsiedlungFreiburg (D) Arch. R. Disch

Page 61: Solar Power

61

BIPV –

Car park roof

“Zonneschans”Glas Ceyssens, Heusden-Zolder, 350 kWp

Surface area: 2 760 m2Power: 350 kWpYield: 300 000 kWh/y.Pitch:15º

Page 62: Solar Power

62

PV on metal profiled sheets

Limburg fruit/vegetable auction hall (Herk-de-Stad), 50 kWp

Page 63: Solar Power

63

PV on flat roof -

flat roof systems

Ecofys, Utrecht, NL

Various systemsprefab supportsheavy baseseparate ballast

Page 64: Solar Power

64

PV on flat roof -

metal structure

Boss Paints, Waregem, 52 kWp

Page 65: Solar Power

65

PV on flat roof -

Thin film

Type PV module: UnisolarWidth PV panel:

108 cmLength PV panel: 583 cmWeight: 8.4 kgPanel power:

272 WpNet per m2: 43 WpGross per m2: 34 Wp

Colruyt, Halle330 kWp

Page 66: Solar Power

66

PV on flat roof –

roof roll with PV

Sarnafil roof rollUni-Solar solar cells

Alwitra Evalon SolarUni-Solar solar cells

source: Ikaros Solar

Amorphous Si on roof roll Ninove, DIY business

Page 67: Solar Power

67

PV on flat roof –

horizontal modules

PV roof Basle (CH)“PowerGuard”

modules with insulation

Page 68: Solar Power

68

BIPV –

PV façade (opaque)School in Venendaal, NL

Bayerische Landesbank, Munich

Page 69: Solar Power

69

BIPV –

Façade renovation

Renovation office tower Freiburg station (D) -

36 kWp

Page 70: Solar Power

70

PV Façade –

Industrial constructionPV façade in amorphous Sion profiled steel platingcompany Thyssen Krupp (D)

Page 71: Solar Power

71

BIPV –

PV Shunshade (movable)

Erlangen University (D), biology research lab

Page 72: Solar Power

72

BIPV –

Semi transparent

Fire station, Houten, NL 23,9 kWp architects: Samyn & partners

Page 73: Solar Power

73

BIPV -

PV Façade semi transparent“De Basis”

Kamp C Westerlo (B) semi-transparent PV modules power:

20 kWp

source: Soltech

Page 74: Solar Power

74

BIPV -

PV Façade semi transparent“De Basis”

Kamp C Westerlo (B) semi-transparent PV modules power:

20 kWp

source: Soltech

Page 75: Solar Power

75

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech

Page 76: Solar Power

76

Solar Cell Production 1999 -

2008

42% 40% 39%45%

40%

69%

68%

34%30%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1999 2000 2001 2002 2003 2004 2005 2006 2007

MW

0%

10%

20%

30%

40%

50%

60%

70%

80%

Solar Cell Production

Yearly Growth Rate

Solar Cell Production 202 287 401 560 750 1256 1815 2536 4279Yearly Growth Rate 30% 42% 40% 39% 34% 68% 45% 40% 69%

Source: Photon International

Very

recent number

2008 : 7900 MWp

= + 85 % ?!

Page 77: Solar Power

77

MARKET WORLWIDE

Page 78: Solar Power

78

Page 79: Solar Power

79

Page 80: Solar Power

80

Page 81: Solar Power

81

Top-10

Page 82: Solar Power

82

Top-10 cumulative

Page 83: Solar Power

83

Market

preview

Page 84: Solar Power

84

Market

preview

Page 85: Solar Power

85

Market

per region

Page 86: Solar Power

86

Productiecapaciteit vs. Markt

Page 87: Solar Power

87

Market

preview in Belgium

Page 88: Solar Power

88

What

is specific

for

Belgium

?

Page 89: Solar Power

89

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech

Page 90: Solar Power

90

Subsidies PV

See separate pdf doc on EU support schemes

Page 91: Solar Power

91

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech

Page 92: Solar Power

92100

Market growth and trends. TREND: FALLING COSTS

Scenario for falling PV pricesSource: Sinke (ECN)/A Vision for Photovoltaic Technology

Page 93: Solar Power

93

Grid parity

P h o to vo lta ics

U tility p eak p ow er

B u lk p ow er

0,0

0,2

0,4

0,6

0,8

1,0

1990 20 00 2010 20 20 2030 204 0

€/kW h

9 00 h/a: 0 ,60 €/k W h

1 80 0 h /a: 0 ,30 €/k W h

m arke t su p p o rt p ro g ram s n ecessary:

P h o to vo lta ics

U tility p eak p ow er

B u lk p ow er

P h o to vo lta ics

U tility p eak p ow er

B u lk p ow er

0,0

0,2

0,4

0,6

0,8

1,0

1990 20 00 2010 20 20 2030 204 0

€/kW h

9 00 h/a: 0 ,60 €/k W h

1 80 0 h /a: 0 ,30 €/k W h

0,0

0,2

0,4

0,6

0,8

1,0

1990 20 00 2010 20 20 2030 204 0

€/kW h

9 00 h/a: 0 ,60 €/k W h

1 80 0 h /a: 0 ,30 €/k W h

m arke t su p p o rt p ro g ram s n ecessary:

Source: EPIA

Page 94: Solar Power

94

Grid parity in Europe -

2010

irradiation PV generation(kWh/m2·yr) cost (€/kWh)

600 0.50

1000 0.30

1400 0.21

1800 0.17

Page 95: Solar Power

95

Grid parity in Europe -

2015

irradiation PV generation(kWh/m2·yr) cost (€/kWh)

600 0.42

1000 0.25

1400 0.18

1800 0.14

Page 96: Solar Power

96

Grid parity in Europe -

2020

irradiation PV generation(kWh/m2·yr) cost (€/kWh)

600 0.33

1000 0.20

1400 0.14

1800 0.11

Page 97: Solar Power

97

Page 98: Solar Power

98

Page 99: Solar Power

99

Page 100: Solar Power

100

Page 101: Solar Power

101

RES -

Static or dynamic potential

PSP = power storage plant SMART GRIDS !!

Page 102: Solar Power

102

Global overview -

Long-term scenario

0

200

400

600

800

1000

1200

1400

1600

1960 1980 2000 2020 2040 2060

surprisegeothermalsolarnew biomasswindnuclearhydrogasoil & NGLcoaltradit., biomass

Source: Shell Window, 1995 Comparison: current energy consumption EU = 160 GJ/cap

Page 103: Solar Power

103

ContentsGeneralFrom sand to solar cellFrom solar cell to PV systemApplicationsMarketSubsidiesGrid parity and prospectsPhotovoltech