Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

36
L16 07Mar02 1 Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

description

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. Gummel-Poon Static npn Circuit Model. C. RC. Intrinsic Transistor. IBR. B. RBB. ILC. I CC - I EC = IS ( exp(v BE /NFV t ) - - PowerPoint PPT Presentation

Transcript of Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Page 1: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 1

Semiconductor Device Modeling and CharacterizationEE5342, Lecture 16 -Sp 2002

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 2

Gummel-Poon Staticnpn Circuit Model

C

E

B

B’

ILC

ILE IBF

IBR ICC - IEC =

IS(exp(vBE/NFVt) -

exp(vBC/NRVt)/QB

RC

RE

RBB

IntrinsicTransistor

Page 3: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 3

Gummel Poon npnModel Equations

IBF = IS expf(vBE/NFVt)/BF

ILE = ISE expf(vBE/NEVt)

IBR = IS expf(vBC/NRVt)/BR

ILC = ISC expf(vBC/NCVt)

ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB

QB = { + + (BF IBF/IKF + BR IBR/IKR)1/2} (1 - vBC/VAF - vBE/VAR )-1

Page 4: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 4

+

-+

-

VAF ParameterExtraction (fEarly)

iC

iB

vCEvBE

0.2 < vCE < 5.0

0.7 < vBE < 0.9

Forward Active Operation

iC = ICC =

(IS/QB)exp(vBE/NFVt),

where ICE = 0, and

QB-1

=

(1-vBC/VAF-vBE/VAR )*

{IKF terms}-1,

so since vBC = vBE - vCE,

VAF = iC/[iC/vBC]vBE

Page 5: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 5

0.000

0.001

0.002

0.003

0 1 2 3 4 5iC(A) vs. vCE (V)

Forward EarlyData for VAF• At a particular data

point, an effective VAF value can be calculated

VAFeff = iC/[iC/vBC]vBE

• The most accurate is at vBC = 0 (why?)

vBE = 0.85 V

vBE = 0.75 V

Page 6: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 6

99

101

103

105

0 1 2 3 4VAFeff(V) vs. vCE (V)

Forward EarlyVAf extractionVAFeff = iC/[iC/vBC]vBE

• VAF was set at 100V for this data

• When vBC = 0

vBE=0.75VAR=101.2

vBE=0.85VAR=101.0

vBE = 0.85 V

vBE = 0.75 V

Page 7: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 7

iE = - IEC =

(IS/QB)exp(vBC/NRVt),

where ICC = 0, and

QB-1

=

(1-vBC/VAF-vBE/VAR )

{IKR terms}-1,

so since vBE = vBC - vEC,

VAR = iE/[iE/vBE]vBC

VAR ParameterExtraction (rEarly)

+

-+

-

iE

iB

vECvBC

0.2 < vEC < 5.0

0.7 < vBC < 0.9

Reverse Active Operation

Page 8: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 8

0.0000

0.0002

0.0004

0.0006

0 1 2 3 4 5

iE(A) vs. vEC (V)

Reverse EarlyData for VAR• At a particular data

point, an effective VAR value can be calculated

VAReff = iE/[iE/vBE]vBC

• The most accurate is at vBE = 0 (why?)

vBC = 0.85 V

vBC = 0.75 V

Page 9: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 9

198

200

202

204

0 1 2 3 4

VAReff(V) vs. vEC (V)

Reverse EarlyVAR extractionVAReff = iE/[iE/vBE]vBC

• VAR was set at 200V for this data

• When vBE = 0

vBC=0.75VAR=200.5

vBC=0.85VAR=200.2

vBC = 0.85 V

vBC = 0.75 V

Page 10: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 10

BJT CharacterizationForward GummelvBCx= 0 = vBC + iBRB - iCRC

vBEx = vBE +iBRB +(iB+iC)RE

iB = IBF + ILE =

ISexp(vBE/NFVt)/BF

+ ISEexpf(vBE/NEVt)

iC = FIBF/QB =

ISexp(vBE/NFVt)

(1-vBC/VAF-vBE/VAR )

{IKF terms}-1

+

-

iC RC

iB

RE

RB

vBEx

vBC

vBE

+

+

-

-

Page 11: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 11

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

0.1 0.3 0.5 0.7 0.9

Sample fg data forparameter extraction

• IS = 10f• NF = 1• BF = 100• Ise = 10E-14• Ne = 2• Ikf = .1m• Var = 200• Re = 1• Rb = 100iC, iB vs. vBEext

iB data

iC data

Page 12: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 12

Definitions ofNeff and ISeff• In a region where iC or iB is approxi-

mately a single exponential term, theniC or iB ~ ISeffexp (vBEext /(NFeffVt)

whereNeff = {dvBEext/d[ln(i)]}/Vt,

and ISeff = exp[ln(i) - vBEext/(NeffVt)]

Page 13: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 13

Region a - IKFIS, RB, RE, NF, VAR

Region b - IS, NF, VAR, RB, RE

Region c - IS/BF, NF, RB, RE

Region d - IS/BF, NFRegion e - ISE, NE

Forward GummelData Sensitivities

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

0.1 0.3 0.5 0.7 0.9

iC(A),iB(A) vs. vBE(V)

iC

vBCx = 0

iB

a

b

c

d

e

Page 14: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 14

Region (b) fgData SensitivitiesRegion b - IS, NF, VAR, RB, REiC = FIBF/QB = ISexp(vBE/NFVt)

(1-vBC/VAF-vBE/VAR ){IKF terms}-1

Page 15: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 15

Region (e) fgData SensitivitiesRegion e - ISE, NE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt)

+ ISEexpf(vBE/NEVt)

Page 16: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 16

Simple extractionof IS, ISE from data

1.E-16

1.E-14

1.E-12

1.E-10

0.1 0.3 0.5 0.7 0.9

Data set used • IS = 10f• ISE = 10E-14Flat ISeff for iC data =

9.99E-15 for 0.230 < vD < 0.255

Max ISeff value for iB data is 8.94E-14 for vD = 0.180ISeff vs. vBEext

iB data

iC data

Page 17: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 17

Simple extraction of NF, NE from fg data

Data set used NF=1NE=2

Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390

Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0.1 0.3 0.5 0.7 0.9

NEeff vs. vBEext

iB

data

iC data

Page 18: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 18

Region (d) fgData SensitivitiesRegion d - IS/BF, NFiB = IBF + ILE = (IS/BF)expf(vBE/NFVt)

+ ISEexpf(vBE/NEVt)

Page 19: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 19

0

25

50

75

100

1.E-10 1.E-06 1.E-02

Simple extractionof BF from data

• Data set used BF = 100

• Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A < iD < 3.53A

• Minimum value of Neff =1 for slightly lower vD and iD

iC/iB vs. iC

Page 20: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 20

Region (a) fgData SensitivitiesRegion a - IKFIS, RB, RE, NF, VARiC = FIBF/QB = ISexp(vBE/NFVt)

(1-vBC/VAF-vBE/VAR ){IKF terms}-1

Page 21: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 21

Region (c) fgData SensitivitiesRegion c - IS/BF, NF, RB, REiB = IBF + ILE = (IS/BF)expf(vBE/NFVt)

+ ISEexpf(vBE/NEVt)

Page 22: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 22

BJT CharacterizationReverse Gummel

+

-

iE

RC

iB

RE

RB

vBCx

vBC

vBE

+

+

-

-

vBEx= 0 = vBE + iBRB - iERE

vBCx = vBC +iBRB +(iB+iE)RC

iB = IBR + ILC =

(IS/BR)expf(vBC/NRVt)

+ ISCexpf(vBC/NCVt)

iE = RIBR/QB =

ISexpf(vBC/NRVt)

(1-vBC/VAF-vBE/VAR )

{IKR terms}-1

Page 23: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 23

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

0.1 0.3 0.5 0.7 0.9

Sample rg data forparameter extraction

• IS=10f• Nr=1• Br=2• Isc=10p • Nc=2• Ikr=.1m• Vaf=100• Rc=5• Rb=100

iE, iB vs. vBCext

iB data

iE data

Page 24: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 24

Definitions ofNeff and ISeff• In a region where iC or iB is approxi-

mately a single exponential term, theniC or iB ~ ISeffexp (vBCext /(NReffVt)

whereNeff = {dvBCext/d[ln(i)]}/Vt,

and ISeff = exp[ln(i) - vBCext/(NeffVt)]

Page 25: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 25

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

0.1 0.3 0.5 0.7 0.9

Region a - IKRIS, RB, RC, NR, VAF

Region b - IS, NR, VAF, RB, RC

Region c - IS/BR, NR, RB, RC

Region d - IS/BR, NRRegion e - ISC, NC

Reverse GummelData Sensitivities

iE(A),iB(A) vs. vBC(V)

iE

vBCx = 0

iB

a

b

c

d

e

Page 26: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 26

Region (d) rgData SensitivitiesRegion d - BR, IS, NRiB = IBR + ILC = IS/BRexpf(vBC/NRVt)

+ ISCexpf(vBC/NCVt)

Page 27: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 27

0.0

0.5

1.0

1.5

2.0

1.E-10 1.E-06 1.E-02

Simple extractionof BR from data

• Data set used Br = 2

• Extraction gives max iE/iB = 1.7 for 0.48 V < vBC < 0.55V 1.13A < iE < 14.4A

• Minimum value of Neff =1 for same range iE/iB vs. iE

Page 28: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 28

Region (b) rgData SensitivitiesRegion b - IS, NR, VAF, RB, RCiE = RIBR/QB = ISexp(vBC/NRVt)

(1-vBC/VAF-vBE/VAR ){IKR terms}-1

Page 29: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 29

Region (e) rgData SensitivitiesRegion e - ISC, NCiB = IBR + ILC = IS/BRexpf(vBC/NRVt)

+ ISCexpf(vBC/NCVt)

Page 30: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 30

1.E-16

1.E-14

1.E-12

1.E-10

0.2 0.4 0.6

Simple extractionof IS, ISC from data

Data set used • IS = 10fA• ISC = 10pAMin ISeff for iE data =

9.96E-15 for vBC = 0.200

Max ISeff value for iB data is 8.44E-12 for vBC = 0.200ISeff vs. vBCext

iB data

iE data

Page 31: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 31

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0.1 0.3 0.5 0.7 0.9

Simple extraction of NR, NC from rg data

Data set used Nr = 1Nc = 2

Flat Neff region from iE data = 1.00 for 0.195 < vBC < 0.375

Max Neff value from iB data is 1.914 for 0.195 < vBC < 0.205NEeff vs. vBCext

iB

data

iE data

Page 32: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 32

Region (c) rgData SensitivitiesRegion c - BR, IS, NR, RB, RCiB = IBR + ILC = IS/BRexpf(vBC/NRVt)

+ ISCexpf(vBC/NCVt)

Page 33: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 33

Region (a) rgData SensitivitiesRegion a - IKRIS, RB, RC, NR, VAFiE=RIBR/QB~[ISIKR]1/2exp(vBC/NRVt)

(1-vBC/VAF-vBE/VAR )

Page 34: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 34

vBE

RE-flyback dataextraction of RE

RE vCE/iB(from IC-CAP Modeling

Reference, p. 6-37)

RBM (vBE - vCE)/iB(adapted by RLC from

IC-CAP Modeling Reference, p. 6-39)

Qintr

o.c.

RBB

RE

vCE

B’E’

iB

Page 35: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 35

Extraction of REfrom refly data

RE vCE/iB

• Slope gives RE 7.1 Ohm

• Model data assumed

RE = 1 Ohm

y=7.1373x+0.0517

0.04

0.05

0.06

0.07

0.08

0.000 0.001 0.002 0.003vCE(V) vs. iB(A)

Page 36: Semiconductor Device  Modeling and Characterization EE5342, Lecture 16 -Sp 2002

L16 07Mar02 36

Extraction of RBMfrom refly data

RBM (vBE - vCE)/iB

• Slope gives RBM 108

Ohm

• Model data assumed

RB = RBM = 100 Ohm

y=107.72x+0.6714

0.70

0.80

0.90

1.00

0.000 0.001 0.002 0.003vBC(V) vs. iB(A)