SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

35
SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip Stéphane CALLIER, Christophe DE LA TAILLE, Frédéric DULUCQ, Gisèle MARTIN-CHASSARD, Nathalie SEGUIN-MOREAU

description

SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip. Stéphane CALLIER, Christophe DE LA TAILLE, Frédéric DULUCQ, Gisèle MARTIN-CHASSARD, Nathalie SEGUIN-MOREAU. ROC chips for ILC prototypes. SPIROC2 Analog HCAL (AHCAL) (SiPM) 36 ch. 32mm² June 07, June 08, March 10. - PowerPoint PPT Presentation

Transcript of SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

Page 1: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2Silicon Kalorimeter Integrated Read-Out Chip

Stéphane CALLIER, Christophe DE LA TAILLE, Frédéric DULUCQ, Gisèle MARTIN-CHASSARD, Nathalie SEGUIN-MOREAU

Page 2: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 2

ROC chips for ILC prototypes

SPIROC2Analog HCAL (AHCAL)(SiPM)36 ch. 32mm²

June 07, June 08, March 10

HARDROC2 and MICROROCDigital HCAL (DHCAL)(RPC, µmegas or GEMs)64 ch. 16mm²

Sept 06, June 08, March 10

SKIROC2ECAL(Si PIN diode)64 ch. 70mm²

March 10

ROC chips for technological prototypes: to study the feasibility of large scale, industrializable modules (Eudet/Aida funded)

Requirements for electronics Large dynamic range (15 bits) Auto-trigger on ½ MIP On chip zero suppress 108 channels Front-end embedded in detector Ultra-low power : 25µW/ch

Microroc: Poster ID-44Microroc: Poster ID-44

Page 3: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 3

EUDET/AIDA ECAL technological prototype• « Imaging » calorimetry for « particle flow algorithm »

=> 30%/√E jet resolution– High granularity and segmentation of the calorimeters

• ECAL: Si W Calorimeter Active medium: SILICON SENSORS (WAFERS)

325µm thick Silicon Wafers => 26000e-/MIP ie 1MIP=4.2 fC

High granularity : 5.5x5.5 mm2

High segmentation => 45 000 cells with embedded electronics for the

technological prototype

• Final ECAL: 30 layers, 100 M channels– SKIROC2 embedded inside the detector– No (few) external components

• “stitchable” motherboards (Active Sensor Units)– Minimize connections between boards

• Low cost and industrialization are the major goal

W layer

ASIC

256 P-I-N diodes0.25 cm2 each

18 x 18 cm2 total area

Si wafers

Page 4: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

COMMON READOUT: TOKEN RING Mode

SKIROC2 Vienna TWEPP11 2011, Sept 27th 4

Readout architecture common to all calorimeters and minimization of data lines & power

Daisy chain using token ring mode Open collector, low voltage signals Low capacitance lines

Acquisition A/D conv. DAQ IDLE MODEChip 0

Chip 1 Acquisition A/D conv. DAQ IDLE MODEIDLE

Chip 2 Acquisition A/D conv. IDLE MODEIDLE

Chip 3 Acquisition A/D conv. IDLE MODEIDLE

Chip 4 Acquisition A/D conv. IDLE MODEIDLE DAQ

1ms (.5%) .5ms (.25%) .5ms (.25%)

1% duty cycle 99% duty cycle

199ms (99%)

S w itc h edC ap ac ito r

Ar r ay

R eg is te r s

1 0 0 1

0 1 1 1

0 1 0 1

S h if tR eg is te r

D AQ

An alo g to D ig ita l C o n v er te r

S lo w s h ap er s ig n a l

Ac q u is it io n C o n v er s io n

R ead - O u t

T o p M an ag er

T D C r am p s ig n a l

SCA SCA in SK2 and Spirocin SK2 and Spiroc

5 ev

ents

3 ev

ents

0 ev

ent

1 ev

ent

0 ev

ent

Chip 0 Chip 1 Chip 2 Chip 3 Chip 4

Data bus

DAQ: Poster ID-109DAQ: Poster ID-109

Page 5: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC : ECAL readout

• SKIROC2 : Silicon Kalorimeter Integrated Read-Out Chip– 64 channels, AMS SiGe 0.35 µm, 70 mm2

– Very large dynamic range: • HG for 0.5-150 MIP, LG for 150-2500 MIP

– Auto-trigger, Analog storage, Digitization & Token-ring ReadOut

– Testability at wafer level

• Front End boards crucial element– Collab with LLR (Palaiseau) and Korea

SKIROC2 Vienna TWEPP11 2011, Sept 27th 5

PCB – FRONT

PCB – BACK ASU (Active Sensor Unit)

C detector with PCB ≈ 20 pF

Page 6: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 6

SKIROC2 features

• Very low noise (0.4 fC = 2 500 e-) and very large dynamic range (2fC up to 10 pC) charge preamplifier

• 180ns shaping time Slow Shapers for charge measurement

• 2-bit shaping time adjustable Fast Shaper (50 to 100ns)

• 10-bit DAC for discriminator threshold , With 4-bit adjustment on each channel

• Analogue Memory depth : up to 15 events can be stored

• Trigger Discriminator for autotrigger on ½ MIP

• 8-bit adjustable delay to position the Hold signal

• Digitization of either time and charge or of both charges

Page 7: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 7

SKIROC2 Analogue core

Page 8: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 8

SKIROC2 digital features

• Common features with Hardroc & Spiroc (compatibility with any CALICE DAQ system)– Open Collector token-ring ReadOut– Multiplexed Slow Control & Probe– Redundancy on Data Out & Transmit On

signal lines– 2 switchable StartReadOut Inputs &

EndReadOut Outputs : - to prevent chip failure

• Very Complex Digital Part (~10% of the Die)– Manage Acquisition, Conversion, 15 SCA

control, RAM, I/Os…

Page 9: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 9

SKIROC2 overviewSilikonKalorimeterIntegratedReadOutChip

• 64 Channels– Difficult layout: 1Mip=4fC,

digital activity

• 250 pads– 17 for test purpose only

• AMS 0.35 µm SiGe• Die size = 65 mm2

– 7.5 mm x 8.7 mm

Page 10: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 10

SKIROC2:DC PreAmp, Fast and Slow Shapers

1,92

1,93

1,94

1,95

1,96

1,97

1,98

1,99

2

2,01

2,02

0 10 20 30 40 50 60

DC

(V

)

Channel

DC PreAmplifier SKIROC2

1,199

1,2

1,201

1,202

1,203

1,204

1,205

1,206

1,207

1,208

0 10 20 30 40 50 60

DC

(V

)

Channel

DC Fast Shaper SKIROC2

<>=1.969 V rms=1.5 mV

<>=1.204 V rms=1.5 mV

Out_PA: uniformity of the DC level

Out_FS: uniformity of the DC level

1

1,001

1,002

1,003

1,004

1,005

1,006

0 10 20 30 40 50 60

DC

(V

)

Channel

DC Slow Shaper Gain10 SKIROC2

0,997

0,998

0,999

1

1,001

1,002

1,003

0 10 20 30 40 50 60

DC

(V

)

Channel

DC Slow Shaper Gain1 SKIROC2

<>=1.003 V rms=1.04 mV

<>=1.000 V rms=1.00 mV

Out_SS10: uniformity of the DC level

Out_SS1: uniformity of the DC level

Page 11: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 11

DAC Threshold Linearity

Slope 2.2 mV/DAC Unit, DNL ±1LSB INL= ±1.7LSB

Page 12: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 12

SKIROC2 Analogue Simulations/Measurements

Qinj = 10 MIP

OR 64 (probe)

Qinj = 40 fC (10 MIP)

SIMULATIONSSIMULATIONS MEASUREMENTSMEASUREMENTS

Out_SS1

Out_FS

Out_FS

Out_PA

Out_SS1

Out_SS10

Page 13: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 1322 April 2023 13

SKIROC2: Fast Shaper noise

Fast Shaper̴6

50mV/Mip

Fast Shaper̴6

50mV/Mip

rms noise= 5.3 mV ie 1/10 MIPS/N=10rms noise= 5.3 mV ie 1/10 MIPS/N=10

10 Mip10 Mip Cdetector ≈ 30 pF

1 Mip1 Mip

Page 14: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 1422 April 2023 14

Trigger efficiency (1)

Pedestal

Qinj=10fC=2.6Mip

Qinj=3fC=0.8Mip

<>=177.5 ±2 DACU

<>=183 ±1.5 DACU

<>=220 ±1 DACU

Page 15: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 1522 April 2023 15

Trigger efficiency (2)

5σ Noise limit

1 MIP ≈ 4fC1 MIP ≈ 4fC

« Real » Pedestal=167 DAC Units1 Mip ≈4 fC = 20 DAC UnitsNoise= 2 DAC UnitsMinimum Threshold= 5 σ noise= 0.5 Mip

Page 16: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 1616

Linearity of the Charge Preamp

SIMULATIONSIMULATION

SCOPE MEASUREMENTSSCOPE MEASUREMENTS

2000 Mip2000 Mip

Page 17: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 1717

Linearity of the Low Gain Shaper

MEASUREMENTS using SCA and internal ADC

Autotrigger ModeWith 1 MIP (4 fC) thresholdAutotrigger ModeWith 1 MIP (4 fC) threshold

2000 Mip = 8 pC

Page 18: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 1818

Linearity of High Gain Shaper

MEASUREMENTS using SCA and internal ADCAutotrigger mode1 MIP ( 4fC) threshold

Noise = 630 µV1 Mip gives 5.7 mVS/N=9

Noise = 630 µV1 Mip gives 5.7 mVS/N=9

ss10@20 MipRms =1.16 ADC U=600µVss10@20 MipRms =1.16 ADC U=600µV

Page 19: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

POWER PULSING

SKIROC2 Vienna TWEPP11 2011, Sept 27th 19

Requirement: 25 µW/ch with 0.5% duty cycle 500 µA for the entire chip

4 Power pulsing lines : analog, conversion, dac, digital Each chip can be forced on/off by slow control

Power pulsing: Bandgap + ref Voltages + master I: switched ON/OFF Shut down bias currents with vdd always ON

SK2 power consumption measurement: 123 mA x 3.3V ≈ 40 mW => 0.6 mW/ch

Acquisition 88 mA , 290 mW Duty Cycle =0.5%, 1.45 mW

Conversion 27.3 mA, 90 mW Duty Cycle =0.25%, 0.225 mW

Readout 8.0 mA, 26.4 mW Duty Cycle =0.25%, 0.066 mW

Skiroc2 power consumption with Power pulsing: 1.7 mW ie 27 µW/chSkiroc2 power consumption with Power pulsing: 1.7 mW ie 27 µW/chSkiroc2 power consumption with Power pulsing: 1.7 mW ie 27 µW/chSkiroc2 power consumption with Power pulsing: 1.7 mW ie 27 µW/ch

MeasurementsMeasurements

Page 20: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

• SPIROC2 : Si PM Readout Chip– SIMILAR to SKIROC2– similar dynamic range0.1 pe – 2000 p.e. (1 pe. = 160 fC)– All backend similar– But different preamplifer, 36 channels

(0.36m)2 Tiles + SiPM + SPIROC (144ch)

SPIROC2/SKIROC2

With external triggerWith external trigger

With internal (auto) triggerAnd internal ADC

SKIROC2 Vienna TWEPP11 2011, Sept 27th 20

Page 21: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

550 mm

1510 mm

Composite Partwith metallic inserts

(15 mm thick)

182,1 × 7.3 mm

182,1 × 9.4 mm

Thickness : 1 mm

FEV5

550 mm

EUDET/AIDA ECAL technological prototype (1)

SKIROC2 Vienna TWEPP11 2011, Sept 27th 21

Next steps towards a LC detector 2/3 final module size (partially equipped) 9 cm sensors Mechanical housing

15 Tungsten plates wrapped into carbon fibre 7mm thick detector slab slided into the alveola

1 tungsten core, 2 layers of detector + electronics on PCB

Page 22: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 22

Front End Board Thickness ~1.1mm

Front End Board Thickness ~1.1mm

In each alveola: 2 layers of 1 to 7 Active Sensors Units (ASU)

1 ASU 1 kapton (HV bias of the PIN diodes) + 1 layer of PIN diodes+ 1 PCB with embedded SKIROC2+ 1 thermal drain (copper)

@LLR(Palaiseau)@LLR(Palaiseau)

7 A.S.U.~1500mm total

Interconnection by ACF(“Adhesive conductive film”)

EUDET/AIDA ECAL technological prototype (2)

Page 23: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 23

PCB with embedded Chip

Pile-upTop GND cover layerC2 GND + Input chip signalC3 horizontal routing + DVDD + GNDC4 AVDDC5 GND + vertical routingC6 GND (pads signal shielding)C7 pads routingC8 GND (pads shielding)BOT PADS

Front End Board

(FEV board)

5 drilling sequences :- Laser C8-C9 120µ filled- Laser C7-C8 120µ- Mechanical C2-C8 200µ- Mechanical C1-C8 200µ- Mechanical C1-C9 (for PCB fastening)

PCB Thickness 1100 µm

Page 24: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 24

FEV board

Devices bonded inside cavities, with total thickness below 1.2 mm

Bonding @CERNBonding @CERNBonding @CERNBonding @CERN

No external components

Page 25: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 25

CONCLUSION

• Good performance of SKIROC2:– 0.5 Mip (2 fC) up to 2000 Mip (8 pC)

dynamic range– 0.1Mip noise (0.4 fC ie 2500 electrons),

minimum threshold 0.5 Mip, autotrigger mode

• Many fine measurements to be continued

• Test with FEV and sensors to be done at system level (power pulsing, DAQ)

• 3rd generation of ROC chips to be done 2012-2013 within the AIDA program.

1m2 Micromegas detector@LAPP Annecy1m2 Micromegas detector@LAPP Annecy

DAQ: Poster ID-109DAQ: Poster ID-109

Microroc: Poster ID-44Microroc: Poster ID-44

1 m3 RPC detector, 40 layersHardroc2: 37 000 channels1 m3 RPC detector, 40 layersHardroc2: 37 000 channels

@IPNL Lyon@IPNL Lyon

Page 26: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

BACKUP SLIDES

Page 27: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SCA

SKIROC2 Vienna TWEPP11 2011, Sept 27th 27

CHANNEL <i>

T& H_ S e lC olu m n 0

T& H_ S e lC olu m n 1 4

out_trigger_ch<i>

Slow Sh. G1T & H _ S e lC o lu m n < j>

T& H < i > _ Se l C o l um n < 1 4 :0 >

12-bit TDC R am p

T & H _ S e lC o lu m n < j> R E A D _ c o lu m n < j>

S lo w sh a p ers ig n a l

Depth=15

Depth=15

Depth=15

out_sca_t

out_sca_lg

500 fF

out_sca_hg

out_t_delayed_<i>

R E A D _ c o lu m n < j>

R E A D _ c o lu m n < 1 4 >

TD C r a m ps i g n a l

Slow Sh. G10

Skiroc2V3d ig ital ce ll

Clk40MHzStartAcq Raz_Colu mn<14:0>

Read_Column<14:0>

OR64_t_delayed Sel_Colu mn<14:0>

Track_Hold cell 14

Track_Hold cell 0

R E A D _ c o lu m n < 0 >

500 fF

8-bi t Dela y Box :100ns to 300ns

Page 28: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

Power pulsing lines timing

SKIROC2 Vienna TWEPP11 2011, Sept 27th 28

Page 29: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

Power On Digital Module: POD

LV D SR ec eiver

Enab le C lo c kfo r A c q uis itio n and

C o nvers io n

C lk O ut

P o w e rO nD ig ita l

S ta rtR e a dO ut

E ndR e a dO ut

S ta rtR e a dO utInt

S ta rtL V D S

C lk in

Enab le C lo c kfo r

R ead o utR s tb

C lk in

C lk O ut

P O D m o dule

E na ble

E na ble C lo c k

SKIROC2 Vienna TWEPP11 2011, Sept 27th 29

POD module (“Clock-gating”) to handle for the 2 LVDS receivers clock (40 MHz and 5 Mhz) and save power:

Starts and stops the Clocks, switches OFF LVDS receivers bias currents

2 others LVDS receivers (RazChn/NoTrig and ValEvt) active during PowerOnAnalog (during bunch crossing)

A c q uis itio n C o nvers io n R ead o ut (99% tim e)P has es

P o w erO nIntC hip 1

P o w erO nIntC hip 2

P o w erO nIntC hip N

Page 30: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

Power On Digital Sequence

SKIROC2 Vienna TWEPP11 2011, Sept 27th 30

S ta r tC onv_ b

S ta r tA c qt

S ta r tR e a d-O ut

C hip_ S a t

E ndR e a d_ O ut

A c q u is it io n C o n v e rs io n R e ad -O u t

R e s e tb

P ow e rO nD igita l

Clo

ckSt

art

Clo

ckSt

art

C alib rate d(L V D S s tart t im e )

F ro m D A Q

F ro m d ais y c h ain

F ro m A S IC

G e ne ra te dS R O

F ro m P O D

Clo

ck S

topp

ed

Clo

ck S

topp

ed

• End of Conversion: clock stopped as not needed and LVDS receivers bias switched OFF• Readout: Start ReadOut signal generated by the POD and stands for a PwrOnD => starts

LVDS receivers and Clk.• End of the ReadOut: The chip generates a EndRout signal which will be used by the next

chip in the daisy chain to be read out.

Page 31: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 31

SKIROC2 One channel block scheme

1MΩ

0 3pF

Preamp.Input

10MΩ

3pF

Calib.Input

10-bit dual DAC – common to 64 channels

Analog Memory

Depth = 15

Analog Memory

Depth = 15

12-b

it A

DC

(Wilk

inso

n)

Trigger out

ChargeMeas.

Gain selection

Slow shaper

Gain 10

Tp=180ns

Slow shaper

Gain 1

Tp=180ns

Amplifier

Gain 10

fast shaper

Gain XX

Tp=adj

4-bit DACadjustment

• SPIROC• SKIROC• HARDROC• PARISROC

• New…

Page 32: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

MEMORY MAPPING of the ROC CHIPs

SKIROC2 Vienna TWEPP11 2011, Sept 27th 32

0

0

E ve ntn°1

634

2431

C hip ID (8 b it) B unc h C ros s ing ID (24 b it)C hn 48 (M S B ) to C hn 63 (L S B )C hn 32 (M S B ) to C hn 47 (L S B )C hn 16 (M S B ) to C hn 31 (L S B )C hn 0 (M S B ) to C hn 15 (L S B )E 0 E 1

5

C hip ID (8 b it) B unc h C ros s ing ID (24 b it)C hn 48 (M S B ) to C hn 63 (L S B )C hn 32 (M S B ) to C hn 47 (L S B )C hn 16 (M S B ) to C hn 31 (L S B )C hn 0 (M S B ) to C hn 15 (L S B )

E ve ntn°2

C hip ID (8 b it) B unc h C ros s ing ID (24 b it)C hn 48 (M S B ) to C hn 63 (L S B )C hn 32 (M S B ) to C hn 47 (L S B )C hn 16 (M S B ) to C hn 31 (L S B )C hn 0 (M S B ) to C hn 15 (L S B )

E ve ntn°127

630

E 0 E 1E 0 E 1E 0 E 1

E 0 E 1

E 0 E 1E 0 E 1E 0 E 1

E 0 E 1

E 0 E 1E 0 E 1E 0 E 1

E 0 E 1

E 0 E 1E 0 E 1E 0 E 1

E 0 E 1

E 0 E 1E 0 E 1E 0 E 1

E 0 E 1

E 0 E 1E 0 E 1E 0 E 1

• HARDROC2: 127 events on 2 bits for 64 channels. Maximum of stored data is 20320 bits

• No conversion• Readout worst case: 200 nsx20k=4 ms/ Full Chip (WORST case)

• SPIROC2: 16 events, 36 channels. 12 bits ADC for time and charge => max stored data= 18707 bits

• Conv.: max time (Full chip)= 16 SCA x 2 (HG or LG/Time) x103 µs=3.2ms

• RO: 3.8 ms/Full Chip (Worst case)

C hip ID (8 b it)B unc h C ros s ing ID (12 bit)B unc h C ros s ing ID (12 bit)

T im e m e a s ure C hn 0 (12 bit)

C ha rge m e a s ure C hn 0 (12 bit)

B unc h C ros s ing ID (12 bit)

T im e m e a s ure C hn 35 (12 bit)

C ha rge m e a s ure C hn 35 (12 bit)

0 0 0 00 0 0 0

0 0 0 00 0

0 00 0

0 0

HG

HGHG

HG

H it (1 b it)G a in (1 b it)

0

0715

16B C ID s

36T im e s

36C ha rge s

S C AC olum n 0

0 0

0 00 0

0 0

HG

HGHG

HG

36T im e s

36C ha rge s

S C AC olum n 15

T im e m e a s ure C hn 0 (12 bit)

C ha rge m e a s ure C hn 0 (12 bit)T im e m e a s ure C hn 35 (12 bit)

C ha rge m e a s ure C hn 35 (12 bit) 1168

• SKIROC2: 15 events, 64 channels. 12 bits ADC for time and charge => max stored data= 30976 bits

• Conv.: max time (Full chip)= 15 SCA x2 (HG or LG/Time) x103 µs= 3 ms

• ReadOut: 6 ms/Full Fhip (Worst case)

A c quis ition C onve rs ion R e a d-O ut A c quis ition

B unc h C ros s ing T ra in

T im e

D igita l P a r tP ha s e s

B unc h C ros s ing T ra in

Physics simulation: 2 or 3 SCA are enough

Page 33: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

DAISY CHAIN: Main signals

SKIROC2 Vienna TWEPP11 2011, Sept 27th 33

COMMON to all the ROC chips StartAcq

Start acquisition, generated by DAQ

StartReadout: Generated by DAQ, start of the readout

EndReadout Generated by chip, End of the readout

ChipSat (Open Collector signal): Generated by chip, « 1 »: digital memory is full or acq is

finished

Dout: data out (OC signal)

TransmitOn (OC signal) Generated by chip, Data out are transmitted

Buffers integrated for OC signals

No conversion in Hardroc

Page 34: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

34

• Reception of the Slow Control parameters from a PC and transmission to the ASICs, launch acquisition, perform analog/digital readout and send all the data received from ASICs to a PC.

• Communication – with other DIFs– with DAQ either by USB or by HDMI

• The DIF should be able to handle more than 100 ASICs theoretically. The max which has been tested is 48

• Regulators + Decoupling capacitors located on the DIFRegulators + Decoupling capacitors located on the DIF

INTERFACE DAQ-ROC= DIF board

@LAPP@LAPP

SKIROC2 Vienna TWEPP11 2011, Sept 27th

Page 35: SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip

SKIROC2 Vienna TWEPP11 2011, Sept 27th 35

Technological prototype : ECAL module

• Front-end ASICs embedded in detector– Very high level of integration– Ultra-low power with pulsed mode– 0.35 µm SiGe technology

• All communications via edge– 4,000 ch/slab, minimal room, access, power– small data volume (~ few 100 kbyte/s/slab)

• « Stitchable motherboards »

Elementary motherboard ‘stitchable’ 24*24 cm ~500 ch. ~8 FE ASICS1 FEV= 4 wafers 9X9 cm2 = 4x4 chips skiroc2 64 ch => 1024 pads.