Slides angers-sfds

28
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Quantile estimation and optimal portfolios Arthur Charpentier & Abder Oulidi ENSAI-ENSAE-CREST & IMA Angers Journée SFdS, Mai 2007 1

description

 

Transcript of Slides angers-sfds

Page 1: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Quantile estimationand optimal portfolios

Arthur Charpentier & Abder OulidiENSAI-ENSAE-CREST & IMA Angers

Journée SFdS, Mai 2007

1

Page 2: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Portfolio management and optimal allocations

Idea: allocating capital among a set of assets to maximize return and minimizerisk.

If diversification effects were intuited early, and Markowitz (1952) proposed amathematical model.

• return is measured by the expected value of the portfolio return,

• risk is quantified by the variance of this return.

Agenda

1. statistical issue in the mean-variance framework

2. portfolio optimization with general risk measures

2

Page 3: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Portfolio optimization (parametric framework)

Consider a risk measure R (variance or Value-at-Risk). Solve

ω∗ =

argmin{R(ωtX)},u.c. ωt1 = 1 and E(ωtX) ≥ η,

where X ∼ L(θ), θ unknown.

θ is unknown but can be estimated using a sample {X1, . . . , Xn}.“The parameters governing the central tendency and dispersion of returns areusually not known, however; and are often estimated or guessed at usingobserved returns and other available data. In empirical applications, theestimated parameters are used as if they were the true value” (Coles& Loewenstein (1988)).

If ω∗ = ψ(θ) (e.g. mean-variance)

ω∗ = ψ(θ).

3

Page 4: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Optimization of standard deviation (or variance)

Allocation in the first assetAllocation in the second asset

Standard deviation of the portfolio

−200 −100 0 100 200

−2

00

−1

00

01

00

20

0Allocation in the first asset

Allo

catio

n in

th

e s

eco

nd

ass

et

Figure 1: Portfolio variance optimization problem.

4

Page 5: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Portfolio optimization (parametric framework)

In the case of no explicit expression of the optimum, solve (numerically)

ω∗ =

argminR(ωtX),

u.c.ω ∈ {(ωk)k∈{1,...,m}}where X ∼ L(θ).

The idea is to generate samples Xi’s,

• either from a parametric distribution L(θ),

• or from a nonparametric distribution (bootstrap approach).

5

Page 6: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Optimization of Value-at-Risk

VaR of the portfolio

−4 −2 0 2 4 6

−2

−1

0 1

2 3

4 5

−4−2

0 2

4 6

VaR of the portfolio

−4 −2 0 2 4 6

01

23

45

−4−2

0 2

4 6

Figure 2: Optimization in the mean-VaR framework.

6

Page 7: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Classical mean-variance allocation problem

Consider d risky assets, with weekly returns X = (X1, . . . , Xd). Denoteµ = E(X) and Σ = var(X).

Let ω = (ω1, . . . , ωd) ∈ Rd denote the weights in all risky assets.

• the expected return of the portfolio is E(ωtX) = ωtµ,

• the variance of the portfolio is var(ωtX) = ωtΣω.

ω∗ ∈ argmin{ωtΣω}u.c. ωtµ ≥ η and ωt1 = 1

convex⇐⇒

ω∗ ∈ argmax{ωtµ}u.c. ωtΣω ≤ η′ and ωt1 = 1

7

Page 8: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Classical mean-variance allocation problem

The solution can be given explicitly (see Markowitz (1952)) as

ω∗ = ψ(µ,Σ) = p + ηq

where µ = E(X), Σ = var(X),

p =1d

(bΣ−11− aΣ−1µ

)and q =

1d

(cΣ−1µ− aΣ−11

),

and a = 1tΣ−1µ, b = µtΣ−1µ, c = 1tΣ−11, d = bc− a2.

Note that p is an allocation, and q indicates how the original portfolio shouldbe modified.

8

Page 9: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Efficient frontier

first asset

−0.2 0.0 0.2 0.4 −0.4 0.0 0.4

−0

.20

.00

.2

−0

.20

.00

.20

.4

second asset

third asset

−0

.20

.20

.6

−0.2 0.0 0.2

−0

.40

.00

.4

−0.2 0.2 0.6

fourth asset

Portfolio with 4assets

0.010 0.015 0.020 0.025 0.030

0.0

00

0.0

01

0.0

02

0.0

03

0.0

04

0.0

05

0.0

06

Efficient Frontier

Standard deviation

Exp

ect

ed

va

lue

Figure 3: Solving a variance optimization problem.

9

Page 10: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Inference issues

In practice, µ = [µi] and Σ = [Σi,j ] are unknown, and should be estimated.

A natural idea is to define

µi =1n

n∑t=1

Xi,t et Σi,j =1

n− 1

n∑t=1

(Xi,t − µi)(Xj,t − µj).

Given n observed observed returns,

µ|Σ ∼ N(

µ,Σn

)and nΣ|Σ ∼ W (n− 1,Σ) .

where the two random variables µ and Σ are independent, given Σ.

10

Page 11: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

0.05 0.10 0.15 0.20 0.25

0.0

00

.05

0.1

00

.15

0.2

00

.25

Efficient Frontier, with 250 past observations

Standard deviation

Exp

ecte

d v

alu

e

0.05 0.10 0.15 0.20 0.25

0.0

00

.05

0.1

00

.15

0.2

00

.25

Efficient Frontier, with 1000 past observations

Standard deviationE

xp

ecte

d v

alu

e

Figure 4: Efficient frontiers and estimation.

11

Page 12: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Parametric bootstrap

Assume that X ∼ L(θ). estimate θ by θn. The procedure is the following

1. generate n returns X1, . . . , Xn from L(θn);

2. estimate µ and Σ, i.e. µn and Σn,

3. solve the minimization problem, i.e.

ω∗ =1d

(bΣ

−11− aΣ

−1µ

)+ η

1d

(cΣ

−1µ− aΣ

−11)

,

Using several simulations, the distribution of the ω∗k and vark(ω∗ktX) can be

obtained.

12

Page 13: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Nonparametric bootstrap

A nonparametric procedure can also be considered. Consider a n sample{X1, . . . , Xn}1. generate a bootstrap sample from {X1, . . . , Xn}2. estimate µ and Σ, i.e. µn and Σn,

3. solve the minimization problem, i.e.

ω∗ =1d

(bΣ

−11− aΣ

−1µ

)+ η

1d

(cΣ

−1µ− aΣ

−11)

,

Using several simulations, the distribution of the ω∗k and vark(ω∗ktX) can be

obtained.

13

Page 14: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

0.4 0.6 0.8 1.0

01

23

45

Allocation in the first asset

Allocation weight

Dens

ity

0.0 0.2 0.4

01

23

45

Allocation in the second asset

Allocation weight

Dens

ity−0.3 −0.1 0.0 0.1

02

46

8

Allocation in the third asset

Allocation weight

Dens

ity

0.05 0.15 0.25

02

46

810

Allocation in the fourth asset

Allocation weightDe

nsity

Figure 5: Distributions of optimal allocations ω∗k’s.

14

Page 15: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

sec

ond

asse

t

Joint distribution of optimal allocations (1−2)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

third

ass

et

Joint distribution of optimal allocations (1−3)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (1−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the second asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (2−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the second asset

Allo

catio

n in

third

ass

et

Joint distribution of optimal allocations (2−3)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the third asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (3−4)

Figure 6: Joint distributions of optimal allocations ω∗k’s.

15

Page 16: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

0.05 0.06 0.07 0.08 0.09 0.10 0.11

020

4060

8010

0

Density of estimated optimal standard deviation

Optimal standard deviation

Dens

ity

Figure 7: Distribution of vark(ω∗ktX)

16

Page 17: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Value-at-Risk minimization

With V aR(X, p) = F−1(p) = sup{x, F (x) < p}, the program is

ω∗ ∈ argmin{VaR(ωtX, α)}u.c. E(ωtX) ≥ η,ωt1 = 1

nonconvex<

ω∗ ∈ argmax{E(ωtX)}u.c. {VaR(ωtX, α)} ≤ η′,ωt1 = 1

In the previous framework (mean-variance), it could be done easily since

• there are only a few estimates of the variance

• there exists an analytical expression of the optimal allocation,

In the case of Value-at- Risk minimization,

• there are several estimators of quantiles (see Charpentier & Oulidi(2007)),

• numerical optimization should be considered.

17

Page 18: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Quantile estimation

• raw estimator of the quantile, X[pn]:n = Xi:n = F−1n (i/n) such that

i ≤ pn < i + 1.

• weighted average of F−1n (p), e.g. αXi:n + (1− α)Xi+1:n,

• weighted average of F−1n (p), e.g.

n∑

i=1

αiXi:n =∫ 1

0

αuF−1n (u)du,

• smoothed version of the cdf, F−1K (p) where FK(x) =

1nh

n∑

i=1

K

(x−Xi

h

)

• semiparametric approach, based on Hill’s estimator, Xn−k:n

(n

k(1− p)

)−ξk

,

where ξk =1k

k∑

i=1

log Xn+1−i:n − log Xn−k:n (if ξ > 0),

• fully parametric approach, Xn + u1−pvar(X) (if X ∼ N (µ, σ2))

18

Page 19: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Empirical quantile estimation

Value

Pro

ba

bili

ty

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Empirical quantile estimation

ValueP

rob

ab

ility

Figure 8: Classical estimation of the quantile, based on F−1(·).

19

Page 20: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

Smoothed empirical quantile estimation

Value

Sm

oo

the

d d

en

sity

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Smoothed empirical quantile estimation

ValueP

rob

ab

ility

Figure 9: Smoothed estimation of the quantile, based on F−1K (·).

20

Page 21: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

A short extention to general risk measures

In a much more general setting, spectral risk measures can be considered, i.e.

R(X) =∫ 1

0

φ(p)F−1X (p)dp,

for some distortion function φ : [0, 1] → [0, 1].

21

Page 22: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Parametric bootstrap

Assume that X ∼ L(θ). The procedure is the following

1. generate n returns X1, . . . , Xn from L(θ);

2. estimate for all ω on a finite grid, estimate VaR(ωtX),

3. solve the minimization problem on the grid to get numerically ω∗n.

Using several simulations, the distribution of ω∗n and var(ω∗nX) can beobtained.

22

Page 23: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

sec

ond

asse

t

Joint distribution of optimal allocations (1−2)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

third

ass

et

Joint distribution of optimal allocations (1−3)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (1−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the second asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (2−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the third asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (3−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the second asset

Allo

catio

n in

third

ass

et

Joint distribution of optimal allocations (2−3)

Figure 10: Joint distributions of optimal allocations ω∗k’s, smoothed quantileestimator.

23

Page 24: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

0.16 0.18 0.20 0.22 0.24

05

1015

20

Density of estimated optimal 99% quantile

Optimal Value−at−Risk

Dens

ity

Figure 11: Distribution of VaRk(ω∗ktX, 95%).

24

Page 25: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

sec

ond

asse

t

Joint distribution of optimal allocations (1−2)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

third

ass

et

Joint distribution of optimal allocations (1−3)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the first asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (1−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the second asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (2−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the third asset

Allo

catio

n in

four

th a

sset

Joint distribution of optimal allocations (3−4)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Allocation in the second asset

Allo

catio

n in

third

ass

et

Joint distribution of optimal allocations (2−3)

Figure 12: Joint distributions of optimal allocations ω∗k’s, raw quantile estima-tor.

25

Page 26: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

0.16 0.18 0.20 0.22 0.24

010

2030

40

Density of estimated optimal 95% quantile

Optimal Value−at−Risk

Dens

ity

Figure 13: Distribution of VaRk(ω∗ktX, 95%).

26

Page 27: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Conclusion

Dealing with only 4 assets, it is difficult to get robust optimal allocation, onlybecause of statistical uncertainty of classical estimators. Remark: this wasmentioned in Liu (2003) on high frequency data (every 5 minutes, i.e.n = 10, 000) with 100 assets.

27

Page 28: Slides angers-sfds

Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios

Some referencesColes, J.L. & Loewenstein, U. (1988). Equilibrium pricing and portfolio composition in the presence of uncertainparameters. Journal of Financial Economics, 22, 279-303.

Dowd, K. & Blake, D.. (2006). After VaR: the theory, estimation, and insurance applications of quantile-based riskmeasures. Journal of Risk & Insurance, 73, 193-229.

Duarte, A. (1999). Fast computation of efficient portfolios. Journal of Risk, 1, 71-94.

Duffie, D. & Pan, J. (1997). An overview of Value at Risk. Journal of Derivatives, 4, 7-49.

Gaivoronski, A.A. & Pflug, G. (2000). Value-at-Risk in portfolio optimization: properties and computationalapproach. Working Paper 00-2, Norwegian University of Sciences & Technology.

Jorion, P. (1997). Value at Risk: the new benchmark for controlling market risk. McGraw-Hill.

Kast, R., Luciano, E. & Peccati, L. (1998). VaR and optimization: 2nd international workshop on preferences anddecisions. Trento, July 1998.

Klein, R.W. & Bawa, V.S. (1976). The effect of estimation risk on optimal portfolio choice. Journal of FinancialEconomics, 3, 215-231.

Larsen, N., Mausser, H. & Uryasev, S. (2002). Algorithms for optimization of Value at Risk. in Financialengineering, e-commerce and supply-chain, Pardalos and Tsitsiringos eds., Kluwer Academic Publichers, 129-157.

Litterman, R. (1997). Hot spots and edges II. Risk, 10, 38-42.

Rockafellar, R.T. & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal of Risk, 2, 21-41.

28