SiC Workshop. EPE 2005, September 12 ESCAPEE Project 1 ESCAPEE EPE 2005 Dresden.

34
SiC Workshop. EPE 2005, September 12 ESCAPEE Project 1 ESCAPEE EPE 2005 Dresden EPE 2005 Dresden

Transcript of SiC Workshop. EPE 2005, September 12 ESCAPEE Project 1 ESCAPEE EPE 2005 Dresden.

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

1

ESCAPEE

EPE 2005 DresdenEPE 2005 Dresden

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

2

The achievements of the EC funded project "Establish Silicon Carbide Applications for Power

Electronics in Europe" (ESCAPEE)

J. Millan1, P. Godignon1, D. Tournier1, P.A. Mawby2, S. Wilks2, O.J. Guy2, and L. Chen2, R. Bassett3, A. Hyde3, N. Martin4, M. Mermet-Guyennet4, S. Pasugcio4, S. P M. Syväjärvi5, R.R. Ciechonski5, R. Yakimova5, L. Roux6,

F. Torregrosa6, T. Bouchet6, J-M. Bluet7, G. Guillot7, D. Hinchley8, S. Jones8, J. Rhodes8, P. Taylor9 and P. Waind9

1Centro Nacional de Microelectrónica, Campus Universidad Autónoma de Barcelona, 2School of Engineering, University of Wales Swansea,

3ALSTOM Research & Technology Centre, 4ALSTOM Transport SA, 5Department of Physics and Measurement Technology, Linköping

University, Sweden, 6Ion Beam Services, 7Institut National des Sciences Appliquées de Lyon, Laboratoire de Physique de la Matiere CNRS,

8Semelab Plc, 9Dynex Semiconductor Ltd.

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

3

Overview

• Overview of recent results from the ESCAPEE project.• Update to the information originally presented at EPE

2003 in Toulouse. • Key targets• Significant scientific progresses

• Final achievements and successes.

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

4

Key research targets (creation and introduction of SiC technology, from fundamental science through to real applications.)

• Produce improved quality of thick (>10m) SiC epi-layer material suitable for high power devices.

• Develop device processing and fabrication technology (implantation, passivation, etching, metallization).

• Establish edge termination to enable high voltage applications.

• Develop high temperature device packaging suitable for SiC

• Use the created technology in a module introduction and end-user application in traction systems

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

5

Important scientific progressesSignificant results from the ESCAPEE project include:

Development of new sublimation epitaxial growth technique - produces epi-layers at growth rates up to 20 times faster than standard CVD growth.

Development of high temperature implantation equipment for SiC and the subsequent commercialisation.

Development of surface cleaning processes and reduction of surface damage produced by high temperature annealing, for implant activation.

Development of low resistance n-type and p-type ohmic contacts and high quality Schottky diodes.

Design of edge termination and fabrication of thermally stable Schottky diodes with blocking voltages of up to 4.7kV and reverse leakage currents of less than 2e-7 A/cm2 at 3.5kV.

Increased device yield of 1.6mm 1.6mm diodes from 12% to 43% using a novel polishing technique.

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

6

Significant results from the ESCAPEE project continued…

Development of 1.2 kV MOSFETs.

Record Field-effect mobility and drain current as a function of gate voltage for transistors with a PVT grown epilayer and a reference CVD grown epilayer.

Design and production of specialized high temperature thermally stable packaging for high voltage SiC devices.

Production of a demonstrator module using SiC diodes and Si IGBTs.

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

7

ESCAPEE Technological developments

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

8

•Sublimation of a solid source and transport of vapor to a substrate •ideas based on the sublimation growth process to produce wafers but smaller distance between source and substrate

•Benefit of high growth rate from intrinsic sublimation to yield thick layers

•Develop growth conditions to achieve smooth surfaces and low doping

Fast epitaxy by PVT

ESCAPEE’s results – Material

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

9

0

0,01

0,02

0,03

0,04

0

50

100

150

200

250

-5 0 5 10 15 20 25 30

Gate voltage [V]

PVT

CVD

tox

= 1550 Å,

L = 20 m, W= 100 m

CVD, ID

PVT, ID

• Low doping in the E15 range has been achieved

• Causes for the background doping are known and even lower doping is expected

• Higher field-effect mobility and drain current for transistors with a PVT grown epilayer than on reference CVD grown epilayer.

• A patent on the fast PVT epitaxy technology has been filed

• Discussions with partners for commercialization are in progress

Achievements

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

10

ESCAPEE’s results – Implantation

High temperature implanter

High temp chucks : - Several versions available and already sold (Univ. Madrid, INRS Canada, LETI.)

V2 : Installed in Madrid Proto of V3 : Installed at INRS (Canada)

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

11

• Results using Graphite cap – surface protection process are promising.

SiC

Photoresist

SiC

Carbon

SiC

RIE

750°C Anneal (Ar)

• Carbon cap produced by annealing photoresist under argon (750°C)

• Anneal sample as before (1600° for 30 min)

• Remove Carbon Cap (RIE with O2)

Novel process technological step

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

12

Carbon cap experiment

Surface roughness reduced by up to a factor of 10Improved forward I(V) characteristicsImproved reverse leakage currents

(a) (b)

C-cap protectedNot protected

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

13

1.2 kV SCHOTTKY DIODES

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

14

1.2 kV Schottky Diodes – Area dependence and wafer uniformity

Forward mode I(V) curves at 350ºC for various device area

I(V) uniformity: Thickness and doping OK

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,00,00

0,25

0,50

0,75

1,00

0.4 x 0.4 mm2

0.8 x 0.8 mm2

1.6 x 1.6 mm2

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,01E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

0,1

1

Fo

rwa

rd c

urr

en

t (A

)

Forward voltage (V)

ESC12 - AsDep

Fo

rwa

rd c

urr

en

t (A

)

Forward voltage (V)ESC12 - AsDep

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

15

Manufacturing yield versus Chip size and wafer micropipes density

0,5 1,0 1,5 2,0 2,540

50

60

70

80

90

100

Chip size (mm x mm)

Yie

ld (

%)

= e

xp (

Are

a *

D)

1/cm2

5/cm2

2/cm2

16/cm2

30/cm2

Unpolished Polished ESC12_UnPolished

1.2 kV SCHOTTKY DIODES - Yield

Escapee samples

Escapee samples

Escapee samples

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

16

Discrete Package

• New package uses DBC baseplate, eliminating separate copper baseplate and DBC substrate used in the conventional isolated TO 257.

• Offers reduction in weight, improved reliability and the potential to operate at elevated temperatures.

• Package successfully used to characterise 1000V ESCAPEE diodes at 225°C.

• Limited VR to 800V during hot test to avoid destroying devices.

DBC TO-257 Package

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

17

Diode Characterisation

Packaged devices show little area dependence and better stability and during device testing

Diode Forward Characteristics Diode Reverse Characteristics

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

18

High-Temperature Operation

0

2

4

6

8

10

12

0 1 2 3 4 5VF (V)

IF (

A)

25°C

125°C

225°C

1E-06

1E-05

1E-04

1E-03

1E-02

25 75 125 175 225TJ (°C)

IR (

A)

Diode Reverse Characteristics (at 800V)Diode Forward Characteristics

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

19

 Temperature dependence on the dynamic behavior

of the 2.16 mm2 SiC SBD

1.2 kV SCHOTTKY DIODES – switching T dependence

No significant impact of temperature on switching characteristics

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

20

ESCAPEE’s resultsCompact modelling

-4

-2

0

2

4

6

8

0.0E+00 5.0E-08 1.0E-07 1.5E-07 2.0E-07 2.5E-07

Time (s)

I (A

)

Ultra-fast Si PiN diode

ESCAPEE SiC Schottky

ESCAPEE model

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Temperature (K)

J (A

/cm

2)

SM d34 T=300K

SM d34 T=473

SM d34 T=573K

JA d34fb25

JA d34fb 473

JA d34fb 573

DC Switching

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

21

1.2KV Hybrid Module

• Aerospace IGBT/diode half-bridge module.

• 150A 1200V Infineon Silicon IGBT.

• Four 1.6x1.6mm 1000V ESCAPEE SiC Schottky Diodes in parallel.

• AlSiC Baseplate, Al/AlN substrate, Cu lead-frame, PBT ring-frame and lid.

• PbSnAg solder and vacuum furnace die-attach.

• 5mil/12 mil Al wire-bonds. Si IGBT/SiC diode hybridmodule with lid removed

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

22

Hybrid Module Characterisation

• Three IGBT/diode substrates exhibited IR<300uA at 1000V.

• One IGBT/diode substrate suffered fractured breakdown characteristic above 600V.

• VF < 3V at 50A, 25°C.• Module successfully switched

25°C, 50A, 600V, 500A/us.

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3VF (V)

IF (

A)

Hybrid Module SiC Diode Forward Characteristics

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

23

ESCAPEE’s results

Si IGBT/SiC diode hybrid module inductive-load switching at 25°C, 50A, 600V, 500A/us.

Hybrid Module Switching

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

24

3.5 kV SCHOTTKY DIODES

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

25

Diodes fabrication for module• 4.5 kV ESCAPEE Schottky diodes fabricated at CNM for hybrid module

• Good current density uniformity vs diodes size• RON= 40m.cm2 close to theoretical expected

value (31m.cm2).

• Ni used as Schottky contact - stability demonstrated up to 200°C

•Very low reverse leakage current density (JR<10 µA/cm2 @ 3.5kV)

• No breakdown differences between measurements made in the air and inside galden on polyimide passivated devices.

4.7kV Breakdown voltage measured = termination efficiency of at least 80%

0,0 0,5 1,0 1,5 2,0 2,5 3,00

10

20

30

40

50

RON

= 40 m.cm2

B = 0,74ev C

urr

ent

den

sity

(A

/cm

2 )Voltage (V)

0.4x0.4 0.8x0.8 1.2x1.2 1.6x1.6

Schottky diode forward characteristics versus size.

-4000 -3000 -2000 -1000 01E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1,6 x 1,6 mm2

Rev

erse

Cu

rren

t (A

)

Reverse voltage (V)

Id

Schottky diode reverse characteristics

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

26

4.5 kV- 8A Module fabrication

High voltage packaging technology successfully applied to Si/SiC hybrid module fabrication

• Power Modules have been constructed integrating Si IGBTs and SiC Schottky diodes in chopper configuration

• High voltage 4.5 kV SiC diodes have been successfully assembled with high-voltage Si IGBTs into modules and characterized by Dynex Semiconductor.

3D-High voltage module CAD

view.

Arm electrical equivalent circuit, packaged diodes

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

27

Module

characterisation• The measured on-resistance of the diode is lower and nearer to the theoretical value when measured on packaged devices.

• SiC Schottky diodes show excellent behaviour in forward mode up to 125ºC

1 2 3 4 5 60

4

8

12

16

0

26

52

78

104

JF(A

) (p

er

die

)

I F(A

) (m

od

ule

)

VF(V)

IF (20ºC)

IF (125ºC)

Schottky diode forward characteristics. Module I(V) left, Die J(V) right, at 20ºC and 125ºC

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

28

Module

characterisation

SiC Schottky diode leakage current level compatible with Si-IGBT

•very low leakage current values have been measured at 3.1kV (curve tracer limit) in the reverse mode.

•diode arm leakage current (8µA @ 3.1kV) is in the same range than that of the Si-IGBT arm.

Experimental SiC-Schottky diode and Si-IGBT modules forward characteristics and reverse leakage current at 3.1kV reverse bias.

Diode arm

IGBT arm

Forward 20 °C

50A/cm2 @ VF=3V

Forward 125 °C

26A/cm2 @ VF=3V

Reverse @3.1 kV, 20°C

8µA 3µA

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

29

Module dynamic

switching

Dynamic switching has been performed at 125°C

10µ 11µ 12µ 13µ 14µ-5

0

5

10

15

20

25

30

35

I C (

A)

time (s)

IC (RG=2.2)

IC (RG=7.5)

IC (RG=15)

IC (RG=30)

10µ 11µ 12µ 13µ 14µ0

500

1000

1500

2000

VC

E (

V)

time (s)

VCE (RG=2.2)

VCE (RG=7.5)

VCE (RG=15)

VCE (RG=30)

Current waveform versus gate resistance at 125°C (VCE=1.8kV)

VCE fall time versus gate resistance at 125°C

• 10A, 1800V switching at 125°C

• 4.5kV-8A SiC-Schottky diodes allow significant switching loss reduction and higher temperature working operation in comparison to Si-PIN diodes

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

30

Power MOSFET Fabrication

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

31

Interface density state in the SiC gap near the conduction band

Gate oxide capacitances

0.15 0.20 0.25 0.30 0.35 0.40

1011

1012

1013

TEOS + RTA N2O

TEOS + N2

O2 + TEOS +O

2

O2 + TEOS + Ar

100 nm TEOS

Inte

rfac

e D

ensi

ty S

tate

s [c

m-2eV

-1]

EC-E

T [eV]

N2O + TEOS

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

32

Lateral N-MOSFET test structure

N-MOSFET on 4H-SiC: Thermal N2O /100nm TEOS / 950ºC O2

• Current higher than usual (x4 compared to LiU S230) • Threshold voltage: in the range –1V / 0.5V ( short/long channel)• Channel mobility: 40- 45 cm2/Vs (on epilayer layer annealed at 1600ºC) • Stable up to 15V

0 1 2 3 4 50,0

0,5

1,0

1,5

Vg=2V

Vg=4V

Vg=6V

Vg=8V

Dra

in C

urr

ent

[mA

]

Drain-Source Bias [V]

Vg=10V

-4 -2 0 2 4 6 8 10 12 140

10

20

30

40

50

60

Thermal Oxide

Eff

ecti

ve M

ob

ilit

y ef

f [cm

2 /Vs]

Gate Bias [V]

N2O + TEOS

Channel mobility vs gate bias

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

33

ESCAPEE CURRENT STATUS:

1.2 kV Schottky diodes process stable with good yield

3.5 kV Schottky diodes process repetitive: yield depends on wafer quality

Gate dielectric with channel mobility on implanted layer: 50 cm2/Vs

1.2 kV and 3.5 kV Power MOSFETs in processing

SiC Workshop. EPE 2005, September 12 ESCAPEE Project

34

Si/SiC hybride modulesSi/SiC hybride modules