Seminario Avanzado de Teoría de Grafos

19
Intersection graphs Trees and block graphs How to generalize trees? Block graphs The property of cutpoints in trees is equivalent to every biconnected component (block) is a vertex or an edge. Block graph: every biconnected component (block) is a clique. Forbidden induced subgraphs: C n , n 4, diamond. leaves ! end blocks Many algorithms for trees extend to block graphs. Diamond-free every edge belongs to one maximal clique. diamond Flavia Bonomo (DC–FCEN–UBA) SATG 2016 9 / 52

Transcript of Seminario Avanzado de Teoría de Grafos

Page 1: Seminario Avanzado de Teoría de Grafos

Intersection graphs Trees and block graphs

How to generalize trees? Block graphs

The property of cutpoints in trees is equivalent to every biconnectedcomponent (block) is a vertex or an edge.

Block graph: every biconnected component (block) is a clique.

Forbidden induced subgraphs: Cn, n ≥ 4, diamond.

leaves ! end blocks

Many algorithms for trees extend to block graphs.

Diamond-free ⇔ every edge belongs to one maximal clique.

diamond

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 9 / 52

Page 2: Seminario Avanzado de Teoría de Grafos

Intersection graphs Trees and block graphs

Intersection graphs

An intersection graph of a (finite) family of sets F has one vertex for eachmember F ∈ F and two vertices F ,F ′ are adjacent iff F ∩ F ′ 6= ∅.

xx

x

x

x

x

xx

x

x

Is every graph an intersection graph?

Intersection graphs of specific objects can have interesting properties.

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 10 / 52

Page 3: Seminario Avanzado de Teoría de Grafos

Intersection graphs Trees and block graphs

Intersection model for block graphs?

Line graph of a graph: intersection of its edges.

G L(G) G L(G)

Line graphs of trees?

Line graphs of trees ( block graphsFlavia Bonomo (DC–FCEN–UBA) SATG 2016 11 / 52

Page 4: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

More general: chordal graphs

A graph is chordal if it contains no induced Cn, n ≥ 4, that is, if everycycle of length at least 4 has a chord.

Also called triangulated or rigid circuit.

[recommended lecture] Blair and Peyton, An introduction to chordalgraphs and clique trees

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 12 / 52

Page 5: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Minimal vertex separators

A subset S ⊂ V is a separator if two vertices that where in the sameconnected component of G are in different connected components ofG \ S .

If a and b are two vertices separated by S , it is called ab-separator.

S is a minimal separator (resp. ab-separator) if no proper subset of Sis a separator (resp. ab-separator).

S is a minimal vertex separator if it is a minimal ab-separator forsome pair of vertices ab.

A minimal vertex separator is not necessarily a minimal separator.

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 13 / 52

Page 6: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Minimal vertex separators

Theorem (Dirac, 1961)

A graph is chordal if and only if every minimal vertex separator is complete.

⇐) Let v0v1v2...vk , k ≥ 3, a cycle and consider v0v2. Either v0v2 is a chord orthere is a v0v2-separator, that should contain v1 and some vi , 3 ≤ i ≤ k. Since itis complete, v1vi is a chord.

⇒) Let S be a minimal ab-separator andsuppose x , y in S non adjacent. Let A,B be the connected components ofG \ S containing a and b, resp. Since Sis minimal, both x and y have neighborsin A and B. Let PA and PB be pathsbetween x and y with interior in A andB, resp., of minimum length. Then thecycle xPAyPBx has no chords, acontradiction. 2

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 14 / 52

Page 7: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Perfect elimination ordering

A vertex v is simplicial if N[v ] induces a complete subgraph on G .

An ordering v1, v2, . . . , vn of the vertices of a graph G is a perfectelimination ordering if, for every 2 ≤ i ≤ n − 2 vi is simplicial inG [vi , vi+1, . . . , vn].

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 15 / 52

Page 8: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Perfect elimination ordering

Theorem (Dirac, 1961)

Every chordal graph has a simplicial vertex. If it is not complete, then ithas two non-adjacent simplicial vertices.

Proof. Complete graph or n = 2, trivial. Otherwise, induction using minimalvertex separators. 2

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 16 / 52

Page 9: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Perfect elimination ordering

Theorem (Fulkerson and Gross, 1965)

A graph is chordal if and only if it has a PEO.

Proof. (⇒) By induction. (⇐) Consider a cycle and the vertex with smallestlabel. 2

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 17 / 52

Page 10: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Algorithmic problems in chordal graphs

How can we solve maximum clique, maximum stable set, minimumcoloring and minimum clique-cover on chordal graphs?

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 18 / 52

Page 11: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Algorithmic problems in chordal graphs

Let v be a simplicial vertex:

either v belongs to the maximum clique or not... but v belongs to just onemaximal clique! so...

ω(G ) = max{|N[v ]|, ω(G − v)}

Note: there is a linear number of maximal cliques!

a maximum stable set either contains v or contains one of its neighbors w ,but since N[w ] ⊇ N[v ], we can replace it by v , so...

α(G ) = 1 + α(G − N[v ])

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 19 / 52

Page 12: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Algorithmic problems in chordal graphs

Let v be a simplicial vertex:

We can extend an optimum coloring of G − v to G without adding colorsunless χ(G − v) < d(v). But in that case we add one new color and, asN[v ] is a clique, it is optimum. So...

χ(G ) = max{|N[v ]|, χ(G − v)}

We should cover v and it belongs to just one maximal clique, so we useN[v ] and continue...

τ(G ) = 1 + τ(G − N[v ])

Do these recursions recall something?

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 20 / 52

Page 13: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Chordal graphs are perfect

For every chordal graph G , ω(G ) = χ(G ) and α(G ) = τ(G ), and it holdsfor the induced subgraphs because the class is hereditary.

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 21 / 52

Page 14: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Minimum dominating set?

We can always avoid using a simplicial vertex (unless G is a clique).But... the problem is NP-complete.

Given a SAT formula on n variables and k clauses, is there a dominatingset in the graph of cardinality n?Flavia Bonomo (DC–FCEN–UBA) SATG 2016 22 / 52

Page 15: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Split graphs

The minimum dominating set problem is NP-complete even in splitgraphs, a subclass of chordal graphs.

A graph G is split if V (G ) can be partitioned into a clique and astable set.

Split = {C4,C5, 2K2}-free

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 23 / 52

Page 16: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Clique trees

A clique tree of a graph G is a tree T (G ) whose vertices are the maximalcliques of G and such that, for each vertex v ∈ G the maximal cliques ofG containing v form a connected subgraph of T (G ).

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 24 / 52

Page 17: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Clique trees

Theorem (Gavril/Buneman/Walter, 1974)

A graph is chordal iff it admits a clique tree.

How can we recover minimal vertex separators from a clique tree?

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 25 / 52

Page 18: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Finding a clique tree

Theorem (Bernstein and Goodman, 1981)

Every clique tree of a chordal graph G is a maximum weight spanning treeof the 2-weighted clique graph of G (Kw

2 (G )), and conversely.

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 26 / 52

Page 19: Seminario Avanzado de Teoría de Grafos

Intersection graphs Chordal graphs

Chordal graphs as intersection graphs

Theorem (Gavril, 1974)

A graph is chordal iff it is the intersection graph of some subtrees of a tree.

Flavia Bonomo (DC–FCEN–UBA) SATG 2016 27 / 52