Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1....

41
Sem II

Transcript of Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1....

Page 1: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Sem  II  

Page 2: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

What  to  expect  in  2nd  Sem  1.  4  more  Chapters  2.  4-­‐5  more  labs  3.  Seat  Assignments    4.  Only  Web  Assign  HW  (  you  could  print  them  and  do  on  

paper)  6.        Cedar  Point  Trip  –  1st  week  of  May              Pre  Reqs-­‐  •   No  more  than  3  absences  •   No  behavorial  issues  in  class  during  the  course  of  the  Sem2                                              -­‐                                                  

Page 3: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Ch7 -MoMENTUM! Momentum

Impulse

Conservation of Momentum in 1 Dimension

Conservation of Momentum in 2 Dimensions

Angular Momentum

Torque

Moment of Inertia  

Page 4: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Momentum  Defined  

p = m v

p  =  momentum  vector  

m  =  mass  

v  =  velocity  vector  

Page 5: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Momentum  Facts  

•   p = m v

•   Momentum  is  a  vector  quanVty!  

•   Velocity  and  momentum  vectors  point  in  the  same  direcVon.  

•   SI  unit  for  momentum:    kg  ·∙  m  /s      (no  special  name).  

•   Momentum  is  a  conserved  quanVty  (this  will  be  proven  later).  

•   A  net  force  is  required  to  change  a  body’s  momentum.  

•   Momentum  is  directly  proporVonal  to  both  mass  and  speed.  

•   Something  big  and  slow  could  have  the  same  momentum  as        something  small  and  fast.  

Page 6: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Momentum  Examples  10  kg  

   3  m  /s  10  kg  

30  kg  ·∙  m  /s  

Note:    The  momentum  vector  does  not  have  to  be  drawn  10  Vmes  longer  than  the  velocity  vector,  since  only  vectors  of  the  same  quanVty  can  be  compared  in  this  way.  

5  g  

9  km  /s  

p  =  45  kg  ·∙  m  /s                at  26º  N  of  E  

26º  

Page 7: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Equivalent  Momenta    

Bus:    m  =  9000  kg;      v  =  16  m  /s  

                   p  =  1.44  ·∙105  kg  ·∙  m  /s    

Train:    m  =  3.6  ·∙104  kg;      v  =  4  m  /s                              p  =  1.44  ·∙105  kg  ·∙  m  /s    

Car:    m  =  1800  kg;      v  =  80  m  /s

p  =  1.44  ·∙105  kg  ·∙  m  /s    

conVnued  on  next  slide  

Page 8: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Equivalent  Momenta    (cont.)  The  train,  bus,  and  car  all  have  different  masses  and  speeds,  but  their  momenta  are  the  same  in  magnitude.    The  massive  train  has  a  slow  speed;  the  low-­‐mass  car  has  a  great  speed;  and  the  bus  has  moderate  mass  and  speed.    Note:  We  can  only  say  that  the  magnitudes  of  their  momenta  are  equal  since  they’re  aren’t  moving  in  the  same  direcVon.  

The  difficulty  in  bringing  each  vehicle  to  rest-­‐-­‐in  terms  of  a  combinaVon  of  the  force  and  Vme  required-­‐-­‐would  be  the  same,  since  they  each  have  the  same  momentum.    

Page 9: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Impulse  Defined  Impulse  is  defined  as  the  product  force  acVng  on  an  object  and  the  Vme  during  which  the  force  acts.    The  symbol  for  impulse  is    J.    So,  by  definiVon:  

 J  =  F t    Example:    A  50  N  force  is  applied  to  a  100  kg  boulder  for  3  s.    The  impulse  of  this  force  is    J  =  (50  N)  (3  s)  =  150  N  ·∙  s.        

Note  that  we  didn’t  need  to  know  the  mass  of  the  object  in  the  above  example.      

Page 10: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Impulse  Units  J = F t    shows  why  the  SI  unit  for  impulse  is  the  Newton  ·∙  second.    There  is  no  special  name  for  this  unit,  but  it  is  equivalent  to  a    kg  ·∙  m  /s.  

     

proof:      1  N  ·∙  s    =    1  (kg  ·∙  m  /s2)  (s)    =    1  kg  ·∙  m  /s  

{  Fnet = m a    shows  this  is  equivalent  to  

a  newton.    

Therefore,  impulse  and  momentum  have  the  same  units,  which  leads  to  a  useful  theorem.  

Page 11: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Impulse  -­‐  Momentum  Theorem  

The  impulse  due  to  all  forces  acVng  on  an  object  (the  net  force)  is  equal  to  the  change  in  momentum  of  the  object:  

Fnet t = Δ p

We  know  the  units  on  both  sides  of  the  equaVon  are  the  same    (last  slide),  but  let’s  prove  the  theorem  formally:  

Fnet t = m a t = m (Δ v / t) t = m Δ v = Δ p

Page 12: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Imagine  a  car  hiing  a  wall  and  coming  to  rest.    The  force  on  the  car  due  to  the  wall  is  large  (big    F ),  but  that  force  only  acts  for  a  small  amount  of  Vme  (lijle    t ).    Now  imagine  the  same  car  moving  at  the  same  speed  but  this  Vme  hiing  a  giant  haystack  and  coming  to  rest.    The  force  on  the  car  is  much  smaller  now  (lijle    F ),  but  it  acts  for  a  much  longer  Vme  (big    t ).    In  each  case  the  impulse  involved  is  the  same  since  the  change  in  momentum  of  the  car  is  the  same.    Any  net  force,  no  majer  how  small,  can  bring  an  object  to  rest  if  it  has  enough  Vme.    A  pole  vaulter  can  fall  from  a  great  height  without  geing  hurt  because  the  mat  applies  a  smaller  force  over  a  longer  period  of  Vme  than  the  ground  alone  would.  

Stopping  Time  

F t = F t    

Page 13: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Impulse  -­‐  Momentum    Example  A  1.3  kg  ball  is  coming  straight  at  a  75  kg  soccer  player  at  13  m/s  who  kicks  it  in  the  exact  opposite  direcVon  at  22  m/s  with  an  average  force  of  1200  N.    How  long  are  his  foot  and  the  ball  in  contact?  

answer:    We’ll use Fnet t = Δ p.

Since the ball changes direction, Δ p = m Δ v = m (vf - v0) = 1.3 [22 - (-13)] = (1.3 kg) (35 m/s) = 45.5 kg · m /s. Thus, t = 45.5 / 1200 = 0.0379 s, which is just under 40 ms.

During  this  contact  Vme  the  ball  compresses  substanVally  and  then  decompresses.    This  happens  too  quickly  for  us  to  see,  though.    This  compression  occurs  in  many  cases,  such  as  hiing  a  baseball  or  golf  ball.  

Page 14: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

1.      What  is  the  momentum  of  a  0.25  g  bug  flying  with  a  speed  of  12  m/s?    Ans-­‐  3.0  x  10-­‐3  kg  m/s      2.      a)  What  is  the  momentum  of  a  112  kg  quarterback  running  with  a  speed  of  4.8  m/s?Ans-­‐    5.4  x  102  kg•m/s              b)  What  impulse  must  a  tackler  impart  to  the  quarterback  to  stop  him?    Ans-­‐5.4  x  102  N•s              c)  If  the  tackle  is  completed  in  1.2  s,  what  average  force  is  exerted  by  the  tackler  on  the  quarterback?  Ans–4.5  x  102  N      3.      Imagine  you  are  doing  a  space  walk  outside  a  space  shujle,  with  no  cable  between  you  and  the  shujle.  (Actually,  there  is  one,  but  you  cannot  see  it  because  you  don't  have  Cablevision!)  Your  small  maneuvering  rocket  pack  suddenly  quits  on  you  and  you  are  stranded  in  space  with  nothing  but  your  $10,000  camera  in  your  hands.  What  will  you  do  to  get  back  to  the  shujle?    

Page 15: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Impulse as Area of Fnet vs. t graph Fnet (N)

t (s) 6  

A  variable  strength  net  force  acts  on  an  object  in  the  posiVve  direcVon  for  6  s,  thereaqer  in  the  opposite  direcVon.    Since  impulse  is    Fnet t,  the  area  under  the  curve  is  equal  to  the  impulse,  which  is  the  change  in  momentum.  The  net  change  in  momentum  is  the  area  above  the  curve  minus  the  area  below  the  curve.    This  is  just  like  a    v    vs. t    graph,  in  which  net  displacement  is  given  area  under  the  curve.  

Net area = Δ p

Page 16: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$
Page 17: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

ConservaVon  of  Momentum  in  1-­‐D  Whenever  two  objects  collide  (or  when  they  exert  forces  on  each  other  without  colliding,  such  as  gravity)  momentum  of  the  system  (both  objects  together)  is  conserved.    This  mean  the  total  momentum  of  the  objects  is  the  same  before  and  aqer  the  collision.  

before: p = m1 v1 - m2 v2

after: p = - m1 va + m2 vb

m1 m2 v1 v2

(Choosing  right  as  the  +  direc2on,  m2  has  

-­‐  momentum.)  

m1 m2 va   vb

m1 v1 - m2 v2 = - m1 va + m2 vb

Page 18: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

DirecVons  aqer  a  collision  On  the  last  slide  the  boxes  were  drawn  going  in  the  opposite  direcVon  aqer  colliding.    This  isn’t  always  the  case.    For  example,  when  a  bat  hits  a  ball,  the  ball  changes  direcVon,  but  the  bat  doesn’t.    It  doesn’t  really  majer,  though,  which  way  we  draw  the  velocity  vectors  in  “aqer”  picture.    If  we  solved  the  conservaVon  of  momentum  equaVon  (red  box)  for    vb    and  got  a  negaVve  answer,  it  would  mean  that    m2    was  sVll  moving  to  the  leq  aqer  the  collision.    As  long  as  we  interpret  our  answers  correctly,  it  majers  not  how  the  velocity  vectors  are  drawn.  

m1 v1 - m2 v2 = - m1 va + m2 vb

m1 m2 v1 v2

m1 m2 va   vb

Total  Momentum    before    Collision    =    Total  Momentum  a4er  Collision  

Page 19: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Sample  Problem  1  

7  kg  

v = 0

700  m/s  

A  rifle  fires  a  bullet  into  a  giant  slab  of  bujer  on  a  fricVonless  surface.    The  bullet  penetrates  the  bujer,  but  while  passing  through  it,  the  bullet  pushes  the  bujer  to  the  leq,  and  the  bujer  pushes  the  bullet  just  as  hard  to  the  right,  slowing  the  bullet  down.    If  the  bujer  skids  off  at  4  cm/s  aqer  the  bullet  passes  through  it,  what  is  the  final  speed  of  the  bullet?  (The  mass  of  the  rifle  majers  not.)    

35  g  

7  kg  v = ?

 35  g  

4  cm/s  

con2nued  on  next  slide  

Page 20: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

7  kg  

v  =  0  

700  m/s  

35  g  

7  kg  v  =  ?  

 35  g  

4  cm/s  

p  before  =  7  (0)  +  (0.035)  (700)  

                   =  24.5  kg  ·∙  m  /s  

Let’s  choose  le9  to  be  the    +    direc2on  &  use  conserva2on  of  momentum,  conver2ng  all  units  to  meters  and  kilograms.  

p  aqer  =  7  (0.04)  +  0.035  v  

               =  0.28  +  0.035  v  

p  before  =    p  aqer                    24.5  =  0.28  +  0.035  v                      v  =  692  m/s        

v    came  out  posiVve.    This  means  we  chose  the  correct  direcVon  of  the  bullet  in  the  “aqer”  picture.  

Page 21: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Sample  Problem    

7  kg  v  =  0  

700  m/s  

 35  g  

Same  as  the  last  problem  except  this  Vme  it’s  a  block  of  wood  rather  than  bujer,  and  the  bullet  does  not  pass  all  the  way  through  it.    How  fast  do  they  move  together  aqer  impact?  

                   v

7.  035  kg  

(0.035)  (700)  =  7.035  v                                v  =  3.48  m/s  Note:    Once  again  we’re  assuming  a  fricVonless  surface,  otherwise  there  would  be  a  fricVonal  force  on  the  wood  in  addiVon  to  that  of  the  bullet,  and  the  “system”  would  have  to  include  the  table  as  well.  

Page 22: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Proof  of  ConservaVon  of  Momentum  The  proof  is  based  on  Newton’s  3rd  Law.    Whenever  two  objects  collide  (or  exert  forces  on  each  other  from  a  distance),  the  forces  involved  are  an  acVon-­‐reacVon  pair,  equal  in  strength,  opposite  in  direcVon.    This  means  the  net  force  on  the  system  (the  two  objects  together)  is  zero,  since  these  forces  cancel  out.      

M m F F

force on m due to M force on M due to m

For  each  object,    F  =  (mass)  (a)  =  (mass)  (Δv / t )  =  (mass  Δv) / t = Δp / t.      Since  the  force  applied  and  the  contact  Vme  is  the  same  for  each  mass,  they  each  undergo  the  same  change  in  momentum,  but  in  opposite  direcVons.    The  result  is  that  even  though  the  momenta  of  the  individual  objects    changes,    Δp    for  the  system  is  zero.    The  momentum  that  one  mass  gains,  the  other  loses.    Hence,  the  momentum  of  the  system  before  equals  the  momentum  of  the  system  aqer.  

Page 23: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

ConservaVon  of  Momentum  applies  only  in  the  absence  of  external  

forces!  In  the  first  two  sample  problems,  we  dealt  with  a  fricVonless  surface.    We  couldn’t  simply  conserve  momentum  if  fricVon  had  been  present  because,  as  the  proof  on  the  last  slide  shows,  there  would  be  another  force  (fricVon)  in  addiVon  to  the  contact  forces.    FricVon  wouldn’t  cancel  out,  and  it  would  be  a  net  force  on  the  system.  

The  only  way  to  conserve  momentum  with  an  external  force  like  fricVon  is  to  make  it  internal  by  including  the  tabletop,  floor,  or  the  enVre  Earth  as  part  of  the  system.    For  example,  if  a  rubber  ball  hits  a  brick  wall,    p    for  the  ball  is  not  conserved,  neither  is    p    for  the  ball-­‐wall  system,  since  the  wall  is  connected  to  the  ground  and  subject  to  force  by  it.    However,    p    for  the  ball-­‐Earth  system  is  conserved!  

Page 24: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Sample  Problem  3  

Earth M

   apple  

An  apple  is  originally  at  rest  and  then  dropped.    Aqer  falling  a  short  Vme,  it’s  moving  prejy  fast,  say  at  a  speed    V.    Obviously,  momentum  is  not  conserved  for  the  apple,  since  it  didn’t  have  any  at  first.    How  can  this  be?      

m

F

F

answer:    Gravity  is  an  external  force  on  the  apple,  so  momentum  for  it  alone  is  not  conserved.    To  make  gravity  “internal,”  we  must  define  a  system  that  includes  the  other  object  responsible  for  the  gravitaVonal  force-­‐-­‐Earth.    The  net  force  on  the  apple-­‐Earth  system  is  zero,  and  momentum  is  conserved  for  it.    During  the  fall  the  Earth  ajains  a  very  small  speed    v.    So,  by  conservaVon  of  momentum:  

V

v

m V = M v

Page 25: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Sample  Problem  4  

before  

a9er  

3  kg   15  kg  10  m/s   6  m/s  

3  kg   15  kg  4.5  m/s   v

A  crate  of  raspberry  donut  filling  collides  with  a  tub  of  lime  Kool  Aid  on  a  fricVonless  surface.    Which  way  on  how  fast  does  the  Kool  Aid  rebound?            answer:    Let’s  draw    v    to  the  right  in  the  aqer  picture.      

     3  (10)  -­‐  6  (15)    =    -­‐3  (4.5)  +  15  v                                  v  =  -­‐3.1  m/s  Since    v    came  out  negaVve,  we  guessed  wrong  in  drawing    v    to  the  right,  but  that’s  OK  as  long  as  we  interpret  our  answer  correctly.    Aqer  the  collision  the  lime  Kool  Aid  is  moving  3.1  m/s  to  the  leq.  

Page 26: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

ConservaVon  of  Momentum  in  2-­‐D  

m1 m2

v1 v2

m1 m2

va   vb

θ1 θ2

θa   θ b

To  handle  a  collision  in  2-­‐D,  we  conserve  momentum  in  each  dimension  separately.                                              Choosing  down  &  right  as  posiVve:  

before:

px = m1 v1 cosθ1 - m2 v2 cosθ2

py = m1 v1 sinθ1 + m2 v2 sinθ2

after:

px = -m1 va cosθa + m2 vb cosθ b

py = m1 va sinθa + m2 vb sinθ b

Conservation of momentum equations:

m1 v1 cosθ1 - m2 v2 cosθ2 = -m1 va cosθa + m2 vb cosθ b

m1 v1 sinθ1 + m2 v2 sin θ2 = m1 va  sinθa + m2 vb sinθ b

Page 27: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Conserving  Momentum  w/  Vectors  

m1 m2

p1

p 2

m1 m2

p a   p b

θ1 θ2

θa  θ b

BEFORE  

AFTER  

This  diagram  shows  momentum  vectors,  which  are  parallel  to  their  respecVve  velocity  vectors.    Note    p1 + p 2

= p a + p b    and    p  before  =    p  aqer    as  conservaVon  of  momentum  demands.  

p1

p 2

p before

p a  

p b

p after

Page 28: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Exploding  Bomb  

A  c  m  e  

before  

a9er  

m  

A  bomb,  which  was  originally  at  rest,  explodes  and  shrapnel  flies  every  which  way,  each  piece  with  a  different  mass  and  speed.    The  momentum  vectors  are  shown  in  the  aqer  picture.  

con2nued  on  next  slide  

Page 29: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Exploding  Bomb    (cont.)  Since  the  momentum  of  the  bomb  was  zero  before  the  explosion,  it  must  be  zero  aqer  it  as  well.    Each  piece  does  have  momentum,  but  the  total  momentum  of  the  exploded  bomb  must  be  zero  aqerwards.    This  means  that  it  must  be  possible  to  place  the  momentum  vectors  Vp  to  tail  and  form  a  closed  polygon,  which  means  the  vector  sum  is  zero.  

If  the  original  momentum  of  the  bomb  were  not  zero,  these  vectors  would  add  up  to  the  original  momentum  vector.  

Page 30: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

2-­‐D  Sample  Problem  

0.3  kg  

34  m/s  40°  

152  g  A  mean,  old  dart  strikes  an  innocent  mango  that  was  just  passing  by  minding  its  own  business.    Which  way  and  how  fast  do  they  move  off  together?  

before  

a9er  

5  m/s  

452  g  

θ

v

152  (34)  sin  40°    =    452  v  sinθ

152  (34)  cos  40°  -­‐  300  (5)    =    452  v  cosθ  

Working  in  grams  and  taking  le9  &  down  as  +  :  

Dividing  equa2ons  :   1.35097    =    tanθ  

θ  =  53.4908°  

Subs2tu2ng  into  either  of  the  first  two  equa2ons  :  

v  =  9.14  m/s  

Page 31: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

ElasVc  and  InelasVc  collisions  

Total  KE  before    =  Total  KE  a4er   Total  KE  before    ≠  Total  KE  a4er  

Page 32: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Types  of  Collisions  Energy  is  always  conserved  but  may  change  types  (mv2/2,  mgh,  kx2/2  etc).  There  is  only  one  type  of  

momentum  (mv).  We  idenVfy  collisions  based  upon  their  conservaVon  of  kine2c  energy.  

InelasVc  •  kineVc  energy  is  NOT  constant  

ElasVc  •  kineVc  energy  IS  constant  

Page 33: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

InelasVc  Collisions  These  collisions  are  considered  PERFECT  when  the  objects  collide  and  combine  to  move  as  one  object.    

InelasVc  • Objects  bounce  but  may  be  deformed  so  kineVc  energy  is  transformed.  

Perfectly  InelasVc  • Objects  sVck  together  

Page 34: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Perfectly  InelasVc  Collisions:  

pAi + pBi = pAB, fmAvAi +mBvBi = mA +mB( )vf

Page 35: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

For  elas9c  collisions   KE is transferred near perfectly. Perfect elastic is not practically possible in macroscopic world

Page 36: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$
Page 37: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

A  toy  car  with  a  mass  of  120  g  moves  to  the  right  with  a  speed  of  0.59  m/s.  A  small  child  drops  a  20.0-­‐g  piece  of  clay  onto  the  car.  The  clay  sVcks  to  the  car  and  the  car  conVnues  to  the  right.  What  is  the  change  in  speed  of  the  car?  Consider  the  fricVonal  force  between  the  car  and  the  ground  to  be  negligible.  

-­‐0.0843  m/s  

Page 38: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

A  firecracker  is  tossed  straight  up  into  the  air.  It  explodes  into  three  pieces  of  equal  mass  just  as  it  reaches  the  highest  point.  Two  pieces  move  off  at  140  m/s  at  right  angles  to  each  other.  How  fast  is  the  third  piece  moving?  

198  m/s  

Page 39: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Body  A  of  mass  M  has  an  original  velocity  of  5.5  m/s  in  the  +x-­‐direcVon  toward  a  staVonary  body  (body  B)  of  the  same  mass.  Aqer  the  collision,  body  A  has  velocity  components  of  1.1  m/s  in  the  +x-­‐direcVon  and  1.8  m/s  in  the  +y-­‐direcVon.  What  is  the  magnitude  of  body  B's  velocity  aqer  the  collision?  

4.75  m/s  

Page 40: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

Two  idenVcal  pucks  are  on  an  air  table.  Puck  A  has  an  iniVal  velocity  of  2.2  m/s  in  the  posiVve  x-­‐direcVon.  Puck  B  is  at  rest.  Puck  A  collides  elasVcally  with  puck  B  and  A  moves  off  at  1.2  m/s  at  an  angle  of  +60°  above  the  x-­‐axis.  What  is  the  speed  and  direcVon  of  puck  B  aqer  the  collision?  (Let  angles  above  the  +x-­‐axis  to  be  posiVve  and  below  to  be  negaVve.)  

1.91    m/s  -­‐33.0    °  

Page 41: Sem$IIramadosss.weebly.com/uploads/5/8/7/2/58728489/chapter_7.pdfWhatto$expectin$2 nd$Sem$ 1. 4$more$Chapters$ 2. 485$more$labs$ 3. SeatAssignments$$ 4. Only$Web$Assign$HW$($you$could$printthem$and$do$on$

In  a  circus  trapeze  act,  two  acrobats  actually  fly  through  the  air  and  grab  on  to  each  other,  then  together  grab  a  swinging  bar.  One  acrobat,  with  a  mass  of  71  kg,  is  moving  at  3  m/s  at  an  angle  of  10°  above  the  horizontal  and  the  other,  with  a  mass  of  80  kg,  is  approaching  her  with  a  speed  of  1.7  m/s  at  an  angle  of  20°  above  the  horizontal.  What  is  the  direcVon  and  speed  of  the  acrobats  right  aqer  they  grab  on  to  each  other?  Let  the  posiVve  x-­‐axis  be  in  the  horizontal  direcVon  and  assume  the  first  acrobat  has  posiVve  velocity  components  in  the    posiVve  x-­‐  and  y-­‐direcVons.  

0.775    m/s  45.5    °