Semiconductor Device Modeling and Characterization EE5342, Lecture 12 Spring 2003

21
L12 20Feb03 1 Semiconductor Device Modeling and Characterization EE5342, Lecture 12 Spring 2003 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

description

Semiconductor Device Modeling and Characterization EE5342, Lecture 12 Spring 2003. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. SPICE Diode Static Model. V ext = v D + i D *RS. Dinj IS N ~ 1 IKF, VKF, N ~ 1 Drec ISR NR ~ 2. i D *RS. V d. - PowerPoint PPT Presentation

Transcript of Semiconductor Device Modeling and Characterization EE5342, Lecture 12 Spring 2003

Page 1: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 1

Semiconductor Device Modeling and CharacterizationEE5342, Lecture 12Spring 2003

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 2

• Dinj– IS– N ~ 1– IKF, VKF, N ~ 1

• Drec– ISR– NR ~ 2

SPICE DiodeStatic Model

Vd

iD*RS

Vext = vD + iD*RS

Page 3: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 3

PARAMETER definition and units default value

IS saturation current amp 1E-14ISR recombination current parameter amp 0.0IKF high-injection knee current amp infiniteN emission coefficient 1.0NR emission coefficient for isr 2.0RS parasitic resistance ohm 0.0EG bandgap voltage (barrier height) eV 1.11XTI IS temperature exponent 3.0BV reverse breakdown knee voltage volt infiniteIBV reverse breakdown knee current amp 1E-10NBV reverse breakdown ideality factor 1.0

SPICE Diode DC Model Params.1

Page 4: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 4

Id = area·(Ifwd - Irev)Ifwd = forward current

= Inrm·Kinj + Irec·KgenInrm = normal current = IS·(eVd/(N·Vt)-1)

if: IKF > 0then: Kinj = high-injection factor

= (IKF/(IKF+Inrm))^1/2else: Kinj = 1

Irec = recombination current = ISR·(eVd/(NR·Vt)-1)Kgen = generation factor = ((1-Vd/VJ)^2+0.005)M/2Irev = reverse current = Irevhigh + IrevlowIrevhigh = IBV·e-(Vd+BV)/(NBV·Vt)Irevlow = IBVL·e-(Vd+BV)/(NBVL·Vt)

SPICE Diode DC Model Eqns.1

Page 5: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 5

1N ,

V2NV

t

aexp~

1N ,

VNV

t

aexp~

Vext

ln(I)

data Effect of Rs

2NR ,

VNRV

t

aexp~

VKF

Plot of SPICE D.C. Va > 0 current equations

Sexta RI-VV

IKFISln

ISRln

ISln

IKFln

Page 6: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 6

Static Model Eqns.Parameter ExtractionIn any region we can approximate the i-V relationship as a single exponential.

iD ~ Iseff (exp (Vd/(NeffVt)) - 1)

{diD/dVd}/iD = d[ln(iD)]/dVd = 1/(NeffVt)

so Neff = {dVd/d[ln(iD)]}/Vt ,

and ln(ISeff). = ln(iD) - Vd/(NVt).

(Note treat iD, Vt, etc., as normalized to 1A, 1V, respectively)

Page 7: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 7

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

iD(A), Iseff(A), and 1/Reff(mho) vs. Vext(V)

Diode Par.Extraction 1

2345

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Neff vs. Vext

1/Reff

iD

ISeff

Page 8: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 8

Results ofParameter Extraction• At Vd = 0.2 V, NReff = 1.97,

ISReff = 8.99E-11 A.• At Vd = 0.515 V, Neff = 1.01,

ISeff = 1.35 E-13 A.• At Vd = 0.9 V, RSeff = 0.725 Ohm• Compare to

.model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2)

Page 9: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 9

Hints for RS and NFparameter extractionIn the region where vD > VKF. Defining

vD = vDext - iD*RS and IHLI = [ISIKF]1/2.

iD = IHLIexp (vD/2NVt) + ISRexp (vD/NRVt)

diD/diD = 1 (iD/2NVt)(dvDext/diD - RS) + …

Thus, for vD > VKF (highest voltages only)

plot iD-1 vs. (dvDext/diD) to get a line with

slope = (2NVt)-1, intercept = - RS/(2NVt)

Page 10: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 10

PARAMETER definition and units default value

TT transit time sec 0.0CJO zero-bias p-n capacitance farad 0.0M p-n grading coefficient 0.5FC forward-bias depletion capacitance coeff 0.5VJ p-n potential volt 1.0

SPICE Diode Capacitance Pars.1

Page 11: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 11

Cd = Ct + area·CjCt = transit time capacitance = TT·GdGd = DC conductance = area * d (Inrm Kinj + Irec Kgen)/dVdKinj = high-injection factor

Cj = junction capacitanceIF: Vd < FC·VJ Cj = CJO*(1-Vd/VJ)^(-M) IF: Vd > FC·VJ Cj = CJO*(1-FC)^(-1-M)·(1-FC·(1+M)+M·Vd/VJ)

SPICE Diode Capacitance Eqns.1

Page 12: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 12

Junction Capacitance

• A plot of [Cj]-1/M vs. Vd hasSlope = -[(CJO)1/M/VJ]-1

vertical axis intercept = [CJO]-2 horizontal axis intercept = VJ

Cj-1/M

VJVd

CJO-1/M

Page 13: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 13

Junction Width and Debye Length

• LD estimates the transition length of a step-junction DR (concentrations Na and Nd with Neff =

NaNd/(Na +Nd)). Thus,

bi

efft

dabia

dDaD

VFC12

NV

N1

N1

VFCVWNLNL

*

• For Va=0, & 1E13 < Na,Nd < 1E19 cm-3

13% < < 28% => DA is OK

pnqVL tD / , qNVVW effdbi /

Page 14: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 14

Junction CapacitanceAdapted from Figure 1-16 in Text2

Cj = CJO/(1-Vd/VJ)^M

Cj = CJO/(1-FC)^(1+M)*(1-FC·(1+M)+M·Vd/VJ)

VJFC*VJ

Page 15: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 15

Junction Capacitance

• Let c = Cj/CJO• Calculate c(dVd/dc) = dVd/d[ln(c)]

= r• Confirm that a plot of r vs. Vd has

slope = -1/m, andintercept = VJ/m

Page 16: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 16

SPICE Diode A.C. Parameters

Page 17: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 17

Small signal diodeZ-parameter

RS

/gdCd)(Cjf41

gdRe{Z}

212222

1

/

Page 18: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 18

PARAMETER definition and units default value

XTI IS temperature exponent 3.0TIKF ikf temperature coefficient (linear) °C -1 0.0TRS1 rs temperature coefficient (linear) °C -1 0.0TRS2 rs temperature coefficient (quadratic) °C -2 0.0TBV1 bv temperature coefficient (linear) °C -1 0.0TBV2 bv temperature coefficient (quadratic) °C -2 0.0T_ABS absolute temperature °CT_MEASURED measured temperature °CT_REL_GLOBAL relative to current temperature °CT_REL_LOCAL Relative to AKO model temperature °C

SPICE Diode Temperature Pars.1

Page 19: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 19

IS(T) / IS=e(T/Tnom-1)·EG/(N·Vt)·(T/Tnom)XTI/N

ISR(T) / ISR= e(T/Tnom-1)·EG/(NR·Vt)·(T/Tnom)XTI/NR

IKF(T) / IKF = (1 + TIKF·(T-Tnom))BV(T) = BV·(1 + TBV1·(T-Tnom) + TBV2·(T-Tnom)2)RS(T) = RS·(1 + TRS1·(T-Tnom) + TRS2·(T-Tnom)2)VJ(T) = VJ·T/Tnom - 3·Vt·ln(T/Tnom)

- Eg(Tnom)·T/Tnom + Eg(T)Eg(T) = silicon bandgap energy

= 1.16 - .000702·T2/(T+1108)CJO(T) / CJO =

(1 + M·(.0004·(T-Tnom)+(1-VJ(T)/VJ)) )

SPICE Diode Temperature Eqs.1

Page 20: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 20

Project 2

• Project will be published in the next few days (check web page).

• Id vs. Vd (forward and reverse) data• Cj data• Z data• Extract parameters, e.g.: IS, N, IKF,

RS, ISR, NR, CJO, M, VJ, IBV, BV, etc.

Page 21: Semiconductor Device  Modeling and Characterization EE5342, Lecture 12 Spring 2003

L12 20Feb03 21

References

1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc.

2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993.