Small Animal Imaging - Springer978-3-642-12945-2...and regulations and therefore free for general...

15
Small Animal Imaging

Transcript of Small Animal Imaging - Springer978-3-642-12945-2...and regulations and therefore free for general...

Small Animal Imaging

Fabian Kiessling • Bernd J. Pichler (Editors)

Peter Hauff (Co-Editor)

Small Animal Imaging

Basics and Practical Guide

EditorsProf. Dr. Fabian KiesslingChair of Experimental Molecular ImagingUniversity of Aachen (RWTH)Pauwelsstraße 2052074 [email protected]

Prof. Dr. Bernd J. PichlerLaboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-FoundationDepartment of RadiologyEberhard Karls University of TübingenRöntgenweg 1372076 Tü[email protected]

Co-EditorPD Dr. Peter HauffBayer Schering Pharma AGGlobal Drug DiscoveryTRG Diagnostic ImagingMüllerstr. 17813353 [email protected]

ISBN 978-3-642-12944-5 e-ISBN 978-3-642-12945-2DOI 10.1007/978-3-642-12945-2Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010936069

© Springer-Verlag Berlin Heidelberg 2011This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.Product liability: The publishers cannot guarantee the accuracy of any information about dosage and appli-cation contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Cover design: eStudioCalamar, Figueres/Berlin

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

v

During the last decade there have been tremendous advances in molecular biology and many important regulatory pathways of diseases have been identified. Along with these, genomics and proteomics are currently being implemented as important tools in the clinical workflow. On the other hand, there has been significant progress in non-invasive imaging technologies. Nowadays it is possible to scan an entire patient by CT and MRI with high spatial resolution and with exquisite tissue contrast within seconds or minutes. Contrast agents can be applied and their accumulation monitored dynamically to gain functional data about tissue vascularisation, perfusion and permeability. In addition, imaging modalities that are highly sensitive to admin-istered radiolabelled probes like PET and SPECT enable us to elucidate changes in metabolism and proliferation as well as in molecular profiles of tissues with high sensitivity.

Besides these clinically established methods there are novel promising imaging tools and applications which are currently in the stage of development. These include, for example, molecular ultrasound, high field MRI as well as photoacoustic and opti-cal imaging.

Beyond this, imaging modalities have been developed further to such a high degree that they are now able to be applied to very small animals like mice and rats for diag-nostic purposes. Current dedicated small animal imaging modalities allow the in vivo assessment of morphological structures or functional, metabolic and molecular pro-cesses in mice and rats as in humans.

Utilizing these tools in the preclinical arena can also significantly improve the identification and development of novel diagnostic or therapeutic drugs and facilitate the translation of preclinical findings to the clinics and vice versa. Important surrogate markers and imaging strategies can be developed and tested along with novel thera-peutic drugs. Longitudinal data can be obtained from the same animal, which means that the animal can serve as its own control. In this manner the disease progression or the pharmacological effect of a drug can be monitored much more effectively. As a result high statistical power can be achieved with a reduced number of animals, which lowers costs and recognizes ethical considerations on animal protection.

Non invasive imaging also has the potential to identify therapeutic drugs with limited effectiveness at a very early stage of its development. Therefore it can be used as a preclinical screening tool to boost the clinical drug success rate of currently one in five to, for example, one in three which would significantly lower the development cost for a new drug.

Nevertheless, although there is no doubt about the potentially beneficial role of small animal imaging in preclinical research it has not been broadly established.

Preface

vi Preface

Many imaging applications have never exceeded the Proof of Principle status and are so time consuming that it is not realistic to use them in preclinical research routinely. This often goes in line with limited data reproducibility. Besides this, in many publi-cations non-invasive imaging acts as an appealing embellishment without having evi-dent impact on its scientific gist. These current obstacles for the implementation of non-invasive small animal imaging are aggravated by failing studies where either a suboptimal imaging modality or contrast was chosen or where failures were made in statistical study planning and animal handling.

Thus, this book aims to be a guide for all who intend to implement small animal imaging in their routine research. It provides concrete hints on how an effective small animal unit can be built up, how the personnel should be trained, where pitfalls in study planning are and which imaging modalities should be used for different pur-poses. Also, basic problems like the choice of the correct anesthesia and its influence on animal physiology as well as techniques of catheterization for drug administration are considered. Finally this book specifically serves as a guide for the correct and comprehensive quantification and interpretation of imaging data.

We very much hope that this book will be of significant value for our readers in their daily work and we wish every success in the exciting and creative field of pre-clinical imaging.

Aachen, Germany Fabian KiesslingTuebingen, Germany Bernd J. PichlerBerlin, Germany Peter Hauff

vii

Part I Role of Small Animal Imaging

1 Noninvasive Imaging for Supporting Basic Research. . . . . . . . . . . . . . 3Pat Zanzonico

2 Non-Invasive Imaging in the Pharmaceutical Industry . . . . . . . . . . . . 17Sally-Ann Ricketts, Paul D. Hockings, and John C. Waterton

3 How to Set Up a Small Animal Imaging Unit . . . . . . . . . . . . . . . . . . . . 29David Stout

4 Noninvasive Small Rodent Imaging: Significance for the 3R Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Nicolau Beckmann and Peter Maier

Part II Study Planning and Animal Preparation

5 Institutional Preconditions for Small Animal Imaging . . . . . . . . . . . . 61René H. Tolba

6 Statistical Considerations for Animal Imaging Studies . . . . . . . . . . . . 69Hannes-Friedrich Ulbrich

7 Animal Anesthesia and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Marc Hein, Anna B. Roehl, and René H. Tolba

8 Drug Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Klaus Nebendahl, and Peter Hauff

Part III Imaging Modalities and Probes

9 How to Choose the Right Imaging Modality . . . . . . . . . . . . . . . . . . . . . 119Fabian Kiessling, Bernd J. Pichler, and Peter Hauff

10 X-Ray and X-Ray-CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Willi A. Kalender, Paul Deak, Klaus Engelke, and Marek Karolczak

11 CT Contrast Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Hubertus Pietsch

Contents

viii Contents

12 Small Animal Magnetic Resonance Imaging: Basic Principles, Instrumentation and Practical Issue . . . . . . . . . . . . . 151Peter Jakob

13 MR Contrast Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Eliana Gianolio, Alessandra Viale, Daniela Delli Castelli, and Silvio Aime

14 MR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195Markus Becker

15 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Stuart Foster and Catherine Theodoropoulos

16 Ultrasound Contrast Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219Michel Schneider

17 PET and SPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Sibylle I. Ziegler

18 Radiotracer I: Standard Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Walter Mier and Uwe Haberkorn

19 Radiotracer II: Peptide-Based Radiopharmaceuticals. . . . . . . . . . . . . 247Roland Haubner and Clemens Decristoforo

20 Optical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267Ralf B. Schulz and Vasilis Ntziachristos

21 Optical Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Kai Licha

22 Multi-modal Imaging and Image Fusion . . . . . . . . . . . . . . . . . . . . . . . . 293Vesna Sossi

Part IV Ex Vivo Validation Methods

23 Ex Vivo and In Vitro Cross Calibration Methods. . . . . . . . . . . . . . . . . 317Albertine Dubois, Julien Dauguet, and Thierry Delzescaux

24 In Vitro Methods for In Vivo Quantitation of PET and SPECT Imaging Probes: Autoradiography and Gamma Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347David Stout

Part V Data Postprocessing

25 Qualitative and Quantitative Data Analysis . . . . . . . . . . . . . . . . . . . . . 363Felix Gremse and Volkmar Schulz

26 Guidelines for Nuclear Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 379Martin S. Judenhofer, Stefan Wiehr, Damaris Kukuk, Kristina Fischer, and Bernd J. Pichler

Contents ix

27 Kinetic Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387Jörg van den Hoff

28 Data Documentation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405Sönke H. Bartling and Wolfhard Semmler

Part VI Special Applications

29 Imaging in Developmental Biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417Katrien Vandoorne, Stav Sapoznik, Tal Raz, Inbal Biton, and Michal Neeman

30 Imaging in Gynecology Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437Matthias W. Laschke and Michael D. Menger

31 Imaging in Cardiovascular Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 449Michael Schäfers, Klaus Tiemann, Michael Kuhlmann, Lars Stegger, Klaus Schäfers, and Sven Hermann

32 Imaging in Neurology Research I: Neurooncology . . . . . . . . . . . . . . . . 473Yannic Waerzeggers, Parisa Monfared, Alexandra Winkeler, Thomas Viel, and Andreas H. Jacobs

33 Imaging in Neurology Research II: PET Imaging of CNS Disorders . 499Gjermund Henriksen and Alexander Drzezga

34 Imaging in Neurology Research III: Focus on Neurotransmitter Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 515Wynne K. Schiffer

35 Imaging in Oncology Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543Wolfgang A. Weber and Fabian Kiessling

36 Imaging in Immunology Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565Jason T. Lee, Evan D. Nair-Gill, Brian A. Rabinovich, Caius G. Radu, and Owen N. Witte

Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

xi

List of Abbreviations

µCT Micro-computed tomographyµMRI Micro-magnetic resonance imagingAAALAC Association for Assessment and Accreditation of

Laboratory Animal CareAC Air conditioningACH Air changes per hourADA American Disabilities ActADME Adsorption, distribution, metabolization and excretionALARA As low as reasonably achievableALS Amyotrophic lateral sclerosisAMPH AmphetamineAMPT Alpha-methyl-para-tyrosineAOI Area of interestAPCs Antigen presenting cellsAPD Avalanche photodiodeAPP Amyloid precursor proteinASL Arterial spin labelingBAC Bacterial artificial chromosomeBAL Bronchoavealoar lavageBBB Blood–brain barrierBCNU 1,,3-bis(2-chloroethyl)-1-nitrosoureaBET Big endothelinBGO Bismuth germinateBLI Bioluminescence imagingBMD Bone mineral densityBMS Bulk magnetic susceptibilityBOLD Blood oxygenation level dependentBP Binding potentialBPNP Bismuth sulfide polymer coatingBSL Bio safety levelCA Contrast agentsCAR Coxsackie and adenovirus receptor

xii List of Abbreviations

CCAC Canadian council of animal careCCD Charge coupled deviceCEA CarcinoembryonicantigenCEST Chemical exchange saturation transferCG Chrysamine GCM Contrast mediaCMC CarboxymethylcelluloseCMOS Complementary metal oxide semiconductorCNR Contrast-to-noise-ratioCNS Central nervous systemCOMT Catechol-O-methyltransferaseCOPD Chronic obstructive pulmonary diseaseCOV Coefficient of variationCR Congo redCRF Corticotropin releasing factorCSI Chemical shift imagingCSS Cage changing stationCT Computed tomographyCTDI CT dose indexCTLS Cytotoxic T lymphocytesDCE Dynamic contrast enhancedDCIS Ductal carcinoma in situDCT Discrete cosine transformDECT Dual energy CTDFO DesferoxamineDICOM Digital imaging and communicationsDILI Drug induced liver injuryDLB Dementia with lewy bodiesDLNs Draining lymph nodesDMEM Dulbecco’s modified Eagle mediumDNP Dynamic nuclear polarizationDOI Depth of interactionDOT Diffuse optical tomographyDOTA 1,4,7,10-tetraazacyclododecane-N,N¢,N,

N¢-tetraacetic acidDOTATOC DOTA-Tyr3-octreotideDSA Digital subtraction angiographyDTI Diffusion tensor imagingDTPA Diethylenetriamine-tetraacetic acidDV Distribution volumeDVR Distribution volume ratioDWI Diffusion-weighted imaging

List of Abbreviations xiii

DXA Dual-energy X-ray absorptiometryEAE Experimental autoimmune encephalomyelitisEB-CCD Electron-bombarded CCDEBV Epstein–Barr virusECF Extracellular fluidECG ElectrocardiographyEDDA Ethylendiamin-N,N`diacetic acidEGF Epidermal growth factorEGFR Epidermal growth factor receptorEGR Epidermal growth factorEHS Environmental health and safetyEM ElectromagneticEMCL Extramyocellular lipidsEPSI Echo planar spectroscopic imagingER Eendoplasmic reticulumETS European convention for the protection of vertebrate

animals used for experimental and other scientific purpose

FACS Fluorescence-activated cell sortingFAZA Fluoroazomycin arabinosideFBP Filtered back projectionFDG FluorodeoxyglucoseFDHT 16beta-18F-fluoro-5alpha-dihydrotestosteronefDOT Fluorescence DOTFES Fluorine-18 fluoroestradiolFFD Free form deformationFID Free induction decayFITC Fluorescein-isothiocyanateFLT 18F-3¢-deoxy-3¢-fluorothymidineFMISO Fluorine-18 labeled fluoromisonidazolefMRI Functional MRIFMT Fluorescence-mediated molecular tomographyFMT l-[3-18F]fluoro-a-methyl tyrosineFOV Field-of-viewFSH Follicle stimulating hormoneFTLD Frontotemporal lobar degenerationFWHM Full-width at half-maximumGd-DTPA Gadolinium-diethylenetriaminepentaacetateGEM Genetically engineered mouseGFP Green fluorescent proteinGIST Gastrointestinal stromal tumorGLUT-1 Glucose transporter 1

xiv List of Abbreviations

GSO Germanate oxyorthosilicateGV-SOLAS Society of laboratory animalsH&E Hematoxylin and eosinHFC High fat/high cholesterolHK-II Hexokinase IIhNET Human norepinephrine transporterhNIS Human sodium iodide symporterHPGe High purity germaniumHPLC High-pressure liquid chromatographyHRE Hypoxia-response elementHSA Human serum albuminHSP90 Heat shock protein 90HSV-tk Herpes simplex thymidine kinaseHTOS High throughput organic synthesisHU Hounsfield unitHYNIC 2-hydrazinonicotinic acidIACUC Institutional animal care and use committeeIAPs Inhibitors of apoptosis proteinsIATA International air transport association guidelinesICAM-1 Intercellular adhesion molecule-1ICCD Intensified CCDICG Indocyanine GreenICMIC In Vivo Cellular and Molecular Imaging CenterILAR Institute for Laboratory Animal ResearchIMCL intramyocellular lipidsIMT l-[3-123I]iodo-a-methyl tyrosineISIS Image-selected in vivo spectroscopyIT Information technologyIVC Individually ventilated cagesLGSO Lutetium germanate oxyorthosilicateLH Luteinizing hormoneLN Lymph nodeLO Lead optimizationLPS LipopolysaccharideMAC Minimum alveolar concentrationMAG3 MercaptoacetyltriglycineMAP Maximum a posterioriMAR Micro-autoradiographyMB MicrobubbleMCAo Middle cerebral artery occlusionMCP Microchannel plateMEMRI Manganese-enhanced MRI

List of Abbreviations xv

METH MethamphetamineMHC Major histocompatibility complexMI Mechanical IndexMLEM Maximum likelihood expectation maximizationMMP Matrix metallo proteinaseMRI Magnetic resonance imagingMRM MR microscopymRNA Messenger ribonucleic acidMRS Magnetic resonance spectroscopyMRSI Magnetic resonance spectroscopic imagingMSA Multiple system atrophyMSCT Multislice/dual source computed tomographyMTP Medial tibial plateauMTT Mean transit timeNAS Network attached storageNCI National Cancer InstituteNDT Nondestructive testingNET Norepinephrine transporterNFAT Nuclear factor of activated T cellsNHL Non-Hodgkin’s lymphomaNIBIB National Institute for Biomedical Imaging and Bioen-

gineeringNIH National Institutes of HealthNIR Near-infraredNIS Sodium iodide symporterNK Natural killerNMRS Nuclear magnetic resonance spectroscopyNMV Net magnetization vectorNOTA 1,4,7- triazacyclononane-1,4,7-triacetic acidNPC Neural progenitor cellNSC Neural stem cellNSP Nucleoside salvage pathwayOAT Optoacoustic tomographyOCT Optical coherence tomographyOI Optical imagingOPO Optical parametric oscillatorOPT Optical projection tomographyOSEM Ordered subsets expectation maximizationOT Optical tomographyOVA OvalbuminPAT Photoacoustic tomographyPBBR Pheripheral benzodiazepine receptor

xvi List of Abbreviations

PBS Phosphate buffered salinePD Proton densityPDGF Platelet-derived growth factorPDH Pyruvate dehydrogenasePEG Polyethylene glycolPEPE Perfluoropolyether nanoparticlePET Positron emission tomographyPFC PerfluorocarbonPgp P-glycoproteinPHIP Para-hydrogen induced polarizationPKC Protein kinase CPLC Phospholipase CPMT Photomultiplier tubePnAO Propylenediamine-dioximePPE Porcine pancreatic elastasePRESS Point resolved spectroscopyPS PhosphatidylserinePSCA Prostate stem cell antigenPSF Point spread functionPSMA Prostate specific membrane antigenPSPMTs Position sensitive PMTsPTX Pertussis toxinPVE Partial volume effectQDs Quantum dotsQM Quantum mechanicsQWBA Quantitative whole-body autoradiographyRAID Redundant drive arrayrBV Relative blood volumeRC Recovery coefficientrCBF Regional cerebral blood flowREM Resource equation methodRES Reticuloendothelial systemRF Radiowave FrequencyRFP Red fluorescent proteinRGD Arginine-glycine-aspartateROI Region-of-interestRSO Radiation safety officesRTK Receptor tyrosine kinaseSA Serum albuminSAA Sugar amino acidsSAI Small animal imagingSAIRP Small-animal imaging research program

List of Abbreviations xvii

SAR Structure activity relationshipSI Spectroscopic imagingsiPM Silicon photomultiplierSNR Signal-to-noise ratioSOP Standard operating proceduresSPAQ Sensitive particle acoustic quantificationSPECT Single photon emission computed tomographySPIO Superparamagnetic iron oxideSPM Statistical parametric mappingSR Synchrotron radiationSR Shift reagentSRTM Simplified reference tissue modelSSD Sum of the squared intensity differencesST Saturation transferSTEAM Stimulated echo acquisition modeSUV Standardized uptake valueTAC Thoracal Aortic ConstrictionTAC Time activity curveTCA Tricarboxylic acid cycleTCEP TriscarboxyethylphosphineTCR T-cell receptorTDI Tissue-Doppler imagingTE Echo timeTETA 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid3D Three-dimension(al)TK1 Thymidine kinase-1TKIs TK inhibitorsTLD Thermoluminescent dosimeterTRAIL Tumour necrosis factor-related apoptosis-inducing

ligandTSTU Tetramethyluronium tetrafluoroborate2D Two-dimension(al)UBM Ultrasound biomicroscopyUCA Ultrasound contrast agentsUS UltrasoundUSPIO Ultrasmall particles of iron oxideVAP Vascular access portVCAM-1 Vascular cell adhesion molecule-1VCT Volumetric CTVEGF Vascular endothelial growth factorVEGF-R2 Vascular endothelial growth factor receptor-2WAG Waste anesthetic gas