**Sketches are for demonstrative purposes only and are not exact replications** Summary of...

58
**Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January 2, 2006 Sago Mine Wolf Run Mining Company

Transcript of **Sketches are for demonstrative purposes only and are not exact replications** Summary of...

Page 1: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

**Sketches are for demonstrative purposes only and are not exact replications**

Summary of Investigation

Fatal Underground Coal Mine Explosion

January 2, 2006

Sago MineWolf Run Mining Company

Page 2: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Final Report• General Information • Sequence of Events• Seals• SCSRs• Barricade• Rescue • Fuel• Flames and Forces• Ignition sources• Conclusion• Enforcement Actions

Page 3: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Drift Openings

1 Right 2 Right

1st Left

2nd Left Parallel

Area Previously Sealed

SAGO MINE

1st NE Mains

2 North Mains

2nd Left Mains

Sealed

Page 4: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Sunday January 1, 2006

• At approximately 3:00 a.m., Fred Jamison and Terry Helms, mine examiners, entered the mine.

• They pre-shift the track and belt entries in the mains and the 1st Left section and 2nd Left Parallel section.

• Jamison arrived outside at 5:40 a.m. Helms traveled from 1st Left toward 2nd Left Parallel switch and remained underground.

• The mine does not produce coal. • Day shift performs maintenance.• The mine is idle after the day shift is complete.

Monday January 2, 2006

Saturday December 31, 2005• The mine does not produce coal. • Two shifts perform maintenance.

Page 5: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Monday January 2, 2006

• At 6:00 a.m., the 2nd Left Parallel section crew of 12 miners boarded a mantrip, entered the mine, and traveled to 2nd Left Parallel.

• At 6:00 a.m., Fred Jamison walked from the surface to No. 2 Belt drive.

• At 6:05 a.m., the 1st Left section crew of 12 miners plus 3 other miners entered the mine after switching to a larger mantrip to carry all of the miners. They dropped off two miners and continued to the 1st Left switch.

Page 6: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Location of miners immediately prior to the explosion – 6:26 am

Survivors

Fatalities*

Thomas Anderson*

Alva Bennett*

James Bennett*

Jerry Groves*

George Hamner Jr.*

Jesse Jones*

David Lewis*

Randal McCloy Jr.

Martin Toler Jr.*

Fred Ware*

Jackie Weaver*

Marshall Winans*

2 Left Parallel Section Crew

Terry Helms*Pat BoniJohn Boni

Fred Jamison

Denver Anderson

Paul Avington

Gary Carpenter

Randall Helmick

Eric Hess

Owen Jones

Hoy Keith Jr.

Arnett Perry

Gary Rowan

Harley Ryan

Christopher Tenney

Anton Wamsley

Ronald Grall

1st Left Section Mantrip

Page 7: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Monday January 2, 2006

Following the explosion:

• Jamison and Pat Boni walked out of the mine.

• The 1st Left section mantrip was at the 1st Left switch when the miners experienced a violent blast of air, smoke, dust and debris. They began to walk out of the mine in the track entry and then moved to the primary escapeway. Owen Jones remained in the mine.

• Four managers entered the mine. They met John Boni and the miners from the 1st Left section mantrip, who were transported out of the mine.

• Managers Toler, Wilfong, Schoonover, Hofer, and Jones repaired some ventilation controls up to 57 Crosscut, No. 4 Belt. Conditions eventually caused them to evacuate the mine. They arrived at the surface at 10:35 a.m.

Page 8: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Survivors

Fatalities*

Thomas Anderson*

Alva Bennett*

James Bennett*

Jerry Groves*

George Hamner Jr.*

Jesse Jones*

David Lewis*

Randal McCloy Jr.

Martin Toler Jr.*

Fred Ware*

Jackie Weaver*

Marshall Winans*

2 Left Parallel Section Crew

Terry Helms*

Location of miners remaining underground after 10:35 a.m.

Page 9: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

The 2nd Left Parallel crew exited the mantrip and was walking toward the face when the explosion occurred. The initial effects were noise, pressure, and a haze.

The miners walked to the Primary Escapeway at 11 crosscut and donned their SCSRs. They tried to evacuate, but encountered smoke and debris from damaged ventilation controls. They abandoned their escape attempt and returned to the face to barricade and await rescue.

The miners exited the mantrip at 10 crosscut after encountering debris on the track.

The miners reboarded the mantrip and started outby on the track entry in an attempt to escape. During their travel outby, they encountered an atmosphere filled with smoke.

Ventilation controls were damaged by the explosion. Debris from the damaged ventilation controls was scattered throughout the area.

The miners barricaded in No. 3 Face, 2nd Left Parallel Section.

Page 10: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

No. 2 Entry

No. 3 Entry

No. 4 Entry

Marshall Winans*

Martin Toler Jr.*

Jackie Weaver*

George Hamner Jr.*

Randal McCloy Jr.

Jerry Groves*

Alva Bennett*

David Lewis*

James Bennett*

Thomas Anderson*

Fred Ware*

Jesse Jones*

Survivors

Fatalities*

The 12 miners from the 2nd Left Parallel section crew decided to barricade in the No. 3 Face. They installed curtains diagonally in the last open crosscut in No. 3 Entry, in the crosscut between No. 3 and No. 4 Entries, and in No. 3 Entry outby the last open crosscut.

Curtain

Curtain

Curtain

Location of the miners found by rescue teams

Page 11: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

SEALS

In-Mine Investigation

• No. 1 Seal

• Several whole and partial Omega blocks remained after the explosion.

• An exposed horizontal layer of BlocBond was easily removed from the remaining Omega blocks, indicating the lack of good bonding.

• No BlocBond was observed in the vertical joints.

• All 10 seals completely destroyed

Page 12: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

SEALS

• No. 10 Seal

• No Omega blocks remained on the floor.

•There were some indications of mortar on the ribs.

In-Mine Investigation

• All 10 seals completely destroyed

Page 13: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

SEALS

The actual construction of the ten seals was different from the requirements of the MSHA approved plan and from the initial NIOSH testing of 40 inch thick Omega block seals.

•The dimensions of two of the 10 seal locations (No. 1 – 21.7’ and 8.9” and No. 2 – 20.4’ and 8.7’) exceeded 20 feet wide and 8 feet high.

•One seal was not set back at least 10 feet from the corner of the pillar.

•Evidence indicates that BlocBond was spread on the mine floor dry as a base.

•Vertical joints were not coated with at least ¼ inch thick BlocBond.

•Wedges were driven parallel to the wood planks rather than perpendicular.

The darker material is the BlocBond.

In-Mine Investigation and Interviews

Page 14: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

SEALS

Test were conducted at NIOSH’s Lake Lynn Experimental Mine.

• First time tests were conducted within a completely sealed area.

• Six explosion tests were conducted.

Page 15: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

• A properly constructed 40 inch Omega Block seal withstood an explosion pressure of 51 psi.

•A Sago Seal withstood an explosion pressure of 21 psi.

• The level of damage to the Sago Seal following the 93 psi explosion was not quite as severe as the level of damage observed during the underground investigation at the Sago Mine.

SEALS

Explosion Testing of OMEGA Block Seals

Page 16: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Denver Anderson

Paul Avington

Gary Carpenter

Randall Helmick

Eric Hess

Owen Jones

Hoy Keith Jr.

Arnett Perry

Gary Rowan

Harley Ryan

Christopher Tenney

Anton Wamsley

Ronald Grall

1st Left Section Mantrip

SELF-CONTAINED SELF-RESCUERS (SCSRs)

•Only seven of the 13 miners who were at the 1st Left track switch donned their SCSRs during the evacuation.

Page 17: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Thomas Anderson

Alva Bennett

James Bennett

Jerry Groves

George Hamner Jr.

Jesse Jones

David Lewis

Randal McCloy Jr.

Martin Toler Jr.

Fred Ware

Jackie Weaver

Marshall Winans

2nd Left Parallel Section Crew

SELF-CONTAINED SELF-RESCUERS (SCSRs)

•The 12 miners in 2nd Left Parallel section donned their SCSR units

while trying to evacuate.

•Randal McCloy stated that four of the miners had difficulties with their

SCSRs.

Page 18: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

SELF-CONTAINED SELF-RESCUERS (SCSRs)

•RECORDKEEPING: A review of the mine operator’s records indicated that the 90 day test was not completed for all the units used on January 2, 2006.

This includes:

•Thomas Anderson

•Alva Bennett

•James Bennett

•Jerry Groves

•George Hamner Jr.

•Martin Toler, Jr.

Page 19: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

SELF-CONTAINED SELF-RESCUERS (SCSRs)

TRAINING: A review of the Training Records indicated that the miners on 1st Left and 2nd Left Parallel were trained within the required one year.

Page 20: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

SELF-CONTAINED SELF-RESCUERS (SCSRs)

•TESTING: Although one SCSR from the 2nd Left Parallel miners (Jesse Jones) was over 10 years old, the test results from NIOSH indicated that all of the units produced oxygen.

Page 21: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Although all of the miners on the 2nd Left Parallel section donned their SCSR, they were exposed to high levels of CO for much longer than the one hour capacity for each SCSR.

SELF-CONTAINED SELF-RESCUERS (SCSRs)

Page 22: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

•After the 2nd Left Parallel crew encountered smoke and gases during efforts to exit the mine on the mantrip, they attempted to find other possible exits. When these attempts failed, they retreated to the section and tried to isolate themselves from poisonous gases by building a barricade.

•Records indicated the 2nd Left Parallel crew had been trained in the Mine Emergency Evacuation and Firefighting Program of Instruction.

Barricade

•The miners chose the No. 3 face of 2nd Left Parallel Section to erect their barricade.

•The barricade was constructed with curtains recovered from the face area.

Page 23: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Experiments by the USBM show that a person in a confined space needs about one cubic yard of normal air each hour.

The volume of the larger area (curtain in the crosscut and the curtain in the entry) was about 881.5 cubic yards. This indicates that that there would be 73 cubic yards of air available for each of the 12 miners in the barricade.

The diagonal curtain was approximately 29 feet in length from rib to rib and balled up on the outby end, according to the captain of the McElroy mine rescue team.

The volume of the smaller area (diagonal curtain in the intersection) was about 568.6 cubic yards, which would be 47 cubic yards of air available for each of the 12 miners.

No. 2 Entry

No. 3 Entry

No. 4 EntryVolume of Barricade

568.6 cu. yd.Volume of Barricade

881.5 cu. yd..

This shows that the miners had enough air to sustain them for at least 47 hours if they remained in the smaller area within the barricade and if normal air was in the barricade. This is about six hours longer than it took for mine rescue teams to reach the barricade.

Barricade

Page 24: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

• The graph illustrates the results of CO measurements obtained in the No. 1 Drift Opening. The air quality readings continued trending downward. While they were still at dangerous levels, it was determined that they were low enough to allow rescue efforts to commence. At 5:25 p.m., a mine rescue team entered the mine.

Rescue

Sago Mine Main ReturnCarbon Monoxide

0

500

1000

1500

2000

2500

3000

12:0

0 A

M

12:0

0 P

M

12:0

0 A

M

12:0

0 P

M

12:0

0 A

M

12:0

0 P

M

12:0

0 A

M

Date and Time

CO From Explosion

Min

e R

escu

e T

eam

s E

nte

r th

eM

ine

at 5

:25

PM

on

Day

1

Day 1 Day 1 Day 2 Day 3Day 2 Day 3 Day 4

Stabilization Begins to Occur

CO

, pp

m

Exp

losi

on

Occ

urs

at

6:26

AM

on

Day

1

Page 25: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Barricade

• The borehole entered the 2nd Left Parallel section at 5:35 a.m. at a depth of 258 feet.

• The borehole intersected the section at 23 Crosscut, No. 6 Belt in the No. 4 entry, over the conveyor belt feeder, about 260 feet from the center of the barricade.

Page 26: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Rescue

• An air quality sample taken from the borehole at 5:53 a.m. indicated 1052 ppm CO and 20.4% oxygen.

Sago Mine Borehole No. 1Carbon Monoxide

0

200

400

600

800

1000

1200

1/2/

06 0

:00

1/2/

06 1

2:00

1/3/

06 0

:00

1/3/

06 1

2:00

1/4/

06 0

:00

1/4/

06 1

2:00

1/5/

06 0

:00

1/5/

06 1

2:00

1/6/

06 0

:00

1/6/

06 1

2:00

1/7/

06 0

:00

Date and Time

CO

(p

pm

)

Exp

losi

on

Occ

urs

at

6:26

AM

Fir

st S

amp

le 1

/3/0

6 @

5:5

3 A

M

Page 27: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

FuelFuel

•Two methane studies were conducted in the area previously sealed inby the 2 North Mains seals on February 7-9 and March 2-3, 2006.

•The results of the studies show that at the time of the explosion, 347,300 cubic feet of methane had accumulated in the sealed area.

347,

300

cubi

c fe

et o

f Met

hane

Page 28: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

•MSHA conducted mine dust surveys during regular health and safety inspection prior to the accident.

•The areas that were evaluated for incombustible content as required by 30 CFR section 75.403 included areas beginning approximately 600 feet outby the 2 North Mains seals and extending through the sealed area and into 2nd Left Mains.

•This entire area could not be sampled because of excessive water, as per inspectors’ observations.

•Mining had stopped because of increased water inflow and deteriorating roof conditions.

•The area may have also been wet at the time of the explosion.

Fuel

•Coal dust may have been involved to a limited degree throughout the sealed area as the flame propagated.

Page 29: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Flames and Forces

The post-explosion mine dust survey samples were subjected to Alcohol Coke Test. The coke test results indicate that the flame from the explosion remained within the sealed area.

Extent of flame

Page 30: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Flames and Forces

Forces•Explosion forces affected a large area of the mine.

93 psi at 2 North Seals

<5 psi outby 2nd Left Parallel track switch

2 psi at 1st Left track switch

2 psi on 2nd Left Parallel section

Page 31: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential ignition sources for the explosion were evaluated, including:

•Electric circuits, cables and equipment,

•Cutting and welding,

•Mining operations,

•Smoking,

•Spontaneous combustion,

•Roof falls, and

•Lightning.

Potential Ignition Sources

Page 32: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Electric circuits, cables and equipment were examined. Some circuits and equipment were not energized prior to the explosion. There was no evidence that the ignition source originated from the mine’s underground electric circuits, cables or equipment in the active portion of the mine which includes the following:

•power system,

•conveyor belt system,

•water pumps,

•battery chargers,

•trickle rock dusters,

•Atmospheric Monitoring System,

•pager phones, trolleyphone system, radios,

•gas detectors, cap lamps,

•electric equipment in the underground workshop, outby work area lighting, electric doors, and

•1st Left and 2nd Left Parallel section equipment.

Potential Ignition Sources

Page 33: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition Sources

•CUTTING AND WELDING - There were no cutting and welding operations on-going in or near the sealed area of the mine at the time of the explosion.

•MINING OPERATIONS – Mining operations were not occurring within close proximity to the 2 North Mains seals. There was no person in or near the sealed area at the time of the explosion.

2nd Left Parallel Section

1st Left Section

Terry Helms

Page 34: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition Sources

•SMOKING – There were no smoking articles found underground during the investigation.

•SPONTANEOUS COMBUSTION – The mine had no history of spontaneous combustion and there was no evidence of spontaneous combustion found during the investigation.

Page 35: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition Sources

Roof Falls in the Sealed AreaThree roof fall areas noted prior to sealing.

Roof fall areas noted as having occurred before 1/27/06 during exploration after the explosion.

Roof fall areas noted during investigations after 1/27/06.

X = Sandstone beds noted in top of roof fall cavity & sample collected.

Origin of the Explosion

Page 36: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition Sources

Roof Falls in the Sealed Area

•Shale is the predominant rock type visible in the roof fall rubble. This shale was classified as “laminated siltstone” with low quartz content in a soft matrix that inhibits quartz grain-to-grain contact.

•This rock type was not as conductive to frictional heating or piezoelectric sparking as sandstones that have been suspected as ignition sources in roof falls.

Page 37: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition Sources

Since there were no roof falls in the proximity of the origin of the explosion, wicking of methane from the roof falls to the origin was considered.

For wicking to occur, a methane layer must be continuous, within a range of 5% to 15%, and is generally associated with being located near the roof.

The burning methane layer may eventually contact a larger accumulation, resulting in an explosion.

However, a roof fall generates turbulence in the mine atmosphere mixing layers that may have been present.

Due to the mine atmosphere turbulence caused by a roof fall, distance, elevation, and uneven roof conditions from the observed falls to the origin of this explosion make this a highly unlikely ignition source.

Roof Falls in the Sealed Area

Page 38: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition Sources

Roof Falls in the Sealed Area

Although a roof fall cannot be definitively excluded as a potential ignition source for this explosion, it is a highly unlikely source.

Page 39: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition SourcesLIGHTNING OVERVIEW

Types of lightning:

Cloud to ground lightning

Intra-Cloud lightning

Cloud to cloud lightning

Upward lightning

Page 40: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

101 6:26:35

35 6:26:35

Location of lightning strike reported by Vaisala’s National Lightning Detection Network (NLDN). Number on left represents the peak current in kilo-amps; number on right represents the time that the peak current was recorded.

Location of lightning strike reported by Weather Decision Technologies, Inc.’s U.S. Precision Lightning Network (USPLN). Number on left represents the peak current in kilo-amps; number on right represents the time that the peak current was recorded.

Sago Mine workings.

LIGHTNING AS AN IGNITION SOURCE

Potential Ignition Sources

Page 41: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

•The Virginia Polytechnic Institute and State University’s Department of Geosciences concluded that it was most likely that a seismic event occurred at or near the Sago Mine within a four-second interval centered at 06:26:38 a.m. on January 2, 2006.

•The AMS recorded the first presence of CO at 6:26:35 a.m.

•The nearby lightning strikes recorded by NLDN and USPLN occurred at approximately the same time as the seismic event and the initial alarm of the AMS.

LIGHTNING AS AN IGNITION SOURCE

Page 42: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

•MSHA contracted with Sandia Corporation, Sandia National Laboratories (Sandia) to perform modeling and testing, to simulate if lightning energy could enter the mine by direct contact or indirect inductive coupling.

•Sandia analyzed the lightning data and analyzed lightning strikes, flash locations and error ellipses.

•Sandia searched for other lightning discharges that failed to meet detection standards.

LIGHTNING AS AN IGNITION SOURCE

Page 43: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

Several plausible lightning strike scenarios could lead to significant energy coupling into the Sago Mine. Three of those scenarios were evaluated to determine the most likely possibility.

LIGHTNING AS AN IGNITION SOURCE

Page 44: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

LIGHTNING AS AN IGNITION SOURCE

B. A lightning strike delivered from the surface area directly through a conductor over the sealed area, such as gas wells and their interconnected piping system or water in the strata overlying the sealed area.

C. A lightning strike over the sealed area indirectly energizing metallic objects within the sealed area.

A. A recorded strike occurred in the proximity of the mine, hitting a tree. Two apparent paths for energy from this recorded lightning strike to reach the portal are through:

1. telephone grounding system, or

2. high-voltage power system.

Page 45: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

LIGHTNING AS AN IGNITION SOURCE

•Sandia concluded that it is highly unlikely a 100,000 amperes lightning strike attached at the mine portal to the belt conveyor structure, trolley communication antenna, high-voltage cable grounding medium, and the track rail could generate sufficient voltage on the pump cable within the sealed area to initiate electrical arcing.

•Therefore, it is not likely that methods discussed in this scenario could ignite methane in the sealed area.

Scenario A – A recorded strike occurred in the proximity of the mine, hitting a tree. Two apparent paths for energy from this recorded lightning strike to reach the portal are through: 1) the telephone grounding system or 2) the high-voltage power system.

Page 46: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

Scenario B – A lightning strike delivered from the surface area directly through a conductor over the sealed area, such as gas wells and their interconnected piping system or water in the strata overlying the sealed area.

LIGHTNING AS AN IGNITION SOURCE

•Testing indicated that a direct, vertical low resistance metallic path or zone of reduced resistivity for lightning to travel from the surface to the sealed area did not exist.

•Testing indicated that lightning energy would readily dissipate in the earth near the gas well or associated piping system rather than travel into the sealed area of the mine.

•Water within the strata was eliminated as a conductive path because there was no flow of water observed near the origin of the explosion.

Page 47: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

Scenario C – A lightning strike over the sealed area indirectly energizing metallic objects within the sealed area.

LIGHTNING AS AN IGNITION SOURCE

This scenario is based on lightning occurring over the sealed area and indirectly transferring energy into the sealed area.

•A horizontal portion from a recorded lightning strike may have traveled over the sealed area.

•An unrecorded cloud to cloud, intra-cloud, a cloud to ground or an upward discharge may have occurred over the sealed area. (Lightning detection systems have limitations and do not record all lightning strikes.)

Page 48: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

LIGHTNING AS AN IGNITION SOURCE

INDIRECT ENERGY TRANSFER TO SEALED AREA

2 North Mains Seals

The mine operator abandoned a submersible pump, its controller and a No. 6 AWG, 2,000 Volt cable with a male cable coupler in the 2nd Left Mains area prior to sealing.

Ignition Origin

Page 49: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition SourcesLIGHTNING OVERVIEW

Horizontal discharge above the mine creates electromagnetic field inducing voltage in pump cable.

Pump cable arcs causing ignition.

Seal

Pump and cable

Sealed Area

Accumulated Methane

Page 50: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Potential Ignition SourcesLIGHTNING OVERVIEW

Seal

An unrecorded direct strike above the mine creates an electromagnetic field inducing voltage in the pump cable.

The pump cable arcs causing ignition.

Pump and cable

Sealed Area

Accumulated Methane

Page 51: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

•Sandia’s field measurements and analysis indicate that significant electromagnetic energy can be coupled into the sealed area of the mine.

•A lightning source would create an electromagnetic field similar to a magnetic field that is produced between the north and south poles of a magnet.

Scenario C – A lightning strike over the sealed area indirectly energizing metallic objects within the sealed area.

LIGHTNING AS AN IGNITION SOURCE

Page 52: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCESLIGHTNING AS AN IGNITION SOURCE

Page 53: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

Demonstration

Click here to Play Video Clip

Page 54: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

POTENTIAL IGNITION SOURCES

•The electromagnetic energy is radiated through earth onto the pump cable that acts like a receiver or antenna. The electromagnetic energy induces a voltage onto the pump cable which generates an arc in the explosive methane mixture in the sealed area.

•Measurements and analyses indicate that the pump cable is the most likely receiver of electromagnetic energy in the sealed area.

Scenario C – A lightning strike over the sealed area indirectly energizing metallic objects within the sealed area.

LIGHTNING AS AN IGNITION SOURCE

•This is the most likely ignition source for this explosion.

Page 55: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

CONCLUSION

•On January 2, 2006, an explosion occurred at approximately 6:26 a.m. in the mined-out area known as 2 North Mains and 2nd Left Mains of the Sago Mine.

•Methane had accumulated in the sealed area.

•Lightning was the most likely ignition source for the explosion.

•The energy transferred onto an abandoned pump cable in the sealed area.

•This subsequently caused an arc which ignited an explosive mixture of methane.

Page 56: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

CONCLUSION

•The ensuing explosion generated forces more than 93 psi and destroyed the seals, filling portions of the mine with toxic levels of carbon monoxide.

•One miner died of carbon monoxide poisoning shortly after the explosion.

•The 2nd Left Parallel miners’ attempt to evacuate was unsuccessful and they barricaded themselves on the 2nd Left Parallel section.

•The barricade was not able to prevent high levels of carbon monoxide from reaching the miners before they could be rescued.

•As a result, 11 additional miners perished and one survived.

Page 57: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

ENFORCEMENT ACTIONS

•A 103(K) order was issued on the morning of the accident to insure the safety of all persons at the mine.

•149 citations/orders were issued. Some examples are as follows:

•The 2 North Main seals were not built in accordance with the approved ventilation plan.

•MSHA and mine rescue teams were not immediately notified of the accident.

•Five electrical circuits entering/exiting the mine did not have lightning arrestors.

•Several miners did not don their SCSRs.

Page 58: **Sketches are for demonstrative purposes only and are not exact replications** Summary of Investigation Fatal Underground Coal Mine Explosion January.

**Sketches are for demonstrative purposes only and are not exact replications**