SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF...

51
Genda Chen, P.E., Ph.D., F.ASCE, F.SEI Professor and Robert W. Abbett Distinguished Chair in Civil Engineering Director, System and Process Assessment Research Laboratory (SPAR Lab) Associate Director, Mid-America Transportation Center (MATC) Missouri University of Science and Technology (Missouri S&T) Http://web.mst.edu/~gchen; [email protected] 3 rd Technical Advisory Council Meeting on April 1, 2016 SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF BRIDGE SCOUR AND RIPRAP EFFECTIVENESS –GUIDELINES AND VISUALIZATION TOOLS 1

Transcript of SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF...

Page 1: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

Genda Chen, P.E., Ph.D., F.ASCE, F.SEIProfessor and Robert W. Abbett Distinguished Chair in Civil EngineeringDirector, System and Process Assessment Research Laboratory (SPAR Lab)Associate Director, Mid-America Transportation Center (MATC)Missouri University of Science and Technology (Missouri S&T)Http://web.mst.edu/~gchen; [email protected]

3rd Technical Advisory Council Meeting on April 1, 2016

SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORINGOF BRIDGE SCOUR AND RIPRAP EFFECTIVENESS– GUIDELINES AND VISUALIZATION TOOLS

1

Page 2: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

OUTLINE OF THIS PRESENTATION

• The Smart Rock Monitoring Concept

• Design and Prototyping

• Localization and Effectiveness

• Field Test Demonstration

• Concluding Remarks

2

Page 3: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

THE SMART ROCK MONITORING CONCEPT

• Two Application Scenarios– Scour Depth

Deposits at a bridge pier or abutment are washed away to form a scour holewith unknown location and depth.

– Countermeasure Effectiveness Move of rocks leads to the loss of a

rip-rap countermeasure for bridgescour protection.

3

Water

River bank

Current flow

Pier

Bridge deck

Scour hole

Natural rocksSmart rocks Piles Soil deposits

Multiple measurement stations using one magnetometer

Fig. 2 Scour Countermeasure Monitoring

Page 4: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

• Arbitrarily Oriented System (AOS) Monitored along the river bank or on the bridge deck Most complicated in smart rock localization

4

AOS Model of Smart Rocks

DESIGN AND PROTOTYPING

Page 5: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

• Automatically Pointing-South System (APSS) Monitored along the river bank Measurement station located in South or North pole of the magnet Rapid convergence and high accuracy of APSS location However, easily affected by ferromagnetic substances

5

APSS Model of Smart Rocks(a) Schematic View (b) Prototype Smart Rock

10.1

6cm

5.08cm

r=10cm

N S

Level Bubble

Copper Beeds

PropyleneGlycol

R=11cm

DESIGN AND PROTOTYPING

Page 6: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

• Automatically Pointing-Up System (APUS) Automatically Pointing to Upward System (APUS) Measurement apparatus set on the bridge deck Gravity-orientated direction, reduces the degree of freedom, less effect

by ferromagnetic substance

6

(a) One N45 Magnet (b) Prototype Smart Rock

R=14cm r=12

.5cm

N

S

Level Bubble

5.05

cm

15.24cm

Copper Beeds

PropyleneGlycol

DESIGN AND PROTOTYPING

(b) Two N42 Magnets

R=14cm r=12

.5cm

N

SLevel Bubble

10.1

6cm

10.16cm

Copper Beeds

PropyleneGlycol

Page 7: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

• Concrete Encasement and Fabrication– 36.83-cm-diameter mold with a concrete density of 1495 kg/m3

– Fabrication process

7

R2=14.0cm R1=12

.5cm

N

SLevel Bubble

R3=18.415cm

R2=14.0cm R1=12

.5cm

N

S

Level Bubble

R3=18.415cm Two Stacked N42 MagnetOne N45 Magnet

DESIGN AND PROTOTYPING

2. Place APUS inside a mold

1. Mix fiber concrete

3. Fill the mold with concrete

4. Cure the concrete in water for 14 days

Page 8: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

LOCALIZATION AND EFFECTIVENESS

• Ambient Magnetic Field at Q Station in Absolute XYZ Coordinate System

Ambient Ferromagnetic Substances BA, Ambient Magnetic Field Vector

at a Measurement station, Q (X,Y,Z) Three components of BA:

BA, measured by magnetometer θ (0, π) and φ θ (0, 2π) measured

by an orientation device

8

cos cos XA AB B

cos sin YA AB B

sinZA AB B

Page 9: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

LOCALIZATION AND EFFECTIVENESS

• Total Magnetic Field at Q Station in Absolute XYZ Coordinate System

Total Magnetic field intensity:

B = B (BA, θ, φ, k, XM, YM, ZM, α, β, γ, X, Y, Z) at a Measurement station, Q (X,Y,Z)

Given k, θ , φ and BA at each (X, Y, Z),B = B (XM, YM, ZM, α, β, γ)

Magnet’s effect:

9

2 2 2( ) ( ) ( ) XM XA YM YA ZM ZAB B B B B B B

5

1 2 2 2 5

5

3 /(2 ) /

3 /

TXM

YM

ZM

k xy rBB k y x z rB k zy r

cos cos cos sin sinsin sin cos cos sin sin sin sin cos cos sin coscos sin cos sin sin cos sin sin sin cos cos cos

T

Page 10: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

LOCALIZATION AND EFFECTIVENESS

• Localization Algorithm– Unknown Orientation

SRSS error between predicted intensity and the measured intensity ,

– Known Orientation (α=0, β=0, and γ=0)

10

( ) ( ) 2

1( , , Z , , , ) [ ]

i

nP M

M M M ii

J X Y B B

( , ,Z , , , ) 0M M M

M

J X YX

( , ,Z , , , ) 0M M M

M

J X YY

( , ,Z , , , ) 0M M M

M

J X YZ

( , , Z , , , ) 0M M MJ X Y

( , , Z , , , ) 0M M MJ X Y

( , , Z , , , ) 0M M MJ X Y

( )i

PB ( )MiB

( , ,Z ) 0M M M

M

J X YX

( , ,Z ) 0M M M

M

J X YY

( , ,Z ) 0M M M

M

J X YZ

( ) ( ) 2

1

( , , Z ) [ ]i

nP M

M M M ii

J X Y B B

Page 11: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

LOCALIZATION AND EFFECTIVENESS

• Experimental Validation Procedure– Before a smart rock is deployed, the ambient magnetic

field of the Earth and environmental effects was evaluated at each measurement point either by a scalar magnetometer and an orientation device or by a three-component magnetometer.

– After the smart rock is deployed, the total magnetic field of the magnet and the ambient field was measured with the same magnetometer at various points around the smart rock.

– The coordinates of measurement points were surveyed by a total station – a survey instrument.

– The intensity and coordinate measurements at six or more stations allowed the determination of the smart rock’s location.

11

Page 12: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

LOCALIZATION AND EFFECTIVENESS• Experimental Validation

– Test Setup A scour experienced pier Three Locations M1, M2, and M3

for AOS and APSS Total 34 measurement points Total Station at Point B to

survey coordinates of three smart rocks' locations and 34 sensor positions

MFDD was set at the 34 pointsto measure the angles ofθ and φ

12

  

1

2 3

4

56

78 9

10

1112

131415

1617

18

19

20

21

22

23

2425

26

27

28 29

30

3132

33

34

M1

M2

M3

B X(W)

Y(S)

Pier

A

C

Page 13: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

LOCALIZATION AND EFFECTIVENESS

• Experimental Validation– Test Results (M3APSS)

13

Location of Sensor Head X(m) Y(m) Z(m) Bi(M) (nT)

P9 10.940 -2.065 -0.657 52766P11 11.991 -3.082 -0.558 52422P12 10.670 -3.162 -0.670 55203… … … … …

P20 9.822 -2.717 -0.635 55164P21 9.413 -3.877 -0.748 63734P23 8.313 -4.215 -0.501 59204P25 7.750 -4.591 -0.858 58350P26 7.315 -4.055 -0.726 56087P27 8.043 -3.046 -0.553 55198

Predicted APSS Location M3APSS 9.527 -5.520 -1.850

N/AMeasured APSS Location M3APSS 9.576 -5.584 -1.822

Location Prediction Error for M3APSS -0.049 0.064 -0.028

SRSS Error in Coordinate 0.085m

Page 14: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

LOCALIZATION AND EFFECTIVENESS

• Experimental Validation– Test Results (M3AOS)

14

Location of Sensor Head X(m) Y(m) Z(m) Bi(M) (nT)

P9 10.940  ‐2.065  ‐0.667  52651 P12 10.670  ‐3.162  ‐0.680  54660 P13 12.031  ‐4.399  ‐0.745  52095 … … … … …P20 9.822  ‐2.717  ‐0.645  54929 P21 9.413  ‐3.877  ‐0.758  62508 P23 8.313  ‐4.215  ‐0.511  59364 P25 7.750  ‐4.591  ‐0.868  59523 P26 7.315  ‐4.055  ‐0.736  56642 P27 8.043  ‐3.046  ‐0.563  55399 

Predicted AOS Location M3AOS 9.514  ‐5.519  ‐1.860 

N/AMeasured AOS Location M3AOS 9.576  ‐5.584  ‐1.837 

Location Prediction Error for M3AOS ‐0.062 0.065 ‐0.023

SRSS Error in Coordinate  0.093m

Page 15: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

Comp. 2

Comp. 1

Comp. 3

Comp. 4

xy

z

Comp. 5

FIELD TEST DEMONSTRATION

• Test “Crane” Design– Lightweight, easy installation, rapid assembling, and cost effectiveness– Minimal wind-induced disturbance– Non-magnetic materials in proximity to the sensor

15

Prism 2Prism 1

Prism 3Sensor

Page 16: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test “Crane” Prototype/Product

16

Page 17: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Three-axis Flux Digital Magnetometer (STL)

– Manufactured by Systemtechnic Ludwig GmBH, Konstanz, Germany– STL DM050: measure X-, Y- and Z- component and total field– 50 meters Coax cable for power and data transmission– Interface : Coax Ethernet Hub for connection of up to 3 magnetometers– STL GradMag software installed in a Notebook for full controlling of

measurement, data acquisition and viewer– Field range: ±1,000,000nT– Resolution: 0.002nT– Maximum sample rate: 10 kHz

17

Page 18: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• HWY1 Waddell Creek Bridge, CA

18

Page 19: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Setup and Layout on Bridge Deck • Test Procedure

– Set a Cartesian Coordinate System– Ambient Magnetic Field Measurement– Deployment of Smart Rocks– Measurement of the Total Magnetic Field

• Results from Bridge Deck Measurements

19

Page 20: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Measurement Station Layout on Bridge Deck

20

M esh 4

Z7

Y 1 Y 2 Y 3 Y 4

Z1Z2Z3Z4Z5Z6Z7

Bridge D eck

Z1

Total StationA butm ent 1 Bent 2

San Fransisco

Z2Z3Z4Z5

Y

Z

SR2

Y 2

SR1

Y 1 Y 4 Y 5

Santa Cruz

Y 3

Z6

M esh 2

M esh 1M esh 3

SR3

SR2 SR1SR3

Total Station

Y

X

X 4X 3X 2X 1

Y 2Y 1 Y 4 Y 5Y 3Y 2Y 1 Y 4Y 3

X 4X 3X 2X 1

Page 21: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Setup and Layout

21

Prism 2Prism 1

Prism 3Sensor

Page 22: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Set up and Layout

– Measurement Points Layout on the Bridge Deck

22

Page 23: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Set a Cartesian coordinate system O-XY Point A- Permanent Benchmark Total station at Point A to set coordinate system

as A-xy Survey Point B and O under

A-xy coordinate system Set up total station at Point O to

determine the final coordinateO-XY

23

B

Abutment1

Bent 2

Bent 3

Bent 4

Abutment 5Total Station

Y

X

River Flow

Sant

a C

ruz

San

Fran

sisc

o

O

A-Benchmark

Cx

y

Page 24: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Measure the Ambient Magnetic Field Magnetic field from Earth and ambient ferromagnetic constructions Conduct before deployment of the smart rock Abutment 1 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, X3, X4 along X

axis, and Z1,Z2, ..., Z7 along Z axis, total 84 points. Bent 2 Measurement: Y1, Y3, Y5 along Y axis, X1, X2, X3, X4 along X axis,

and Z1,Z2, ..., Z7 along Z axis, total 84 points. Measurement points sequence:

24

Y1

X1

X2

X3

X4

Z1 to Z7

Z7 to Z1

Z1 to Z7

Z7 to Z1

Y2orY3

X1

X2

X3

X4

Z1 to Z7

Z7 to Z1

Z1 to Z7

Z7 to Z1

X1

X2

X3

X4

Z1 to Z7

Z7 to Z1

Z1 to Z7

Z7 to Z1

Y3orY5

Page 25: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Deploy Three Smart Rocks Smart Rock 1 (SR1) & Smart Rock 2 (SR2) around Bent 2 Smart Rock 3 (SR3) around Abutment 1

25

BSR3

SR2

SR1

Abutment1

Bent 2

Bent 3

Bent 4

Abutment 5Total Station

Y

X

River Flow

Sant

a C

ruz

San

Fran

sisc

o

SR3SR3

Page 26: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Deploy Three Smart Rocks

26

SR1SR1

SR2SR2

Page 27: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Measure the Total Magnetic Field Intensity Magnetic field from both smart rock and AMF. Abutment 1 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, X3, X4 along X

axis, and Z1,Z2, ..., Z6 along Z axis, total 72 points. Bent 2 Measurement: Y1, Y3, Y5 along Y axis, X1, X2, X3, X4 along X axis,

and Z1,Z2, ..., Z7 along Z axis, total 84 points. Measurement points sequence same as that of AMF.

27

SR3Y1X1Z7SR3

Y1X1Z7

SR3Y1X4Z1SR3

Y1X4Z1

Page 28: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Results

– Coordinates and Intensities at Measurement Points around Abutment 1

28

Measurement Points Coordinate (m)

N42 Magnet Factor

(nT.m3)AMF Intensity (nT) SR3 & AMF Intensity (nT)

Xi Yi Zi K BXA BYA BZA BA BX BY BZ B

Y1X2Z1 0.656 42.259 -0.942 86521 -18675 -9823 -40007 45230 -17485 -6252 -41897 45828 … … … … … … … … … … … … …Z6 0.768 42.345 0.573 86521 -18661 -9888 -40226 45433 -19943 -7237 -40802 45988

Y1X3Z1 1.693 42.293 -1.141 86521 -18243 -9707 -39974 45000 -13343 -8111 -48963 51393 … … … … … … … … … … … … …Z6 1.736 42.275 0.366 86521 -18878 -9675 -40509 45727 -19475 -7190 -42452 47256

Y1X4Z1 2.341 42.387 -1.085 86521 -16406 -10804 -40258 44795 -13358 -11669 -54780 57580 … … … … … … … … … … … … …Z6 2.444 42.329 0.319 86521 -17707 -10784 -41228 46147 -18941 -7994 -44345 48879

Y2X2 … … … … … … … … … … … … …Y2X3 … … … … … … … … … … … … …Y2X4 … … … … … … … … … … … … …Y3X2 … … … … … … … … … … … … …Y3X3 … … … … … … … … … … … … …Y3X4 … … … … … … … … … … … … …

Page 29: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Results

– Localization of SR3

29

Point Name Measurement Points Coordinate (m)

N42 Magnet Factor

(nT.m3)

AMF Intensity (nT) SR3 & AMF Intensity (nT)

Xi Yi Zi K BXA BYA BZA B

Y1X2Z1 0.656 42.259 -0.942 86521 -18675 -9823 -40007 45828 … … … … … … … … …Z6 0.768 42.345 0.573 86521 -18661 -9888 -40226 45988

Y1X3Z1 1.693 42.293 -1.141 86521 -18243 -9707 -39974 51393 … … … … … … … … …Z6 1.736 42.275 0.366 86521 -18878 -9675 -40509 47256

Y1X4Z1 2.341 42.387 -1.085 86521 -16406 -10804 -40258 57580 … … … … … … … … …Z6 2.444 42.329 0.319 86521 -17707 -10784 -41228 48879

… … … … … … … … … …Predicted SR3 Location 2.789 41.302 -2.823

NAMeasured SR3 Location 2.714 41.104 -2.527

Location Prediction Error for SR3 0.075 0.198 -0.296

SRSS Error in Coordinate 0.364

Page 30: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• I-44 Roubidoux Ceek Bridge, MO (Bent 7 downstream)

30

Page 31: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Measurement Station Layout on Bridge Deck

31

Bridge Deck

Total Station

Bent 8 Bent 7

Springfield

Z

Rolla

6.0m

1.8m Mesh 2

Mesh 1

Total Station

X2

X1

Y1 Y3Y20.

4m

X2

X1

Bent 6

Y

X

Y

Z1Z2Z3Z4Z5Z6Z7

Z1Z2Z3Z4Z5Z6Z7

O

O

1.8m

2.3m

SR1

SR1

Z1Z2Z3Z4Z5

Y1

Z6Z7

Y2 Y3

Page 32: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Setup and Layout

32

Page 33: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Set up and Layout– Measurement Points Layout on the Bridge Deck

33

Page 34: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Procedure– Set a Cartesian coordinate system O-XY

34

B

Total Station

Y

X

Bent 6

Bent 7

Bent 8

River FlowSp

ringf

ield

Rol

la

A-Benchmark

O

Page 35: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Ambient Magnetic Field Measurement Magnetic field from Earth and ambient ferromagnetic constructions Conduct before deployment of the smart rock Bent 7 Measurement: Y1, Y2, Y3 along Y axis, X1, X2 along X axis, and

Z1,Z2, ..., Z7 along Z axis, total 42 points. Measurement points sequence:

35

Y1X1

X2

Z1 to Z7

Z7 to Z1Y2 Y3

X1

X2

Z1 to Z7

Z7 to Z1

X1

X2

Z1 to Z7

Z7 to Z1

Page 36: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Deployment of Smart Rocks Smart Rock 1(SR1) around Bent 7

36

B

Total Station

Y

X

River Flow

Sprin

gfie

ldR

olla

SR1

A-Benchmark

O

Bent 6

Bent 7

Bent 8

Page 37: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Measure the Total Magnetic Field Intensity Magnetic field from both smart rock and AMF. Bent 7 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, along X axis, and

Z1,Z2, ..., Z7 along Z axis, total 42 points. Measurement points sequence same as that of AMF.

37

Page 38: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Results

– Coordinates and Intensities at Measurement Points around Bent 7

38

Measurement Points Coordinate (m)

N42 Magnet Factor

(nT.m3)AMF Intensity (nT) SR3 & AMF Intensity (nT)

Xi Yi Zi K BXA BYA BZA BA BX BY BZ B

Y1X1Z1 3.854 21.793 -1.002 86521 22781 1016 -48909 53964 21379 -827 -48734 53224

… … … … … … … … … … … … …Z7 3.834 21.554 0.795 86521 22631 2399 -48778 53826 22073 253 -48957 53703

Y1X2Z1 2.068 21.869 -0.993 86521 22776 1666 -48933 53999 18988 6554 -49341 53274

… … … … … … … … … … … … …Z7 2.083 21.606 0.781 86521 22496 3237 -49477 54447 21054 7653 -50118 54896

Y2X1 … … … … … … … … … … … … …Y2X2 … … … … … … … … … … … … …Y3X1 … … … … … … … … … … … … …Y3X2 … … … … … … … … … … … … …

Page 39: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Results– Localization of SR1

39

XM/m YM/m ZM/m

Predicted SR1 Location 0.063 23.491 -3.032

Measured SR1 Location 0.089 23.235 -3.042

Location Prediction Error for SR1 0.026 0.256 -0.010

SRSS Error in Coordinate 0.258m

Page 40: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• US63 Gasconade River Bridge, MO (Bent 4 upstream)

40

Page 41: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Measurement Station Layout on Bridge Deck

41

Bridge Deck

Total Station

Bent 4

Rolla

Z

Jefferson City

9.0m

2.0m Mesh 2

Mesh 1

Total Station

X2

X1

Y1 Y3Y20.

4m

X2

X1

Bent 5

Y

X

Y

2.0m

1.8mSR1

Z1Z2Z3Z4Z5

Y1

Z6Z7

Y2 Y3

Z1Z2Z3Z4Z5Z6Z7

Z1Z2Z3Z4Z5Z6Z7

O

O

Bent 3

Bent 2

Page 42: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Setup and Layout

42

Page 43: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Set up and Layout– Measurement Points Layout on the Bridge Deck

43

Page 44: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Procedure– Set a Cartesian coordinate system O-XY

44

OX

Y

Bent 5

Bent 4

Bent 3

Bent 2

A-Benchmark

B

Rol

laJe

ffer

son

city

River Flow

Page 45: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Ambient Magnetic Field Measurement Magnetic field from Earth and ambient ferromagnetic constructions Conduct before deployment of the smart rock Bent 4 Measurement: Y1, Y2, Y3 along Y axis, X1, X2 along X axis, and

Z1,Z2, ..., Z7 along Z axis, total 42 points. Measurement points sequence:

45

X2Y3Y2Y1

Z1 to Z7Z1 to Z7Z1 to Z7

X1Y1Y2Y3

Z1 to Z7Z1 to Z7Z1 to Z7

Page 46: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Procedure

– Deployment of Smart Rocks Smart Rock 1(SR1) around Bent 4

46

SR1

OX

Y

Bent 5

Bent 4

Bent 3

Bent 2

A-Benchmark

B

Rol

laJe

ffer

son

city

River Flow

Page 47: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Procedure– Measure the Total Magnetic Field Intensity

Magnetic field from both smart rock and AMF. Bent 7 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, along X axis, and

Z1,Z2, ..., Z7 along Z axis, total 42 points. Measurement points sequence same as that of AMF.

47

X1Y1Y2Y3

Z1 to Z7Z1 to Z7Z1 to Z7

X2Y1Y2Y3

Z1 to Z7Z1 to Z7Z1 to Z7

Page 48: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION• Test Results

– Coordinates and Intensities at Measurement Points around Bent 7

48

Measurement Points Coordinate (m)

N45 Magnet Factor

(nT.m3)

AMF Intensity (nT) SR3 & AMF Intensity (nT)

Xi Yi Zi K BXA BYA BZA BA BX BY BZ B

Y1X1Z1 2.931 63.700 -11.014 101770 -16429 -6508 -47393 50580 -15752 -5836 -47896 50756 … … … … … … … … … … … … …Z7 3.016 63.526 -9.198 101770 -16125 -5723 -47231 50235 -15817 -5403 -47516 50370

Y1X2Z1 2.949 68.191 -10.988 101770 -17208 -7072 -46566 50145 -16512 -7637 -46998 50397 … … … … … … … … … … … … …Z7 2.895 67.757 -9.221 101770 -17613 -6984 -46113 49854 -17124 -5446 -46719 50056

Y2X1 … … … … … … … … … … … … …Y2X2 … … … … … … … … … … … … …Y3X1 … … … … … … … … … … … … …Y3X2 … … … … … … … … … … … … …

Page 49: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

FIELD TEST DEMONSTRATION

• Test Results– Localization of SR1– The ground truth of the coordinate is SR1 was not

measured due to the fast water current.– The predicted location is reasonable according to the

relative position to the measurement points.

49

XM/m YM/m ZM/m

Predicted SR1 Location 0.460 68.168 -17.002

Page 50: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

CONCLUDING REMARKS

• The APUS smart rocks have been deployed at three sites of the Waddell Creek Bridge, CA, the Roubidoux Creek Bridge, MO, and the Gasconade River Bridge, MO.

• The AOS, APSS, and APUS smart rock localization algorithms without and with knowing the magnet polarization in a priorihave been validated at the three sites, all giving satisfactory results (<< 0.5 m).

• The test crane can be set on a trailer and moved as needed in application.

50

Page 51: SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF …web.mst.edu/~gchen/ProjectWebsite/projMeetings... · THE SMART ROCK MONITORING CONCEPT • Two Application Scenarios – Scour

ACKNOWLEDGEMENTS• Financial support for this study was provided by the U.S.

Department of Transportation Office of the Assistant Secretary for Research and Technology (USDOT/OST-R) under Cooperative Agreement No. OASRTRS-14-H-MST and by Missouri Department of Transportation (in-kind).The views, opinions, findings and conclusions reflected in this presentation are the responsibility of the presenter only and do not represent the official policy or position of the USDOT/OST-R or any State or other entity.

• Thanks are due to California and Missouri Departments of Transportation for their assistance in traffic control during field tests.

• Thanks are also due to graduate students (Yan Tang, Zhaochao Li, Yizheng Chen, Steve Guo, Fan Liang), senior specialist (Jason Cox), and engineering technicians (John Bullock, Greg Leckrone, Gary Abbott, and Brian Swift).

51