Session Overview

116
MS/MS Spectral Interpretation Linda Breci Chemistry Mass Spectrometry Facility University of Arizona MS Summer Workshop

description

MS/MS Spectral Interpretation Linda Breci Chemistry Mass Spectrometry Facility University of Arizona MS Summer Workshop. MS/MS Spectral Interpretation small molecule structure Arpad Somogyi Chemistry Mass Spectrometry Facility University of Arizona MS Summer Workshop. Session Overview. - PowerPoint PPT Presentation

Transcript of Session Overview

Page 1: Session Overview

MS/MS Spectral Interpretation

Linda BreciChemistry Mass Spectrometry Facility

University of Arizona

MS Summer Workshop

Page 2: Session Overview

MS/MS Spectral Interpretationsmall molecule structure

Arpad SomogyiChemistry Mass Spectrometry Facility

University of Arizona

MS Summer Workshop

Page 3: Session Overview

Session Overview

• Ways to approach predicting fragment ion formation• Fragmentation examples

– Peptides• Fragmentation mechanism• Sequence a peptide

– Flavonoids– Fatty Acids– Oligonucleotides

Page 4: Session Overview

MS/MS Fragmentation

Few libraries, little software available for data analysis• Why?

Page 5: Session Overview

We need useful information from MS/MS spectra

Few libraries, little software available for data analysis• Why?

For MS/MS you have at least one of each of these:

• Analyze– Q– Q-trap– linear-trap– B sectors– E sectors– FTICR– TOF

• Activate– CID– SID– SORI– IRMPD– ECD– BIRD

• Ionize– EI– CI– ESI– NSI– MALDI– FAB

Page 6: Session Overview

You put them together like this:

* ESI-CID-Q-trap * ESI-SORI-FTICR * FAB-EBSector-SID-TOF * NSI-CID-Q-trap * MALDI-TOF-CID-TOF * NSI-Linear-trap-CID-FTICR * NSI-Q-trap-SID-TOF *

EI-CID-Q-trap * ESI-IRMPD-FTICR * ESI-Q-CID-Q * MALDI-TOF-CID-TOF * NSI-BIRD-FTICR * ESI-

EBSector-CID-EBSector * and on…and on…

Page 7: Session Overview

You put them together like this:

* ESI-CID-Q-trap * ESI-SORI-FTICR * FAB-EBSector-SID-TOF * NSI-CID-Q-trap * MALDI-TOF-CID-TOF * NSI-Linear-trap-CID-FTICR * NSI-Q-trap-SID-TOF *

EI-CID-Q-trap * ESI-IRMPD-FTICR * ESI-Q-CID-Q * MALDI-TOF-CID-TOF * NSI-BIRD-FTICR * ESI-

EBSector-CID-EBSector * and on…and on…

– Different source designs• Example: ESI capillary temperature

– Different analyzer designs• Example: Gas pressure, length of ion path ( timeframe)

And you buy them from different manufacturers

Page 8: Session Overview

How ions will fragment must be considered from fundamentals (rather than rules)

• Ways to approach predicting MS/MS fragment formation

• Literature– Study methods and ID’d spectra for your ion class

• Likely sites of protonation (or deprotonation)– Find proton affinities or acid strengths

• Mobility of protons– Consider the likelihood of multiple cleavage sites– Consider multiple gas-phase configurations

• Likely leaving groups

Page 9: Session Overview

Types of ions formed

• EI (hard ionization)– M+· Radical ion– A lot of fragmentation occurs upon ionization

• CI, FAB, ESI, APCI, MALDI (soft ionization)– [M+H]+ Protonated ion– [M-H]- Deprotonated ion– [M+Na]+ and other metal cations

Today’s Topic

Page 10: Session Overview

EI is not an MS/MS method

• Discussed Day 4

• Libraries of EI spectra are useful

• NIST/EPA/NIH Mass Spectral Library with Search http://webbook.nist.gov/chemistry/

• Libraries are not always helpful, tutorials available– http://www.chem.arizona.edu/massspec/

Page 11: Session Overview

2 Categories of fragments from protonated or deprotonated molecules (CI, FAB, ESI, APCI, MALDI)

• Charge Remote– Fragmentation reactions uninfluenced by charge– High energy process– Charge remote references provided

• Charge Directed– Bond cleavage occurs with involvement of charge– Low energy– Most informative for many molecules

Today’s Topic

Page 12: Session Overview

How ions will fragment must be considered from fundamentals (rather than rules)

• Literature– Study methods and ID’d spectra for your ion class

• Likely sites of protonation (or deprotonation)– Find proton affinities or acid strengths

• Mobility of protons– Consider the likelihood of multiple cleavage sites– Consider multiple gas-phase configurations

• Likely leaving groups

Page 13: Session Overview

How ions will fragment must be considered from fundamentals (rather than rules)

• Literature– Study methods and ID’d spectra for your ion class

• Likely sites of protonation (or deprotonation)– Find proton affinities or acid strengths

• Mobility of protons– Consider the likelihood of multiple cleavage sites– Consider multiple gas-phase configurations

• Likely leaving groups

Page 14: Session Overview

Fragmentation is a multi-step process

H2NNH

NNH

NHOH

O

O

O

O

O

H

Step #1: Create Ions (add 1 or more protons)

ELECTROSPRAY

Page 15: Session Overview

Fragmentation is a multi-step process

H2NNH

NNH

NHOH

O

O

O

O

O

H

H2NNH

NNH

NHOH

O

O

O

O

O

H

H2NNH

NNH

NHOH

O

O

O

O

O

H

H2NNH

NNH

NHOH

O

O

O

O

O

H

Step #1: Create Ions (add 1 or more protons)

Step #2: Add energy (activation)

SID

CID

ELECTROSPRAY

Page 16: Session Overview

H2NNH

NNH

NHOH

O

O

O

O

O

H

y3

b2

a2

H2NNH

NNH

NHOH

O

O

O

O

O

R1

R2

R3

R4

R5

y2

b3

a3

Step #3: Charge Directed Cleavage

Fragmentation is a multi-step process

Neutral + Fragment ion

What are the likely sites of proton location?

Page 17: Session Overview

Model possible sites of proton location(or loss of H) in Serine

H2N CH C

CH2

OH

O

OH

M + H → [M+H]+ Hrxn = -PA (M)

M → [M - H]- + H+ Hrxn = Hacid (M)

Page 18: Session Overview

Model possible sites of proton location(or loss of H) in Serine

H2N CH C

CH2

OH

O

OH

Model with CH3NH2

(methyl amine)

M + H → [M+H]+ Hrxn = -PA (M)

M → [M - H]- + H+ Hrxn = Hacid (M)

Page 19: Session Overview

Model possible sites of proton location(or loss of H) in Serine

H2N CH C

CH2

OH

O

OH

Model with CH3NH2

(methyl amine)

M + H → [M+H]+ Hrxn = -PA (M)

M → [M - H]- + H+ Hrxn = Hacid (M)

Ref: NIST

PA H acid 402.0214.9methyl amine

Page 20: Session Overview

Model possible sites of proton location(or loss of H) in Serine

H2N CH C

CH2

OH

O

OH

Model with CH3COOH(acetic acid)

Model with CH3NH2

(methyl amine)

M + H → [M+H]+ Hrxn = -PA (M)

M → [M - H]- + H+ Hrxn = Hacid (M)

Ref: NIST

PA H acid

348.1187.3acetic acid

402.0214.9methyl amine

Page 21: Session Overview

Model possible sites of proton location(or loss of H) in Serine

H2N CH C

CH2

OH

O

OH

Model with CH3COOH(acetic acid)

Model with CH3NH2

(methyl amine)

Model with CH3OH(methanol)

M + H → [M+H]+ Hrxn = -PA (M)

M → [M - H]- + H+ Hrxn = Hacid (M)

Ref: NIST

PA H acid

382.0180.3methanol

348.1187.3acetic acid

402.0214.9methyl amine

Page 22: Session Overview

Model possible sites of proton location(or loss of H) in Serine

H2N CH C

CH2

OH

O

OH

Model with CH3COOH(acetic acid)

Model with CH3NH2

(methyl amine)

Model with CH3OH(methanol)

M + H → [M+H]+ Hrxn = -PA (M)

M → [M - H]- + H+ Hrxn = Hacid (M)

Ref: NIST

PA H acid

382.0180.3methanol

348.1187.3acetic acid

402.0214.9methyl amine

Sites of Likelyprotonation: NH2 > COOH > OHdeprotonation: COOH > OH > NH2

Page 23: Session Overview

How ions will fragment must be considered from fundamentals (rather than rules)

• Literature– Study methods and ID’d spectra for your ion class

• Likely sites of protonation (or deprotonation)– Find proton affinities or acid strengths

• Mobility of protons– Consider the likelihood of multiple cleavage sites– Consider multiple gas-phase configurations

• Likely leaving groups

Page 24: Session Overview

Proton mobility

• Intramolecular proton transfer influences– number of site-directed fragmentations– amount of energy required for fragmentation

• Intramolecular proton transfer affected by– site basicity– gas-phase configuration

• Examples that follow:– Spectra of increasingly basic peptides– Overview chart demonstrating proton mobility (or lack of)– Spectra of peptide conformers

Page 25: Session Overview

Ref: Gu, 1999

CompareGas Phase Basicity

Arg (R):240.6 kcal/mol

Lys (K):227.3 kcal/mol

His (H):227.3 kcal/mol

50 eV(SID)

40 eV(SID)

40 eV(SID)

Page 26: Session Overview

Pairwise bond cleavage between amino acids (Xxx-Zzz)

Z z z

1

2

3

4

5

6

7

8

9

10 Most Abundant

LeastAbundant

Page 27: Session Overview

Peptides with more basic Arg (R) vs. Lys (K)

.............R 1+ .............K

Page 28: Session Overview

Prediction based on model peptides: Selective Cleavage at Asp-Xxx will depend on number of

“Mobile” Protons

H H

or Arg or Lys

His Arg (Lys)Asp

H HArg (Lys)

Asp

H HArg (Lys)

Asp

Huang, Wysocki, Tabb, Yates Int. J. Mass Spectrom. 219, (1), 233-244, 2002

Page 29: Session Overview

Peptides with basic Arg (R) 1 proton vs. 2 protons

1+ .............R 2+

Page 30: Session Overview

H2N CH C

CH3

O

HN CH C

CH3

O

N

C

O

HN CH C

CH3

O

HN CH C

CH3

OH

O

Gas-phase conformation influences MS-MS spectra observed

Ala-Ala-Pro-Ala-Ala

Most Natural occurring amino acids have L configuration at the chiral center (stereospecific biosynthesis)

Page 31: Session Overview

Calculated structure of [AAPAA + H]+

Many sites of possible interaction

No solvent in the gas phase!

Page 32: Session Overview

Gas-phase confirmation can influence MS-MS spectra observed

Peptides containing proline stereoisomers fragment differently

All L-amino acidsAll L-amino acids

except central residueAVDPLG

0 100 200 300 400 5000

20

40

60

80

100

MH+

PLb

3

y3

a4

b4

SID spectra of [AV(D)

PLG+H]1+ (29eV)

m/z

0 100 200 300 400 5000

50

100

150

200

250

300

350

PL

y3

MH+

b4

SID spectra of [AV(L)

PLG+H]1+ (29eV)

m/z

Page 33: Session Overview

Gas-phase confirmation can influence MS-MS spectra observed

Peptides containing proline stereoisomers fragment differently

All L-amino acidsAll L-amino acids

except central residueAVDPLG

0 100 200 300 400 5000

20

40

60

80

100

MH+

PLb

3

y3

a4

b4

SID spectra of [AV(D)

PLG+H]1+ (29eV)

m/z

0 100 200 300 400 5000

50

100

150

200

250

300

350

PL

y3

MH+

b4

SID spectra of [AV(L)

PLG+H]1+ (29eV)

m/z

Page 34: Session Overview

Gas-phase confirmation can influence MS-MS spectra observed

Peptides containing proline stereoisomers fragment differently

All L-amino acidsAll L-amino acids

except central residueAVDPLG

0 100 200 300 400 5000

20

40

60

80

100

MH+

PLb

3

y3

a4

b4

SID spectra of [AV(D)

PLG+H]1+ (29eV)

m/z

0 100 200 300 400 5000

50

100

150

200

250

300

350

PL

y3

MH+

b4

SID spectra of [AV(L)

PLG+H]1+ (29eV)

m/z

Page 35: Session Overview

Statistical analysis of cleavage at the Xxx-Pro bond

Val HisAsp Ile Leu Lys Glu Phe Tyr Ala Gln Thr Asn Arg Trp Ser Gly Pro

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Rel

ativ

e In

tens

ity [

(a+

b+y)

Xxx

-Pro /

(a+

b+y)

all]

Breci, Tabb, Yates, Wysocki, (2003) Analytical Chem. 75:1963-1971

Page 36: Session Overview

Statistical analysis of cleavage at the Xxx-Pro bond

Val HisAsp Ile Leu Lys Glu Phe Tyr Ala Gln Thr Asn Arg Trp Ser Gly Pro

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Rel

ativ

e In

tens

ity [

(a+

b+y)

Xxx

-Pro /

(a+

b+y)

all]

Breci, Tabb, Yates, Wysocki, (2003) Analytical Chem. 75:1963-1971

Asp, His = Selective cleavage residuesVal, Ile, Leu = Bulky aliphatic side chains

Page 37: Session Overview

How ions will fragment must be considered from fundamentals (rather than rules)

• Literature– Study methods and ID’d spectra for your ion class

• Likely sites of protonation (or deprotonation)– Find proton affinities or acid strengths

• Mobility of protons– Consider the likelihood of multiple cleavage sites– Consider multiple gas-phase configurations

• Likely leaving groups

Page 38: Session Overview

Likely Leaving Groups

• Bond cleavage is dependent on various factors including:– Leaving Groups– Neighboring group participation reactions– Intermediates (ion-neutral complex)

• For [M+H]+ ions the leaving group is a neutral– lower methyl cation affinity is one measure of likelihood– Compilations available in the literature– Related to proton affinity

Page 39: Session Overview

Ref: Bartmess, 1989

(kcal/mol)

Page 40: Session Overview

Proton Affinity vs. Methyl Cation Affinity

Ref: Bartmess, 1989

Page 41: Session Overview

Some fragmentation studies & basics

• Few examples from literature – Cannot talk about all classes of compounds– These examples suggest problem solving approaches

• Examples:– Peptides

• Fragmentation mechanism

• Sequence a peptide

– Flavonoids– Fatty Acids– Oligonucleotides

Page 42: Session Overview

Peptides

• Product ion spectra contain many types of fragment ions– charge directed– charge remote– internal fragments– immonium ions

• Important for sequencing– amino acid determined from mass between peaks in spectrum– “y” ions series – “b” ions series– immonium ions (identify amino acids in the peptide)– “a” ions (confirm “b” ion after a loss of CO, 28 amu)

• Presented here:– peptide fragment ions– a mechanism for fragment ion formation – a peptide to sequence

Page 43: Session Overview

Peptide bond fragment ions

Peptide fragment ions

H2N CH C

H

O

HN CH C

H

O

HN CH C

H

O

HN CH C

H

OH

O

CH

R

H2N C

N

CH

R'O

H

Internal immonium ion Amino acid immonium ion

a2

b2

c2

x2

y2

z2

H2N CH

R

Page 44: Session Overview

Protonation occurs at amide oxygen or nitrogen

Ref: Yalcin, 1996

(Peptide) CH C

R1

O

N CH C N CH C

R3

(Peptide)

O

O

R2

H H

H

Page 45: Session Overview

Protonation occurs at amide oxygen or nitrogen

Ref: Wysocki, 2000

(Peptide) CH C

R1

O

N CH C N CH C

R3

(Peptide)

O

O

R2

H H

H

Page 46: Session Overview

A mechanism of peptide fragmentation

(Peptide) CH C

R1

O

N CH C N CH C

R3

(Peptide)

O

O

R2

H H

H

(1) positive charge(2) Nucleophilic attack

Ref: Wysocki, 2000

Page 47: Session Overview

A mechanism of peptide fragmentation

(3) cyclic intermediate

(Peptide) CH C

R1

O

N CH C N CH C

R3

(Peptide)

O

O

R2

H H

H

(1) positive charge(2) Nucleophilic attack

(Peptide) CH

R1O

N R2

OH

H

HN CH C

CH3

(Peptide)

O

Ref: Wysocki, 2000

Page 48: Session Overview

A logical mechanism of peptide fragmentation

(4) Rearrangement

(Peptide) CH

R1O

N R2

OH

H

HN CH C

CH3

(Peptide)

O

(Peptide) CH

R1O

HN R2

OH

HN CH C

CH3

(Peptide)

O

(3) cyclic intermediate

Ref: Wysocki, 2000

Page 49: Session Overview

A logical mechanism of peptide fragmentation

(Peptide) CH

R1O

HN R2

O

H2N CH C

CH3

(Peptide)

O

H2N CH C

R3

(Peptide)

O

(Peptide) CH

R1O

N R2

O

H

b oxazolone ion neutral

+

Ref: Wysocki, 2000

Page 50: Session Overview

A logical mechanism of peptide fragmentation

oxazolone neutral(or other structure)

y ion

+

(Peptide) CH

R1O

HN R2

O

H2N CH C

CH3

(Peptide)

O

(Peptide) CH

R1O

N R2

O

H2N CH C

R3

(Peptide)

O

H

Ref: Wysocki, 2000

Page 51: Session Overview

Peptide bond fragment ions

Peptide fragment ions

H2N CH C

H

O

HN CH C

H

O

HN CH C

H

O

HN CH C

H

OH

O

CH

R

H2N C

N

CH

R'O

H

Internal immonium ion Amino acid immonium ion

a2

b2

c2

x2

y2

z2

H2N CH

R

Page 52: Session Overview

Peptide Sequencing

mass amino acid   

Alanine ALA A 71.09

Arginine ARG R 156.19

Aspartic Acid ASP D 115.09

Asparagine ASN N 114.11

Cysteine CYS C 103.15

Glutamic Acid GLU E 129.12

Glutamine GLN Q 128.14

Glycine GLY G 57.05

Histidine HIS H 137.14

Isoleucine ILE I 113.16

Leucine LEU L 113.16

Lysine LYS K 128.17

Methionine MET M 131.19

Phenylalanine PHE F 147.18

Proline PRO P 97.12

Serine SER S 87.08

Threonine THR T 101.11

Tryptophan TRP W 186.12

Tyrosine TYR Y 163.18

Valine VAL V 99.14

C

O

HN CH C

CH3

O

HN CH C

CH2

O

C

OH

O

HN

71 u. 115 u.

Ala Asp

Page 53: Session Overview

LEARNING CHECK

Peptide Sequencing Exercise

Page 54: Session Overview

Ion Currentover 60 min

MS

MS/MS

Page 55: Session Overview

Peptide precursor ions observed by MS

MH+

m/z = 1141.3

[M+ 2H]2+

m/z = 571.2

calculation of MH+

571.2 m/z measured x 2 1,142.4 [M+2H] - 1.0 1,141.4 [M+H]

Page 56: Session Overview

MS-MS of 571.2

895.25

Page 57: Session Overview

Peptide Sequencing

mass amino acid   

Alanine ALA A 71.09

Arginine ARG R 156.19

Aspartic Acid ASP D 115.09

Asparagine ASN N 114.11

Cysteine CYS C 103.15

Glutamic Acid GLU E 129.12

Glutamine GLN Q 128.14

Glycine GLY G 57.05

Histidine HIS H 137.14

Isoleucine ILE I 113.16

Leucine LEU L 113.16

Lysine LYS K 128.17

Methionine MET M 131.19

Phenylalanine PHE F 147.18

Proline PRO P 97.12

Serine SER S 87.08

Threonine THR T 101.11

Tryptophan TRP W 186.12

Tyrosine TYR Y 163.18

Valine VAL V 99.14

C

O

HN CH C

CH3

O

HN CH C

CH2

O

C

OH

O

HN

71 u. 115 u.

Ala Asp

Page 58: Session Overview

895.25

Page 59: Session Overview

895.25

Page 60: Session Overview

895.25

Page 61: Session Overview

FPhe

895.25

Page 62: Session Overview

FPhe

GGly

895.25

Page 63: Session Overview

FPhe

GGly

TThr

895.25

Page 64: Session Overview

FPhe

GGly

TThr

DAsp

895.25

Page 65: Session Overview

FPhe

GGly

TThr

DAsp

MMet

895.25

Page 66: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

895.25

Page 67: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

Page 68: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

Build the peptide:selected peptide = 1141.4Estimate the number of amino acids

Page 69: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

Possibly 10 amino acidsConsider a y-ion series

Page 70: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

1141.4 selected MH+

y series ions

1141

Page 71: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

1141.4 selected MH+

1042.6 Largest fragment observedy series ions

11411042

Page 72: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

1141.4 selected MH+

1042.6 Largest fragment observed 98.8 differenceIs there an amino acid with that mass?

y series ions

11411042

Page 73: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

99 = ValineThe missing amino acidWhat is the next mass observed?y series ions

11411042

V

Page 74: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V

895

Page 75: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F

895

Page 76: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G

895

Page 77: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T

895

Page 78: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D

895

Page 79: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M

895

Page 80: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D

895

Page 81: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

895

Page 82: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

If this is a y-ion series:262 = smallest ion in the serieswhat does it represent?

Page 83: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

All amino acids in table are peptide bond to peptide bond

C

O

HN CH C

CH3

O

HN CH C

CH2

O

C

OH

O

HN

71 u. 115 u.

Ala Asp

Page 84: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

We’re missing one N-terminal hydrogen

C

O

HN CH C

CH3

O

HN CH C

CH2

O

C

OH

O

HN

71 u. 115 u.

Ala Asp

H

Page 85: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

We’re missing one C-terminal OH Group

C

O

HN CH C

CH3

O

HN CH C

CH2

O

C

OH

O

HN

71 u. 115 u.

Ala Asp

OH

H

Page 86: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

And the ionizing proton Total = 19 amu

C

O

HN CH C

CH3

O

HN CH C

CH2

O

C

OH

O

HN

71 u. 115 u.

Ala Asp

OH

H

H+

Page 87: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

262 = smallest identified fragment- 19 = mass of H + OH + H243 = mass of missing amino acids What amino acids?

Page 88: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

262 = smallest identified fragment- 19 = mass of H + OH + H243 = mass of missing amino acids What amino acids?

Hint:Tryptic!

Page 89: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N

262895

87 = Serine156 = Arginine243 19 = mass of H + OH + H262

115 = Aspartic Acid128 = Lysine243 19 = mass of H + OH + H262

Page 90: Session Overview

FPhe

GGly

TThr

DAsp

MMet

DAsp

NAsn

895.25

__ __ __ __ __ __ __ __ __ __

y series ions

11411042

V F G T D M D N S R

262895

87 = Serine156 = Arginine243 19 = mass of H + OH + H262

Page 91: Session Overview

Some fragmentation studies & basics

• Few examples from literature – Cannot talk about all classes of compounds– These examples suggest problem solving approaches

• Examples:– Peptides

• Fragmentation mechanism

• Sequence a peptide

– Flavonoids– Fatty Acids– Oligonucleotides

Page 92: Session Overview

Flavonoids

• Common secondary plant metabolite– Including flavonoid aglycones, O-glycosides, C-glycosides (arrows)

• Need reliable methodology for analysis

Ref: Cuyckens 2004

Page 93: Session Overview

Flavonoids

• Group classification, chalcone aglycones, etc.

Ref: Cuyckens 2004

Page 94: Session Overview

Flavonoids

• Group classification, chalcone aglycones, etc. • Reported structures

400

450

350

300

19

250

Ref: Cuyckens 2004

Page 95: Session Overview

Ion nomenclature for flavonoid glycosides(apigenin 7-O-rutinoside illustrated)

nomenclature suggested by Ma, 1997 and Domon,1988

Page 96: Session Overview

Ion nomenclature for flavonoid glycosides(apigenin 7-O-rutinoside illustrated)

A and B ions (retro-Diels-Alder reactions) are most diagnostic: - provide number and type of substituents in A & B ring

Page 97: Session Overview

Low-energy CID (Fab-Magnetic sector-Quadrupole)

luteolin kempferol

flavonetypical1,3B+

0,4B+

0,4B+-H2O

flavonoltypical0,2A+

0,2A+-CO1,4A++2H1,3B+-2H

Ref: Ma, 1997

Page 98: Session Overview

Low-energy CID (Fab-Magnetic sector-Quadrupole)

luteolin (flavone) kempferol (flavonol)

Page 99: Session Overview

Low-energy CID (Fab-Magnetic sector-Quadrupole)

kempferol (flavonol)luteolin (flavone)

Page 100: Session Overview

Some fragmentation studies & basics

• Few examples from literature – Cannot talk about all classes of compounds– These examples suggest problem solving approaches

• Examples:– Peptides

• Fragmentation mechanism

• Sequence a peptide

– Flavonoids– Fatty Acids– Oligonucleotides

Page 101: Session Overview

Fatty Acids

• Fragments formed by cleavage at alkyl bond can occur by charge remote fragmentation (generally at higher energies)– High Energy: Sector (KeV)– Low Energy: QQQ, Qtrap, FTICR– Intermediate Energy: Sector hybrids, TOF/TOF (collision gas, i.e. Xe)

• Homolytic bond-fragmentation mechanism (C--C → C- + -C radicals)

• 1,4-H2 elimination mechanism (Jensen, Tomer, Gross, 1985)

– X = O- or OLi2+

Ref: Jensen, 1985

Page 102: Session Overview

Fatty Acids

• H-atom cleavage CRF mechanism (Claeys & Van den Heuvel, 1994)– X = OLi2+ or OBuLi+

Ref: Claeys, 1994

Page 103: Session Overview

Stearic acid (ESI-Sector-OATOF, 400eV collision, Xe)

Ref: Griffiths, 2003

Page 104: Session Overview

Oleic acid (ESI-Sector-OATOF, 400eV collision, Xe)

Ref: Griffiths, 2003

Page 105: Session Overview

docosahexaenoic acid ANSA derivative (Sector, 400eV collision, Xe)

Ref: Griffiths, 2003

Gaps due to double bond

Page 106: Session Overview

docosahexaenoic acid ANSA derivative (QQQ, 30 eV collision, Ar)

Ref: Griffiths, 2003

Gaps due to double bond

Page 107: Session Overview

Some fragmentation studies & basics

• Few examples from literature – Cannot talk about all classes of compounds– These examples suggest problem solving approaches

• Examples:– Peptides

• Fragmentation mechanism

• Sequence a peptide

– Flavonoids– Fatty Acids– Oligonucleotides

Page 108: Session Overview

Oligonucleotides

• McLuckey Nomenclature for multiply charged anions– Gentle collisional activation = base loss– Moderate conditions = consecutive fragmentations

Ref: McLuckey, 1993

Page 109: Session Overview

Comparison of activation methodsCAD (CID) vs. IRMPD (Quadrupole Ion trap)

Ref: Keller, 2004

IRMPD:Low mass observed- PO3

-1

-base anions-Complete coverage

Parent-3

Page 110: Session Overview

Comparison of activation methodsCAD (CID) vs. IRMPD (Quadrupole Ion trap)

Ref: Keller, 2004

CAD:Loss of base-provides little info -leads to backbone cleavagesComplete coverage

IRMPD:Low mass observed- PO3

-1

-base anions-Complete coverage

Parent-3

Page 111: Session Overview

Comparison of activation methodsCAD (CID) vs. IRMPD (Quadrupole Ion trap)

Ref: Keller, 2004

CAD:Loss of base-provides little info -leads to backbone cleavagesComplete coverage

IRMPD:Low mass observed- PO3

-1

-base anions-Complete coverage

Parent-3

Page 112: Session Overview

Steps for interpretation of oligonucleotide mass spectra for determination of sequence

Ref: Ni, 1996

Page 113: Session Overview

Steps for interpretation of oligonucleotide mass spectra for determination of sequence

Ref: Ni, 1996

Page 114: Session Overview

Comments on steps to interpretation

Ref: Ni, 1996

Page 115: Session Overview

General MS/MS

NIST Chemistry WebBook http://webbook.nist.gov/chemistry/

Rossi, D.T., Sinz, M.W., Mass Spectrometry in Drug Discovery, 2002, Marcel Dekker, Inc., New York, NY.

Bartmess, J.E., Gas-Phase Equilibrium Affinity Scales and Chemical Ionization Mass-Spectrometry, Mass Spec. Reviews,1989, 8:297-343. (Affinity Tables)

McCloskey, J.A., Ed., Tandem Mass Spectrometry, Methods in Enzymology, 1990, Vol 193, Academic Press, N.Y.

Peptides

Gu, C., Somogyi, A., Wysocki, V.H., Medzihradszky, K.F., Fragmentation of protonated oligopeptides XLDVLQ (X=L, H, K or R) by surface induced dissociation: additional evidence for the ‘mobile proton’ model., Analytica Chem. Acta, 1999, 397:247-256

Yalcin, T., Csizmadia, I.G., Peterson, M.R., Harrison, The Structure and Fragmentation of Bn (n ≥ 3) Ions in Peptide Spectra., A.G., J. Am. Soc. Mass Spectrom., 1996, 6, 1164-1174.

Wysocki, V.H., Tsaprailis, G., Smith, L., Breci, L., Mobile and localized protons: a framework for understanding peptide dissociation, J. Mass Spectrom., 2000, 35, 1399-1406.

Flavonoids

Cuyckens, F., Claeys, M., Mass spectrometry in the structural analysis of flavonoids, J. Mass Spectrom. 2004; 39: 1–15.

Ma, Y.L., Li, Q.M., Van den Heuvel, H., Claeys, M., Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry, RCMS, 1997, 11: 1357.

Suggested Reading List & References

Page 116: Session Overview

Domon, B., Costello, C.E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J., 1988, 5:397.

Fatty Acids & Charge Remote

Griffiths, W., Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids, Mass Spec. Reviews, 2003, 22, 81-152.

Jensen, N.J., Tomer, K.B., Gross, M.L., Gas phase ion decomposition occurring remote to a charge site, J.Am.Chem.Soc., 1985, 107:1863-1868.

Claeys M., Van den Heuvel, H., Radical processes in remote charge fragmentations of lithium cationized long-chain alkenyl and alkadienyl salicylic acids, Biol. Mass Spec., 1994, 23:20-26.

Gross, M.L., Charge-remote fragmentations – method, mechanism and applications, Int.J.Mass Spec.Ion Process., 1992, 118: 137-165.

Wysocki, V.H., Ross, M.M., Charge-remote fragmentation of gas-phase ions – mechanistic and energetic considerations in the dissociation of long-chain functionalized alkanes and alkenes, Int.J.Mass Spec.Ion Process, 1991, 179-211.

Oligonucleotides

McLuckey, S.A., Habibi-Goudarzi, S., Decompositions of multiply Charged Oligonucleotide Anions, J.Am.Chem.Soc., 1993, 115:12085-12095.

Keller, K.M., Brodbelt, J.S., Collisionally activated dissociation and infrared multiphoton dissociation of oligonucleotides in a quadrupole ion trap, Anal.Chem., 2004, 326:200-210.

Ni, J.S., Pomerantz, S.C., Rozenski, J., Zhang, Y.H., McCloskey, J.A., Interpretation of oligonucleotide mass spectra for determination of sequence using electrospray ionization and tandem mass spectrometry, Anal.Chem., 1996, 68:1989-1999.

Suggested Reading List & References (2)