SnapShot: Chromatin Remodeling: CHD · 2015. 1. 30. · SnapShot: Chromatin Remodeling: CHD...

2
SnapShot: Chromatin Remodeling: CHD Jennifer K. Sims and Paul A. Wade Laboratory of Molecular Carcinogenesis, NIEHS, Research Triangle Park, NC 27709, USA See online version for legend and references. 626 Cell 144, February 18, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.02.019 RbAp46/48 RbBp5 Subfamily I: CHD1/CHD2 Chromo domain cocrystalized with H3K4me3 peptide YEAST CHD1 Monomer Monomer Monomer Monomer CHD2 FLY HUMAN NuRD Unknown Unknown Unknown CHD6-2-3MDa complex CHD5 CHD9 CHD6/7/8 dMec FLY HUMAN FLY HUMAN Nucleosome spacing Nucleosome sliding Mechanism unknown Chromatin assembly Subfamily II: CHD3-5/Mi-2 Subfamily III: CHD6-9 CHD3/4 dMi2 PARP1 WDR5 Ash2L PBAF complex MTA1/2/3 p66α/β MBD2/3 HDAC1/2 p66/68 dRPD3 dMBD2/3 dMep1 SAGA/SLIK complex CHD1 CHD3/4 CHD7 CHD8 KIS-L CHD6/7/8 PHD domain 2 modeled with H3 peptide ATPase Chromo Chromo DNA binding ATPase Chromo Chromo ATPase Chromo Chromo PHD PHD BRK SANT General structure of CHD family Complex members Remodeling mechanisms/biological functions ATP ADP+P i CHD1 CHD1 ATP ADP+P i ATP ADP+P i dMTA dMi2 p55 Core histones CHD1: Maintenance of mouse embryonic stem cells CHD2: Roles in mammalian development, DNA damage responses, and tumor suppression CHD5: Potential tumor suppressor in breast, colon, and neuroectodermal cancers CHD6: Localizes to sites of transcription and is induced by DNA damage CHD7: Mutated in CHARGE syndrome; preferentially binds to distal regulatory elements CHD8: Implicated in expression of small RNAs and of genes regulated by β-catenin; represses p53 functions CHD9: Regulates gene expression in osteoblasts NAP1

Transcript of SnapShot: Chromatin Remodeling: CHD · 2015. 1. 30. · SnapShot: Chromatin Remodeling: CHD...

Page 1: SnapShot: Chromatin Remodeling: CHD · 2015. 1. 30. · SnapShot: Chromatin Remodeling: CHD Jennifer K. Sims and Paul A. Wade Laboratory of Molecular Carcinogenesis, NIEHS, Research

Snap

Shot:

Chro

mat

in R

emod

elin

g: C

HD

Jenn

ifer

K. S

ims

and

Pau

l A. W

ade

Lab

ora

tory

of

Mo

lecu

lar

Car

cino

gen

esis

, NIE

HS

, Res

earc

h Tr

iang

le P

ark,

NC

277

09, U

SA

See online version for legend and references.626 Cell 144, February 18, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.02.019

Rb

Ap

46/4

8

Rb

Bp

5

Su

bfa

mil

y I:

CH

D1

/CH

D2

Chr

om

o d

om

ain

cocr

ysta

lized

wit

h H

3K4m

e3 p

epti

de

YE

AS

T

CH

D1

Mo

nom

erM

ono

mer

Mo

nom

erM

ono

mer

CH

D2

FL

YH

UM

AN

Nu

RD

Unk

now

nU

nkno

wn

Unk

now

n

CH

D6-

2-3M

Da

com

ple

x

CH

D5

CH

D9

CH

D6/

7/8

dM

ec

FL

YH

UM

AN

FL

YH

UM

AN

Nu

cle

oso

me

sp

ac

ing

Nu

cle

oso

me

sli

din

g

Me

ch

an

ism

un

kn

ow

n

Ch

rom

ati

n a

sse

mb

ly

Su

bfa

mil

y II

: C

HD

3-5

/Mi-

2

Su

bfa

mil

y II

I: C

HD

6-9

CH

D3/

4

dM

i2

PA

RP

1

WD

R5

Ash

2L

PB

AF

co

mp

lex

MTA

1/2/

3p

66α

MB

D2/

3H

DA

C1/

2

p66

/68

dR

PD

3d

MB

D2/

3

dM

ep

1

SA

GA

/SL

IKc

om

ple

x

CH

D1

HD

AC

1/2

MB

D2/

3H

DA

C1/

2C

HD

3/4

co

mp

lex

CH

D7

CH

D8

KIS

-L

CH

D6/

7/8

PH

D d

om

ain

2 m

od

eled

wit

h H

3 p

epti

de

AT

Pa

se

Chromo

Chromo

DN

Ab

ind

ing

AT

Pa

se

Chromo

Chromo

AT

Pa

se

Chromo

Chromo

PHD

PHD

BR

K

SA

NT

Ge

ne

ral

stru

ctu

re o

f C

HD

fa

mil

yC

om

ple

x m

em

be

rsR

em

od

eli

ng

me

ch

an

ism

s/b

iolo

gic

al

fun

cti

on

s

AT

PA

DP

+P

i

CH

D1

CH

D1

AT

PA

DP

+P

i

AT

PA

DP

+P

id

MTA

dM

i2p55

Co

re h

isto

ne

s

CH

D1

: M

aint

enan

ce o

f m

ous

e em

bry

oni

c st

em c

ells

CH

D2

: R

ole

s in

mam

mal

ian

dev

elo

pm

ent,

DN

A d

amag

ere

spo

nses

, an

d t

umo

r su

pp

ress

ion

CH

D5

: P

ote

ntia

l tum

or

sup

pre

sso

r in

bre

ast,

co

lon,

and

neur

oec

tod

erm

al c

ance

rs

CH

D6

: Lo

caliz

es t

o s

ites

of

tran

scri

pti

on

and

is in

duc

ed b

y D

NA

dam

age

CH

D7

: M

utat

ed in

CH

AR

GE

syn

dro

me;

pre

fere

ntia

lly

bin

ds

to d

ista

l reg

ulat

ory

ele

men

ts

CH

D8

: Im

plic

ated

in e

xpre

ssio

n o

f sm

all R

NA

s an

d o

f g

enes

re

gul

ated

by

β-ca

teni

n; r

epre

sses

p53

fun

ctio

ns

CH

D9

: R

egul

ates

gen

e ex

pre

ssio

n in

ost

eob

last

s

CH

D1

CH

D1

CH

D1

CH

D1

CH

D1

NA

P1

Chr

om

o d

om

ain

cocr

ysta

lized

wit

h H

3K4m

e3 p

epti

de

Su

bfa

mil

y II

: C

HD

3-5

/Mi-

2

Chromo

Chromo

PH

D d

om

ain

2 m

od

eled

wit

h H

3 p

epti

de

Page 2: SnapShot: Chromatin Remodeling: CHD · 2015. 1. 30. · SnapShot: Chromatin Remodeling: CHD Jennifer K. Sims and Paul A. Wade Laboratory of Molecular Carcinogenesis, NIEHS, Research

626.e1 Cell 144, February 18, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.02.019

SnapShot: Chromatin Remodeling: CHDJennifer K. Sims and Paul A. WadeLaboratory of Molecular Carcinogenesis, NIEHS, Research Triangle Park, NC 27709, USA

The CHD family of chromatin-remodeling complexes is defined by the presence (from amino to carboxy termini) of dual chromodomains, a DNA-dependent ATPase domain of the SNF2 superfamily, and, in some cases, a DNA-binding domain. The family is subdivided into three subfamilies based on the presence of additional sequence motifs. Subfamily 1 (CHD1/CHD2) contains dual chromodomains, ATPase domain, and DNA-binding domain. Subfamily 2 (CHD3/CHD4/CHD5) contains, in addition to the above, dual PHD fingers. Subfamily 3 (CHD6/CHD7/CHD8/CHD9) contains dual chromodomains, an ATPase domain, a SANT domain, and a C-terminal BRK domain.

Subfamily I (CHD1/CHD2)Subfamily I (CHD1/CHD2) is conserved from yeast to humans. Yeast CHD1 regulates transcriptional elongation via interaction with the Paf1 complex. Human CHD1 binds directly to histone H3 trimethylated at lysine 4 and associates with the spliceosome complex. In addition, CHD1 functions as an active chromatin assembly factor. Drosophila CHD1 is required for histone H3.3 deposition in vivo, and mouse CHD1 is important for the maintenance of embryonic stem cells. CHD2 is implicated in mammalian development, DNA damage responses, and tumor suppression.

Subfamily II (CHD3/CHD4/CHD5)CHD3/CHD4 proteins are integral subunits of the Mi-2/NuRD chromatin-remodeling histone deacetylase complex. This complex functions in transcription, in replication-coupled chromatin assembly, and in DNA repair. CHD5 expression is largely confined to neural tissue, where its associations are not well characterized. It appears to have tumor-suppressive functions in tumors of breast, colon, and neuroectodermal origin. The chromodomain sequence of subfamily II differs significantly from that of either subfamily I or III, making it unlikely for them to interact with histone tails. In addition, biochemical studies have demonstrated that Drosophila Mi-2 is able to interact directly with “tailless” nucleosomes as well as with DNA under low-salt conditions.

Subfamily III (CHD6/CHD7/CHD8/CHD9)The four vertebrate subfamily III members are homologs of a single Drosophila Trithorax-group protein, Kismet, involved in regulation of Hox gene expression, body segmenta-tion, and transcriptional elongation. CHD6 localizes to sites of transcription, is induced by DNA damage, and is a component of a large protein complex that remains largely uncharacterized. CHD7 is mutated in CHARGE syndrome, a developmental disorder affecting normal development of multiple tissues. CHD7 associates with BRG-1-containing SWI/SNF chromatin-remodeling complex and preferentially binds to distal regulatory elements, such as gene enhancers. The chromodomains of CHD7 interact directly with methylated histone H3 lysine 4. The CHD7 complex is required for the normal patterns of gene expression that are essential to the developmental program of neural crest cells. CHD8 and its associated complex interact with histone H3 di- and trimethylated at lysine 4 and have been implicated in normal expression of small RNAs and of genes regulated by b-catenin. CHD8 represses p53 functions and apoptosis during mammalian development and has been shown to interact with CHD7. CHD9 has been implicated in regulation of gene expression in osteoblasts and is dynamically phosphorylated.

AbbreviationsCHARGE, coloboma, heart defects, atresia of the nasal choanae, retardation of growth, genital abnormalities, and ear abnormalities; SWI/SNF, switch/sucrose nonfermenting.

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute of Environmental Health Science, NIH (project number Z01ES101965 to PAW). We gratefully acknowledge helpful suggestions from S. Khorasanizadeh, T. Kutateladze, S. Venkatachalam, J. Wysocka, and members of the Wade laboratory.

RefeRences

Bajpai, R., Chen, D.A., Rada-Iglesias, A., Zhang, J., Xiong, Y., Helms, J., Chang, C.P., Zhao, Y., Swigut, T., and Wysocka, J. (2010). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463, 958–962.

Benayahu, D., Shacham, N., and Shur, I. (2007). Insights on the functional role of chromatin remodelers in osteogenic cells. Crit. Rev. Eukaryot. Gene Expr. 17, 103–113.

Bouazoune, K., and Brehm, A. (2006). ATP-dependent chromatin remodeling complexes in Drosophila. Chromosome Res. 14, 433–449.

Bowen, N.J., Fujita, N., Kajita, M., and Wade, P.A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochim. Biophys. Acta 1677, 52–57.

Denslow, S.A., and Wade, P.A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438.

Gaspar-Maia, A., Alajem, A., Polesso, F., Sridharan, R., Mason, M.J., Heidersbach, A., Ramalho-Santos, J., McManus, M.T., Plath, K., Meshorer, E., and Ramalho-Santos, M. (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 863–868.

Hall, J.A., and Georgel, P.T. (2007). CHD proteins: a diverse family with strong ties. Biochem. Cell Biol. 85, 463–476.

Schnetz, M.P., Bartels, C.F., Shastri, K., Balasubramanian, D., Zentner, G.E., Balaji, R., Zhang, X., Song, L., Wang, Z., Laframboise, T., et al. (2009). Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19, 590–601.