SEMICONDUCTOR QUANTUM WELL AND QUANTUM DOT...

60
SEMICONDUCTOR QUANTUM WELL AND QUANTUM DOT HETEROSTRUCTURES: LASERS AND LIGHT EMITTING DIODES FOR VISIBLE AND UV SPECTRAL REGION G. P. Yablonskii Stepanov Institute of Physics of Belarus Academy of Sciences Laboratory of Physics and Technique of Semiconductors Independence Ave. 68 Minsk Belarus E-mail: [email protected] INTERNATIONAL CONFERENCE ON PHYSICS OF LASER CRYSTALS - Radiation Processes in Nano and Bulk Materials

Transcript of SEMICONDUCTOR QUANTUM WELL AND QUANTUM DOT...

  • SEMICONDUCTOR QUANTUM WELL AND

    QUANTUM DOT HETEROSTRUCTURES:

    LASERS AND LIGHT EMITTING DIODES FOR

    VISIBLE AND UV SPECTRAL REGION

    G. P. Yablonskii

    Stepanov Institute of Physics of Belarus Academy of SciencesLaboratory of Physics and Technique of SemiconductorsIndependence Ave. 68 Minsk BelarusE-mail: [email protected]

    INTERNATIONAL CONFERENCE ON PHYSICS OF LASER CRYSTALS - Radiation Processes in Nano and Bulk Materials

  • OUTLINE

    1. HETEROSTRUCTURES: basic conception, history, materials, technologies

    2. LASERS3. LIGHT EMITTING DIODES - LEDs4. ORGANIC LEDs5. ORIGINAL RESULTS

  • 1. HETEROSTRUCTURES: basic conception, history,

    materials, technologies

  • SOME BASIC DEFINITIONS:

    Heterostructure: Crystal consisted of one ore more junctions between different semiconductors with different Eg, lattice constants, layer thikness Eg > 2 eV wide band-gap semiconductors

    Design: Substrate + a sequence of thin layers

    Potential well:

    Active layer Ega < Egc of claddings (barriers) Band offset: ΔEv > 0, ΔEc < 0

    Classical: Lxa «Ly, Lz, Lxa » λΒ = h/p,

    Lxa » aB λΒ is the de Broglie wavelength of the carriers aB is the Bohr exciton radius

    Quantum well:

    Lxa « Ly, Lz and Lxa ~ λΒ, aB Quantum size effect:

    the carrier movement in the x direction is quantized the carrier energy becomes definite discrete

    Optical and carrier confinement due to ΔEg and Δnr Heterostructure types:

    Single heterostructures Double heterostructures Single, double and multiple QWHs Separate confinement QWHs Graded-Index SCH

  • HETEROSTRUCTURES: HISTORY AND PROGRESS

    GaAs BASED HETEROSTRUCTURES 1963 conception of double heterostructure lasers:

    double injection, c&o confinement Alferov, KazarinovKroemer

    1966 1967

    GaAsP-lattice mismatched DH LDs, 77K AlGaAs-lattice matched heterostructures

    Alferov et al. Rupprecht et al.

    1969 AlGaAs-DH LD: Jthr=4300 A/cm2, RT, pulse, 770 nm, LED, transistors, solar sell elements

    Alferov et al.

    1970 AlGaAs LDs, CW, RT, Jthr=940 A/cm2

    InGaAsP: from IR to visible

    Alferov et al. Hayashi, Panish Alferov et al. Antipas et al.

    1974 Quantum sized effect in GaAs/AlGaAs (multi) graded structure of kabs, hν = F(dw) Resonance tunneling

    Dingle et al. Esaki, Chang, Tsu et al.

    1975

    First AlGaAs/GaAs MQW optically pumped laser, T = 15 K, hν = 1.53 eV

    Van der Ziel, Dingle et al.

    1978 AlGaAs/GaAs LD, RT, QUANTUM WELLJthr=3*103 A/cm2, λ = 800 − 840 nm

    Dupius, Dapcus, Holonyak et al.

    1980 QW heterostructures: transistors, Quantum Hall effect

    Mimura et al. Klitzing et al.

    1982 AlGaAs/GaAs GRINSH, Jthr=160 A/cm2 Tsang et al. 1983 GaAs/InGaAs strained LD, RT, CW Holonyak et al. 1996 1997

    InGaAs/GaAs QDs LDs, RT, CW Jthr=97 A/cm2, P = 160 mW, hν = 1.3 eV

    Bimberg, Park, Alferov et al,.

    2000 InGaAs/GaAs QD transverse&VCSEL, λ =1.3 μm, J

  • ZnSe BASED HETEROSTRUCTURES

    1990 p-ZnSe:N Park et al. 1991 ZnSe/ZnCdSe QW SCH LD, T = 77 K

    λ = 510 nm Qiu et al. Haase et al.

    1997 2000

    RT, CW, t = 400 h, Jthr = 500 A/cm2, Ithr = 25-30 A, P = 20 mW

    SONY Okuyama et al Landwehr

    2000 ZnSe/CdSe QD lasers, RT, Ithr = 4 kW/cm2 Kopjev, Ivanov Alferov, Usikov et al.

    2000 ZnSe “white” LED: blue LED+orange PL Blue-green-orange Mixed-Colour LEDs I = 20 mA – 2 mW, U = 2.7 V, t > 800 h Blue-red ZnSe/BeTe LEDs: - 1000 h

    Sumimoto Ltd Reusher, Ivanov et al.

    1994 1996

    ZnSe based QWHs: Stark effect, self-electro-optics effects, bistable switchers, modulators

    Ebeling, Gutovskii et al., Marquardt, Heuken et al. Cavenett et al.

    1999 2001

    ZnMgSSe/ZnSe. Theory: 2D e-h plasma band gap renormalisation, Auger effect in trions.

    Poklonski et al.

    1997 2000

    ZnMgSSe/ZnSe SCH MQW OPL: Tmax=612 K, λ = 440–490 nm, Ithr=20 kW/cm2 Effect of inherent laser annealing

    Yablonskii, Gurskii, Kalish, Heuken, Heime et al.

    2003 ZnMgSSe/ZnCdSe quantum dot laser pumped by the GaN blue laser

    Yablonskii, Gur-skii, Lutsenko, Ivanov, Heuken et al.

  • GaN BASED HETEROSTRUCTURES

    1992 p-GaN:Mg e-beam annealing thermal annealing

    Akasaki et al. Nakamura et al.

    1994 1995 2000

    InGaN/GaN QW LED, T = 300 K T ~ 5*104 h, T = 325 K, η = 16% Al(In)GaN/Al(In)GaN QW LED: V=2-8 V, 340 – 540 nm, I=0.2-20 A, P = 10 mW

    Nakamura et al. Nichia, HP, Cree EMCOR,XEROX Otsuka et al.

    1996 InGaN/GaN LD, T = 300 K, pulsed, λ =419 nm, U = 28 V, Jthr = 13 kA/cm2

    Nakamura et al.

    1998 2000

    InGaN/GaN SCH LD, CW, RT, λ =410 nm, P = 2 mW (104 h), P=30 mW (150 h, 320 K) Jthr=3.6 kA/cm2, Ithr = 43 mA, Uthr= 4.3 V. 10 (30) mW, 60oC 2000 (500) h; P=40 mW

    Nakamura et al.

    2000 InGaN/GaN QW LD, T = 300 K, λ =450 nm (4.6 kA cm-2, 6.1 V), t = 200 h, P = 5 mW

    Nakamura et al.

    1997 2000

    Al(In)Ga/AlGaN QD OPL T = 20 K, hν = 3.48 eV, Ithr = 0.75 MW/cm2 QD VCSE OPL (16 K, 3.02 eV, 1 MW/cm2)

    Tanaka et al. Krestnikov et al.

    AlGaN/GaN transistors: HEMT, MESFET, BJT, Eg = 3.4 eV, Ebd = 5 MV/cm, μ = 2000 cm2/Vs, fpgf=100 GHz, Tm =673 K, t>1000 h

    1999 2001

    Pt-GaN, Pt-AlGaN-HEMT transistors Gas (H2, CO, NO) sensing devices

    Luther et al, Schalving et al.

    19962000

    Piezoelectric field up to 1 MV/cm2 in In(Al)GaN/GaN QWs, nscr > 1018 cm-3

    Hangleiter et al. Bernardini et al. Chichibu et al.

    1998 2000

    InGaN/GaN QWs: UV laser assisted annealing, OPL λ = 450–470 nm, T > 300 K

    Yablonskii, Lutsenko, Schineller, Heuken et al.

    2002 InGaN/GaN true blue laser Yablonskii, Lutsenko, Gurskii, Heuken et al.

    2002 InGaN/GaN/Si blue laser Yablonskii, Lutsenko, Gurskii, Heuken et al.

  • DENSITY OF STATES AND CARRIER DISTRIBUTION

    Schematic drawing of density of states functions of structures withdifferent dimensionality for electrons (black lines). Schematic drawing

    of occupied electron states under excitation (red lines)

    Em

    E vcvc 2232

    ,)0( , 2

    )2()(

    πρ

    h=

    ∑ −=n

    zz

    vcvc nEEHL

    mE )]([

    )( 2

    ,)1( ,

    hπρ

    ∑ −−= nl zyzyvc

    vc nElEELLm

    E ,

    21

    21 2 ,)2(

    , )]()([1

    )2(

    )(π

    ρh

    ∑ −−−=nlk

    zyxzyx

    vc nElEkEELLLE

    , ,

    )3( , )]()()([

    1 )( δρ [1]

    2

    ,

    )1(

    2 ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    xhen L

    nm

    E πh [2]

    1 Y. Arakawa and H. Sakaki / Appl. Phys. Lett. 40 (11), 19822 B. Mroziewicz et al. / Physics of Semiconductor Lasers ( by PWN – Polish ScientificPublishers – Warszawa, 1991) p.180

  • STRUCTURE DESIGN AND CARRIERDISTRIBUTION

    Schematic drawings of several QW laser structuresand associated energy levels and occupied electronstates under carrier injection[1].

    1 С. Weisbuch / Journal of Crystal Growth 138 p.776-785, 1994

  • p n++++_

    _ ___

    +

    E

    E

    x

    FE

    C

    EV

    +x

    EC

    EV

    Fe F

    h

    Energy diagram

    Main weak pointsStrong temperature dependence of laser thresholdHigh threshold current density (J>25x10 A/cmat Т=300 К)Low total quantum yield (2-3% at T=300 К);Cooling by liquid gases is necessaryShort lifetime (several hours at Т=300 К)

    3 2

  • CLASSICAL HETEROSTRUCTURESFundamental physical phenomena:

    a) - one-sided injection andsuperinjection;

    b) - diffusion in built-inelectrcal field;

    c) - electrical and opticalconfinement;

    d) - effect of wide-gapwindow;

    e) - diagonal tunneling overthe heterointerface.

    Important features for technology: In principle, lattice-matched structures are necessary; For lattice matching, multicomponent solid solutions should be

    used; In principle, epitaxial growth technology is necessary

    Important consequences for application insemiconductor light emitting devices

    Low threshold semiconductor laser diodes operating in CW regimeat room temperature (Jth∼103 A/сm2);

    High-efficient LEDs

    But: Threshold current is still high enough; Strong temperature dependence of threshold current

    Zh.I.Alferov. Sov. Phys. Semicond, 1998, Vol. 32, №1, p.3-18.

  • Quantum Well HeterostructuresFundamental physical phenomena:

    3.3 эВ

    3.05 эВ

    - two-dimentsional electrongas (2DEG);- step-like function ofdensity of states;- increasing exciton bindingenergy ⇒ their excistence atroom temperature ispossible;- effect of wide-gap window;- quantum Hall effect;- coherent growth ofstrained layerheterostructures;

    Important features for technology:Lattice-matched structures are not always necessary;Suppression of misfit dislocation formation during growth;In principle, well-controlled epitaxial growth technology with lowgrowth rates is necessary (МВЕ, MOVPE), possibly with atomic layergrowth mode (АLE);

    Important consequences for applications insemiconductor light emitting devices:

    Lower threshold current density at room temperature (Jth∼100 A/сm2);Weaker temperature dependence Jth (Т); higher differential gain;High-efficiency LEDs and quantum cascade IR lasers;Lasers with superlattices in guiding layer ⇒ (Jth∼40 A/сm2);

    (Zh.I.Alferov. Sov. Phys. Semicond, 1998, Vol. 32, №1, p.3-18).

  • SYSTEMS BASED ON QUANTUM DOTS (QD)Based on the self-organizationeffect of semiconductornanostructures in heteroepitaxialsystems

    Minimum dimension of QD Dmin:

    )(2 1min

    2

    *

    2

    QDEDm

    Ee

    C Δ≡=Δπh

    Maximum dimension of QD

    )(1 QDEkT ≤

    FUNDAMENTAL PHYSICAL PHENOMENA: Zero-dimensional electron gas; Density of states is delta-function-like; Increasing exciton binding energy.

    IMPORTANT FEATURES FOR TECHNOLOGY: Use of self-organization effects for growth; Lattice-mismatched layers of the structure are often

    necessary; Epitaxial growth in V-riffles; High-resolution litography in combination with etching of QW

    structures.

    IMPORTANT CONSEQUENCES FOR APPLIATION INSEMICONDUCTOR DEVICES

    Lover threshold current and higher differential gain; Тemperature stability of threshold current Discontinuous gain spectra ⇒ operation characteristics like

    those of gas and solid-state lasers are possible; The possibility of creation of “single-electron” devices; The possibility of creation of “defect-free” devices

    But: Technology is poorly developed, reproducibility problems

  • LASER THRESHOLD

    Current density and gain:

    )( ,322

    2 ,

    2

    gmgm Eg

    cEEden

    Jηπ

    γh

    Δ= ,

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ Δ−−

    ⋅⋅Δ

    = ∫∞

    kTFEEr

    ErEEr

    dEEr

    m, gm, gsp

    m, spsp

    m, spsp

    sp

    exp1

    1)()(

    )()(

    0

    γ

    Threshold condition:

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+++Γ−+Γ==

    21imax

    1ln1)1(rrL

    g csafcwafca ααααα

    Optical confinement factor:

    ( )Γ =

    + ⋅⋅

    dd

    N dd

    n n

    a a

    a

    2

    2 22

    22 2

    λπ

    , d N d N da a b b= + , ( )n N d n N d n da a b b b= +0

    Jthr = f(T):η)()( nsp

    nthr edRJ = , ]3 0,[∈n

    ∫∞

    =0

    )( ,

    )()( )),(,( dETEErR nvcn

    spn

    sp ρ

    Results:

    Fig. 1 Theoretical temperature sensitivity of LDs of the activelayers with various quantum confinementdimensionality [1]

    1 Y. Arakawa and H. Sakaki Appl. Phys. Lett. 40 (11), 1982

  • Nitrides and IINitrides and II--VI VI -- possibilitiespossibilities

    InstituteInstituteof Physics, of Physics, Minsk, Minsk, BelarusBelarus

    • AlN - Eg ~ 6.2 eV, λ = 198 nm• GaN - Eg ~ 3.4 eV, λ = 364 nm• InN - recent data: Eg ~ 0.7 eV, λ ~ 1770 nm• Compounds based on:• AlN-AlGaN light emitting devices, lasers and

    photodetectors for the far and near ultraviolet spectral region

    • GaN-InGaN light emitting devices, lasers, photodetectorsfor the visible and near infrared spectral region

    400300 500 600 700WAVELENGTH (nm)

    3 2.53.5 2ENERGY (eV)

    Ga(In,Al)As(P)615 nm LD CW608 nm LD pulsed586 nm opt. pump390-480 nm

    LD CWLEDs:280-310 nm

    up to 470-490 nmopt. pump

    Ga(In,Al)Nup to 282 nmopt. pump

    The green-yellow laser region is still not filled by III-Vs

  • MOVPE growth technologyMOVPE growth technology

    Scheme of MOVPE grown

    Substrate

    Heating

    Gases flow

    Good facility for Good facility for mass productionmass production

  • MBE growth technologyMBE growth technology

    Good facility for Good facility for growth controllable growth controllable monolayer and QDmonolayer and QD

  • 2. LASERS

  • Laser Diodes

    1. LASERS emit light from the edge

    2. VCSELs - Vertical Cavity Surface Emitting Lasers

    Vertical Cavity means that the cavity is perpendicular to the semiconductor wafer

    Surface Emitting means that the light comes out from the surface of the wafer

  • AlGaN/AlInGaNMQWlasers:

    λ=240 – 480 nm LD

    OPL

    415 nm LD:P = 1000 mWI = 1000 mAU = 12 Vτ = 200 nsF = 100 kHzTop = 400Ct = 1000 hPrice – 1300 EURGaAs – based lasers:λ = 0.6 – 49 μmPs= 16 W, Parray = 1-2 kW

    Total laser market in 2006: $5.98B, Including LD – 59%.

  • Application of UV LDs and LEDs

  • Electron beam pumped lasers

    Lebedev Physical Institute RASPrincipia LightWorks Inc, CA

    CdSSe/CdSZnCdSe/ZnSSe/ZnSe

    ZnSe/ZnMgSSe/GaAs

    GaInP/(AlGa)InP

  • LIGHT EMITTING DIODES - LEDs

  • ~50-300 нм p-GaN~5-30 нм p-(Al,Ga)N

    1500-4000 нм n-GaN

    3-50 nm GaN buffer

    Al2O3

    p-electrode

    n-electrInGaN/GaN MQW

    LED arrayLED arrayLED with LED with

    transparent transparent contactcontact

    LED structureLED structure

    Parameters and pricesParameters and prices1. 1. WhiteWhite LuxeonLuxeon –– 600 600 mWmW, 1500 , 1500 mAmA, 10, 10--12 12 VV, 100000 , 100000 hh, 5 , 5 –– 6 6 EUROEURO2. 2. White on White on ZnSe ZnSe –– 11--2 2 EUROEURO3. 3. BlueBlue--yellowyellow, , мВтмВт, 20 , 20 мАмА, 1, 1--3 3 EUROEURO4. 380 4. 380 nmnm, 20 , 20 mAmA, 3, 3--5 5 mWmW5. 360 5. 360 nmnm, 20 , 20 mAmA,, 1 1 mWmW6. 255 6. 255 nmnm, 20 , 20 mAmA, 100 , 100 –– 200 200 μμWW 77. 210 nm, 0.02 . 210 nm, 0.02 μμWW, 25 V, , 25 V, AlN:Mg/AlN/AlN:SiAlN:Mg/AlN/AlN:SiСтоимостьСтоимость попо пп..пп. 4,5,6 . 4,5,6 –– отот 5 5 додо 500 500 ЕЕUROURO

  • Автомобильная техникаИнформационные дисплеи

    Освещение

    Подсветки

    Другое

    Сигнальныеустройства

    LED market structure for 2005 - 2010

    6%2%

    14%

    12%

    14% 52%2005г.

    11%13% 28%

    34%13%

    1%2010г.

    2005г. – 4 Billion $. 2010г. – 8,2 Billion $.

    Energy and funds saving1 TW-hour/year

    10 B$/year

    2

  • BBacklightingacklightingTV and displaysTV and displays

  • BBacklightingacklightingautomotiveautomotive

    37

  • The Burj Al Arab, Dubai

    BBacklightingacklightingbuildings andbuildings and constructionconstruction

  • Physical and technical problems

    Lattice mismatch of layers and substrates (Al2O3, SiC, Si);GaN homoepitaxy;Piezo-fields, LiAlO2;In clusterization in InGaN:localized and delocalized states. Green and red spectral regions for InGaN QWs;UV light emitting devices based on

  • ORGANIC LEDs

  • The potential annual global sales of each type of organic semiconductor devices by 2020

  • Original results

  • Experimental setups

    CRYOSTAT

    CHOPPER

    LOCK- INAMPLIFIER

    PMT

    XENONLAMP

    MONOCHROMATOR

    MO

    NOC

    HR

    OM

    ATOR

    REFRIGERATOR

    He-CdLASER

    CHOPPER

    LOCK - INAMPLIFIER

    PD

    MONOCHROMATOR

    PD

    HALOGEN,DEUTERIUM,OR XENON

    LAMP

    Photo- and electro-reflectance and absorptionexperimental setup

    Photo-luminescence excitation experimental setup

  • Experimental setups

    337 nm, 8 ns, f=1000 Hz

    = 325 nm, cw

    lt==410 - 500 nm, 10 ns, f=50 Hz

    = 540, 360, 270 nm, 10 ns, f=50 Hz

    Excitation sources

    e-gun

    1.512*10 J-12

  • InstituteInstituteof Physics, of Physics, Minsk, Minsk, BelarusBelarus

    First blue InGaN/GaN

    MQW optically pumped lasers

    AIXTRON

    G. P. Yablonskii, at all. Appl. Phys. Lett. v.29, No 13 (2001), p. 1953.

    2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3

    СиниеФиолетовые

    T=300 KN2-лазер

    GaNInGaN/GaN:SQWInGaN/GaN:MQW

    Интенси

    вность

    [отн

    . ед.

    ]

    Энергия [эВ]

    460 440 420 400 380Длина волны [нм]

    12

  • GaN heterostructures grown on Si substratesGaN heterostructures grown on Si substrates

    GaN/Si

    Perfect qualityof GaN/Si laser cavity mirrors

    GaN/Al2O3

    MQW

    SiAlN AlGaN

    AlN AlGaNGaN

    GaN

    SiAlN AlGaN

    MQW

    GaN/AlN DBRGaN/AlN DBR

    Trieste synchrotron

  • 3.0 3.1 3.2 3.3 3.4 3.5

    410 400 390 380 370 360

    100 1000

    GaN/AlGaN/AlN/Si

    GaN/DBR/Si

    Inte

    nsity

    [a.u

    .]

    Iexc [kW/cm2]

    1

    10

    100

    1000

    Ithr = 700 kW/cm2

    Ithr = 270 kW/cm2 N2 laser

    Iexc [kW/cm2]

    410 371 336 305 277 253 231 211

    T = 300 K

    Inte

    nsity

    [a. u

    .]

    Energy [eV]

    Wavelength [nm]

    DBR

    SiAlN AlGaN

    MQW

    InGaN/GaN/DBR/SiIthr = 270 kW/cm2

    InGaN/GaN/AlGaN/SiIthr = 700 kW/cm2

    3,22 3,24 3,26 3,28 3,30 3,32 3,34 3,36 3,38 3,40

    0

    2000

    384 382 380 378 376 374 372 370 368 366

    GaN/DBR/Si GaN/AlGaN/AlN/Si

    2

    1

    Iexc = 6 MW/cm2

    T = 300 K

    Gai

    n [c

    m-1]

    Energy [eV]

    Wavelength [nm]

    GGaN/DBR/Si = 2200 cm-1GGaN/AlGaN/Si = 300 cm-1

    Gain spectra

    GaN/Si GaN/Si лазерылазеры

  • InstituteInstituteof Physics, of Physics, Minsk, Minsk, BelarusBelarus

    For optoelectronics integration with Si electronocs

    First InGaN/GaN MQW lasers on Si substrates

    AIXTRON

    •E. V. Lutsenko at all. Phys. Stat. Sol. (c) (2002). Vol. 0, No. 1, P. 272• A. L. Gurskii, at all. Phys. Stat. Sol. (c) (2002) Vol. 0, No. 1, P. 425• High temperature operation of optically pumped InGaN/GaN MQW heterostructure lasers grown on Si substrates.” (2003) http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=29749&page=3

    •http://optics.org/articles/news/8/7/24/1•http://compoundsemiconductor.net/articles/news/6/7/28/1•LaserFocusWord Vol. 38, No.9, p.11

    2.6 2.7 2.8 2.9

    Iexc [kW/cm2]

    370 335 305 253 210 177 149

    T=300 K

    Em

    issi

    on In

    tens

    ity [a

    .u.]

    Energy [eV]

    470 460 450 440 430

    Ppulse = 8 W

    Laser threshold270-350 kW/cm2

    1 0 2 1 0 3

    1 0 1

    1 0 2

    Ith r= 3 3 0 k W /c m2

    Em

    iss

    ion

    in

    ten

    sit

    y [

    a.u

    .]

    Ie x c [k W /c m2]

    InGaN/GaN MQW on Si

    Wavelength [nm]

    50 100 150 200 250 300 350

    455

    460

    465

    470

    475

    480

    Генерациядо 360 0С

    Температура [oC]

    Длин

    а во

    лны

    [нм

    ]

    -0.030000.0021880.034380.066560.098750.13090.16310.19530.22750.25970.29190.32410.35620.38840.42060.45280.48500.51720.54940.58160.61380.64590.67810.71030.74250.77470.80690.83910.87130.90340.93560.96781.000

    Laser threshold was reduced to 30 kW/cm2.Output power of MQW laser was increased from 8 W to 20 W.

  • Top = 3600CT0~200 K

    InGaN/GaN/Si MQW InGaN/GaN/Si MQW laserslasers

    0 100 200 300 400102

    103

    Experimental Formula aprox.

    2)()(

    )( 21

    spsp

    sp

    thr hh

    TI νη

    ν⋅

    Δ∝

    T0=55

    T0=190

    Lase

    r thr

    esho

    ld [k

    W/c

    m2 ]

    Temperature [Co]High order transverse mode regime

    2.81

    2.8

    2.79

    2.78

    2.77

    -40 -20 0 20 40 60440

    442

    444

    446

    448

    Angle[degrees]

    Wav

    elen

    gth

    [nm

    ]

    Ener

    gy [e

    V]

    Low threshold “blue” laser

    Ithr = 25 kW/cm2

    MQW

    P = 35 W= 5%

  • Laser action of the InGaN/GaN/Si MQWs

    SiAlN LT AlGaN

    AlN LT

    MQW

    GaN

    GaN

    400 420 440 460 480

    3 2.9 2.8 2.7 2.6

    T = 300K

    Energy [eV]

    Wavelength [nm]

    440 460 480 500 520 5400

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Possibility for green laser

    Lase

    r thr

    esho

    ld [k

    W/c

    m2 ]

    Wavelength [nm]

    Laser threshold increase with wavelength rise

    Possibility for green lasing

  • Laser threshold of InGaN/GaN MQW/Si after substrate removal

    400 420 440 460 480 500 520

    3.1 3 2.9 2.8 2.7 2.6 2.5 2.4

    200 250 300 350 400 4500

    5000

    10000

    15000

    20000

    Iexc [kW/cm2]

    Ithr=350 kW/cm2

    Iexc , kW/cm2

    410,2 370,9 336,1 305,1 277,4 252,7 230,5 210,6

    Energy [eV]

    Inte

    nsity

    [a.u

    .]

    λ = 474 nm

    Wavelength [nm]

    440 450 460 470

    2.8 2.7

    140 160 180 200 220 240 260 2800.0

    5.0x103

    1.0x104

    1.5x104

    2.0x104

    Iexc [kW/cm2]

    Ithr=200 kW/cm2

    Iexc , kW/cm2

    277,4 252,7 230,5 210,6 192,7 176,6 162,1 148,9

    Energy [eV]

    Inte

    nsity

    [a.u

    .]

    λ = 463 nmIthr = 200 kW/cm

    2

    Wavelength [nm]

    Laser threshold - 350 kW/cm2 λ=474 nmNo lasing before liftoff

    Laser threshold - 200 kW/cm2 λ=463 nmThreshold before liftoff: 300 kW/cm2

  • InGaN/GaN/AlInGaN/GaN/Al22OO33 and InGaN/GaN/Si LEDsand InGaN/GaN/Si LEDs

    AlAl22OO33 substrate substrate Si substrateSi substrate

    PPoptopt -- 0.3 0.3 мВтмВт

    Width of strip Width of strip 1010--50 50 мкммкм

    2.4 2.5 2.6 2.7 2.8 2.9

    520 500 480 460 440 420

    65 mA 60 mA 50 mA 45 mA 40 mA

    Длина волны [нм]

    Интенсивн

    ость

    [отн

    .ед.

    ]

    Энергия фотона [эВ]

    AIXTRON

    2.0 2.2 2.4 2.6 2.8 3.0 3.2

    600 550 500 450 400

    InGaN/GaNна Al2O3

    интенсив

    ность

    [отн

    .ед.

    ]

    Энергия фотона [эВ]

    Длина волны [нм]

    18

  • ZnMgSSe/ZnSSe/ZnSe/CdSe QD heterostructuresZnMgSSe/ZnSSe/ZnSe/CdSe QD heterostructures

    MgZnSSe

    GaAs substrate

    ZnSe/ZnSSe buffer

    MgZnSSe

    ZnSe

    ZnSSe/ZnSe SL waveguide

    Excita

    tion las

    er strip

    e

    200nm

    [001]

    TEM

    10 nmTEM

    [110]

    Symmetrical waveguide with CdSe QDs grown by MBE

    Asymmetrical waveguide with CdSe QD grown by MEE

    ZnM

    gSSe

    1.0

    m μ

    ZnSS

    e/Zn

    Se

    SL

    68 n

    m

    ZnSe QW5nm

    CdS

    e Q

    DS

    ZnSS

    e/Zn

    Se

    SL

    166

    nm

    GaA

    s s

    ubst

    rate

    ZnS

    Se/Z

    nSe

    SL 0.1

    m μ

    ZnSe QW5nm

    ZnM

    gSS

    e0.

    7mμ

    ZnM

    gSS

    e0.

    1mμ

    CdS

    e Q

    DS

    CdS

    e Q

    DS

    ZnS

    Se/Z

    nSe

    SL

    ZnS

    Se/Z

    nSe

    SL

    CdS

    e Q

    DS

    ZnSe QW5nm

    ZnSe QW5nm

    GaA

    s s

    ubst

    rate

    ZnM

    gSS

    e0.

    7mμ

    ZnM

    gSS

    e0.

    1mμ

    ZnS

    Se/

    ZnS

    e S

    L 0.1

    m μ

    ZnSe QW5nm

    CdS

    e Q

    DS

    GaA

    s s

    ubst

    rate

    QW

  • A

    BC

    QDs2.43 eV

    2,3 2,4 2,5 2,6

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    550 540 530 520 510 500 490 480 470

    CL at points A, B, C

    CL

    inte

    nsity

    (ar

    b. u

    nits

    )

    Energy [eV]

    Wavelength [nm]

    2,3 2,4 2,5 2,60,0

    0,2

    0,4

    0,6

    0,8

    1,0

    550 540 530 520 510 500 490 480 470 Wavelength [nm]

    "dark" spot"bright" spots

    CL

    inte

    nsity

    (ar

    b. u

    nits

    )

    Energy [eV]

    CathodoluminesceneCathodoluminescene of ZnMgSSe/of ZnMgSSe/ZnSSeZnSSe/ZnSe/CdSe/ZnSe/CdSe

    CdZnSe SQW MBE

    CdZnSe SQDS MEE

    e-be

    am

    Sample

    25 nm

    Monochromator withphotomultiplier

    Lock-in amplifierFibreoptics

  • CdSe/ZnSe/CdSe/ZnSe/ZnSSeZnSSe/ZnMgSSe /ZnMgSSe quantum dot sheet (QDS) heterostructuresquantum dot sheet (QDS) heterostructures

    2,30 2,35 2,40 2,45 2,50 2,550

    100

    200

    300

    400

    500530 520 510 500 490

    MEE CdZnSe QDs

    Energy [eV]

    Abso

    rptio

    n [c

    m-1]

    Wavelength [nm]

    2,2 2,3 2,4 2,5 2,6

    560 540 520 500 480

    MEE SQDS MBE SQDS

    HeCd laserIexc.= 1.6 W/cm

    2

    T = 290 K

    PL in

    tens

    ity [a

    .u.]

    Energy [eV]

    Wavelength [nm]

    MBE and MEE CdSe QD photoluminescence and absorption

  • MEE QDS lasers: heterostructure design and performanceInstituteInstituteof Physics, of Physics, Minsk, Minsk, BelarusBelarus

    Structure C

    Maximal laser external quantum efficiency 42 %Maximal laser differential quantum efficiency 55 %

    32 %41 %

    Structure C, 2 sheets Structure B, 1 sheet

    520 525 530 535 540 545 550

    100

    1000

    10000

    100000

    2,38 2,36 2,34 2,32 2,3 2,28 2,26

    1,5 2,0 2,5 3,0 3,5 4,0

    1000

    10000

    100000

    Ith=2,5 kW/cm2

    Lcav= 528.3 μmInte

    nsity

    , [a.

    u.]

    Iexc, [kW/cm2]

    Lcav= 528 μm T=300 K

    Iexc [kW/cm2]

    3.67 3.36 3.08 2.82 2.51 2.24 2.05 1.88 1.73 1.58

    Wavelength, [nm]

    Inte

    nsity

    , [a.

    u.]

    Energy, [eV]

    1 10 1000

    5

    10

    15

    20

    25

    30

    35

    40

    45

    structure B

    structure C

    T = 300 K

    Lcav.= 483 μm

    Lcav= 528 μm

    Exte

    rnal

    qua

    ntum

    effi

    cien

    cy, [

    %]

    Iexc, [kW/cm2] 0 200 400 600

    0

    20

    40

    60

    80

    100

    120

    BC

    T=300 K

    Lcav.=483 μm

    ηdiff=0,21404ηQdiff=0,412

    N2-laser excitation

    Lcav=528.3 μm

    ηdiff=0,27 ηQdiff=0,55

    Lase

    r pul

    se e

    nerg

    y, [n

    J]Iexc, [nJ]

    -40 -30 -20 -10 0 10 20 30 40

    514

    515

    516

    517

    T = 290 K

    Divergence ~ 300

    Intensity [a.u.]

    Angle [degree]

    Wav

    elen

    gth

    [nm

    ]

    0490098001,47E41,96E42,45E42,94E43,43E43,92E44,41E44,9E45,39E45,88E46,37E46,86E47,35E47,84E48,33E48,82E49,31E49,8E41,029E51,078E51,127E51,176E51,225E51,274E51,323E51,372E51,421E51,47E51,519E51,568E51,617E51,666E51,715E51,764E51,813E51,862E51,911E51,96E52,009E52,058E52,107E52,156E52,205E52,254E52,303E52,352E52,401E52,45E5

    Fundamental mode lasing

  • Excitation

    Registration

    Blue-green laser converter & InGaN/GaN/Si blue laserInstituteInstituteof Physics, of Physics, Minsk, Minsk, BelarusBelarus

    Far-field pattern

    Output characteristics of blue (~450 nm) InGaN/GaN laser grown on Si-substrate: q.e. = 5%, E=140 nJ, P=30 W. “Green” CdSe QD laser: P= 3 W

    2,81

    2,8

    2,79

    2,78

    2,77

    -40 -20 0 20 40 60440

    442

    444

    446

    448 RT

    Intensity [a.u.]

    Iexc = 3.4 IthrIthr=230 kW/cm

    2

    Lz=125 μm

    Angle[degrees]

    Wav

    elen

    gth

    [nm

    ]

    092,00184,0276,0368,0460,0552,0644,0736,0828,0920,01012110411961288138014721564165617481840193220242116220823002392248425762668276028522944303631283220331234043496358836803772386439564048414042324324441645084600

    Ener

    gy [e

    V]

    560 540 520 460 440

    2,2 2,3 2,4 2,6 2,7 2,8 2,910

    100

    1000

    10000

    100000

    1000000T=300 KCdSe QD

    laser InGaN/GaN/SiMQW laser

    Inte

    nsity

    , [a.

    u.]

    Energy, [eV]

    Wavelength, [nm]

  • Thanks for yourattention !