Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl...

37
Selfassembly from Nano to Milli Scales from Nano to Milli Scales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar GEN ST 197 D Freshman Seminar GEN ST 197 D Nanoscience & Molecular Engineering Monday March 1 2010 Monday , March 1, 2010

Transcript of Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl...

Page 1: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Self‐assembly from Nano to Milli Scalesfrom Nano to Milli Scales

Prof. Karl F Böhringer, Electrical Engineering

Freshman Seminar – GEN ST 197 DFreshman Seminar  GEN ST 197 DNanoscience & Molecular Engineering

Monday March 1 2010Monday, March 1, 2010

Page 2: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

IntroductionIntroduction

Mi El t M h i l S t (MEMS)• Micro Electro Mechanical Systems (MEMS):– Sub‐millimeter sized machines typically built in batch fabrication 

processes derived from integrated circuit (IC) technology– Can have broad functionality, including sensing, actuation, 

computation, and communication

• Claim:– Just like IC’s have revolutionized computation, MEMS are 

l i i i ( i ) d b i d h irevolutionizing (micro) transducers, robotics, and mechatronics

• Challenge:Challenge:– Unlike IC’s, MEMS may rely on a broad range of materials, processes, 

and effects to achieve their optimal functionalityMEMS Scanning Tunneling Microscope

Vibrating ring gyro [Ayazi et al Micro combination lockTunneling Microscope

[Xu et al. APS’95][Ayazi et al.IEEE MEMS’98]

Micro combination lock [Sandia National Labs]

1 March 2010© Karl F Böhringer

Page 3: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

IntroductionIntroduction

Mi El t M h i l S t (MEMS)• Micro Electro Mechanical Systems (MEMS):– Sub‐millimeter sized machines typically built in batch fabrication 

processes derived from integrated circuit (IC) technology– Can have broad functionality, including sensing, actuation, 

computation, and communication

• Claim:– Just like IC’s have revolutionized computation, MEMS are 

l i i i d ( d )revolutionizing sensors and actuators (transducers)

• Challenge:Challenge:– Unlike IC’s, MEMS rely on a much broader range of materials, 

processes, and effects to achieve their optimal functionality

1 March 2010© Karl F Böhringer

Page 4: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

1 March 2010© Karl F Böhringer

Page 5: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

MotivationMotivation

B k dBackground:• Since the 1960’s, integrated circuits (ICs) have been growing in complexity by about a factor ofbeen growing in complexity by about a factor of two every two years (“Moore’s Law”).

• Since the 1980’s IC technology has increasingly• Since the 1980 s, IC technology has increasingly been adapted to build micro sensors and actuators.actuators.

Question: • How does design methodology andHow does design methodology and manufacturing technology adapt to this increasing complexity and diversity?g p y y

1 March 2010© Karl F Böhringer

Page 6: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Circuit CityCircuit City

Integrated circuit, microscopic view

City landscape, macroscopic view

1 March 2010© Karl F Böhringer

Page 7: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Top down and Bottom upTop‐down and Bottom‐up

I t t d i itIntegrated circuits: • “Top‐down” centralized design• Monolithic batch fabricationHeterogeneous microsystems:• Separate design & fabrication of functional units• Precision assembly and customized packagingCity:• Decentralized planning and constructionp g• “Bottom‐up” guided growth

1 March 2010© Karl F Böhringer

Page 8: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Growth and Self assemblyGrowth and Self‐assembly

h• Growth processes (crystals, organisms, cities, etc.) tend to be – distributed– massively parallely p– stochastic– guided by a utility functionguided by a utility function

• Can we apply this approach to microsystems?• Can we apply this approach to microsystems?Self‐assembly (from nano to milli scales)

1 March 2010© Karl F Böhringer

Page 9: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

DefinitionDefinition

S lf blSelf‐assembly: The autonomous and spontaneousThe autonomous and spontaneous organization of components into patterns or structures.

1 March 2010© Karl F Böhringer

Page 10: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Self assembly Across ScalesSelf‐assembly Across Scales

• Currently, “no‐man’s‐land” for engineered assembly in the micrometer rangey g– Conventional robots get very expensive 

Chemical synthesis cannot produce non periodic– Chemical synthesis cannot produce non‐periodic or heterogeneous assemblies

Å nm µm mm m

1 March 2010© Karl F Böhringer

Page 11: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Self assembly Across ScalesSelf‐assembly Across Scales

• Goals:– High volume, flexible manufacturingg , g

– Complex heterogeneous microsystem integration

Å nm µm mm m

1 March 2010© Karl F Böhringer

Page 12: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Micro Self assemblyMicro Self‐assembly

• Very large numbers of very small 

tcomponents• Independent parallel 

fabrication of tcomponents

• Fabrication at high density, assembly at l d ilower density

• Hybrid systems built from standard components

Enabling technology forEnabling technology for complex integrated microsystems

1 March 2010© Karl F Böhringer

Page 13: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Programmed Self‐assemblyProgrammed Self‐assembly

Self‐assembly: autonomous and spontaneous organization of components into patterns or structures 

• Programmed self‐assembly: lf bl ith ( ti l d t l)self‐assembly process with (spatial and temporal) 

control over binding mechanisms– resulting structures can be adjusted on demand

– analogies: flexible robotic assembly; protein synthesis

1 March 2010© Karl F Böhringer

Page 14: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Programmable SurfaceProgrammable Surface

A bj t h f ti b t ll d ith• An object whose surface properties can be controlled with good spatial and temporal resolution

• Crucial for programmed self‐assembly

• Surface properties:– Friction – Surface forces– Surface forces– Hydrophobicity (surface tension, contact angle)– Biological properties (e.g., adhesion of proteins)

l ( l f l h )– Optical properties (color, transmission of light)– …

1 March 2010© Karl F Böhringer

Page 15: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Goals / ApplicationsGoals / Applications

1 Thermoelectric cooling of hot spots1. Thermoelectric cooling of hot spotsAssembly of p/n materials in checkerboard pattern

2. Extreme aspect ratio componentsTens of μm thin mm’s or cm’s side lengthTens of μm thin, mm s or cm s side length

Ongoing joint work with Intel Corp. / DARPA

1 March 2010© Karl F Böhringer

Page 16: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Surface Tension Driven Self assembly

Di ti f dh i d l t h d h bi

Surface Tension Driven Self‐assembly

• Dip coating forms adhesive droplet on hydrophobic areas– reduce frictionprovide longer range capillary forces (>>1µm)– provide longer range capillary forces (>>1µm) 

– act as photo‐ or heat‐polymerizable glue

1mm

Hydrophilic area Video: X. Xiong ‘00Adhesive on hydrophobic area

Video: X. Xiong  00

1 March 2010© Karl F Böhringer

Page 17: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Surface Tension Driven Self assembly

D i i f f bl i i i ti f f

Surface Tension Driven Self‐assembly

Driving force for assembly: minimization of surface energy with hydrophobic‐hydrophilic interfaces

Alk hi l lf bl d l (SAM) A– Alkanethiol self‐assembled monolayer (SAM) on Au  forms hydrophobic surfaceOrganic lubricant adhesive– Organic lubricant adhesive

AdhesiveHydrophobic area

[ l ’ h d l ’ ][Srinivasan et al.’99, Whitesides et al.’90s]

1 March 2010© Karl F Böhringer

Page 18: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Programmable Self assemblyProgrammable Self‐assembly

Organization of different parts onto desired locations

Adsorb SAM on all gold sites

Desorb SAM from undesired sites

Assemble parts on desired sites

Hydrophobic HydrophilicHydrophobic No assemblyAssembly

Substrate

Polymerize adhesive

1 March 2010© Karl F Böhringer

Page 19: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Modulation of Surface EnergiesModulation of Surface Energies

Hydrophilic  Hydrophobic Adsorption of alkanethiol SAM

Hydrophobic  HydrophilicReductive desorption of SAMCH (CH ) S A CH (CH ) S ACH3(CH2)nS–Au + e–→ CH3(CH2)nS– + Au

Aue‐ e‐e‐

AuAu AuSubstrate

AuSubstrate

AuSubstrate

AuSubstrate

Au

Adsorption is accomplished by soaking surfaces in ethanolic alkanethiol solution.

Desorption is accomplished by applying a negative voltage to the Au electrode.

1 March 2010© Karl F Böhringer

Page 20: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Fabrication of SubstratePassivation layer (spin‐on glass)

Fabrication of SubstratePassivation layer (spin on glass)

Cr/AuSiO2

Si substrate

SiO2

Exposed electrical contacts (“binding sites”)

1 March 2010© Karl F Böhringer

Page 21: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

SAM Desorption andSAM Desorption andFirst Assembly Batch

Adhesive onhydrophobic surfaces

No adhesive onhydrophilic surfaces

Assembled partFree spot

1mm

SAM desorption from left column of sites only

1 March 2010© Karl F Böhringer

Page 22: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Second Assembly BatchSecond Assembly Batch

[X. Xiong et al. Transducers ’01, JMEMS ’03][ g , ]

1 March 2010© Karl F Böhringer

Page 23: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Adding Electrical ConnectivityAdding Electrical Connectivity

Top view of a fabricated substrate for LED assemblyTop view of a fabricated substrate for LED assembly

Adhesive wets Au binding site  

Ni electroplating seed is free from adhesive

1 March 2010© Karl F Böhringer

Page 24: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Fabrication of the Substrate 

Passivation layer (silicon nitride)

for LED Assembly

Cr/Au

Passivation layer (silicon nitride)

Cr/NiCr/Ni

Si substrateSiO2

Electrical contact Binding site1 March 2010© Karl F Böhringer

Page 25: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Electrical Connection byElectrical Connection by Electroplating

Gap between an assembled LED and substrate is ~ 20µm

Electrical connection established by plated solder

1 March 2010© Karl F Böhringer

Page 26: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Self‐assembled LED withSelf assembled LED with Electrical Connections

[X. Xiong et al., JMEMS ’03]

1 March 2010© Karl F Böhringer

Page 27: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Templated Self assemblyTemplated Self‐assembly

1 March 2010© Karl F Böhringer

Page 28: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Templated Self assemblyTemplated Self‐assembly

1 March 2010© Karl F Böhringer

Page 29: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Real time Tracking of Self assemblyReal‐time Tracking of Self‐assembly

% %aperture sites: 200; % excess parts: 50%; agitation frequency: 525Hz

1 March 2010© Karl F Böhringer

Page 30: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Results: Assembly KineticsResults: Assembly Kinetics

525Hz

565H

d (%

)

565Hz

mbly yiel A

assem

B

time (s)

N(t) = A(1 – e‐kt) + B A + B ≤ 100%

1 March 2010© Karl F Böhringer

Page 31: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Assembly Kinetics ModelAssembly Kinetics Model

525Hz

565H

d (%

)

565Hz

mbly yiel

N(t) = 89.90(1 – e‐kt) + 10.10      k = 0.35 

assem

N(t) = 89.45(1 – e‐kt) + 10.55      k = 0.14 

time (s)

N(t) = A(1 – e‐kt) + B  A + B ≤ 100%

1 March 2010© Karl F Böhringer

Page 32: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Assemblies with Shape MatchingAssemblies with Shape Matching

Self-assembly and gang bonding of chips on 8” wafery g g g p( collaboration with ASTAR IME, Singapore)

1 March 2010© Karl F Böhringer

Page 33: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Current / Future Work: Protein and Cell Arrays

P bl S f f P t i d C llProgrammable Surfaces for Proteins and Cells:• Thermoresponsive polymer pNIPAM (poly N‐isopropyl 

acrylamide) binds proteins and cells above 32°C.y ) p• Thin film pNIPAM can be integrated with MEMS.• Microheaters for protein and cell arrays.• Programmable IR laser “protein printer.” 

BASMCBASMCLaser exposure test with BSA

BAEC100µm

Also with H. Fujita,

1 March 2010© Karl F Böhringer

With B. Ratner, UWEB S. Takeuchi, Tokyo

Page 34: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

Current / Future Work: Protein Guided Nanomanufacturing

O h t t d St t l E l ti (OSE)Orchestrated Structural Evolution (OSE):• Use combinatorial biology to develop library of peptides.• Peptides control nucleation, growth rate, and crystallinity of target 

inorganic materials.• Place peptide patterns into appropriate aqueous electrolyte. • Peptides can act as seeds in synthesis of heterogeneous, three‐Peptides can act as seeds in synthesis of heterogeneous, three

dimensional structures.• Completely automated process from CAD design to optimized seed 

planting to growth of nano‐structuresplanting to growth of nano structures

UW Husky pattern, automaticallyautomatically generated and grown with OSE (with D Schwartz UW)

1 March 2010© Karl F Böhringer

(with D. Schwartz, UW)

‐ 10μm

Page 35: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

ConclusionsConclusions

Tools for design, modeling, and manufacture of complex 2D and 3D self‐assembled microsystems are becoming available.

Th ld l d t di hift i d i d f t fThey could lead to a paradigm shift in design and manufacture of complex micro and nano systems.

Effects of downscaling on assembly:

Meso Volume forces Deterministic SerialMeso Volume forces      Deterministic            Serial

Mi S f f St h ti P ll lMicro            Surface forces         Stochastic              Parallel

1 March 2010© Karl F Böhringer

Page 36: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

ConclusionsConclusions

Tools for design, modeling, and manufacture of complex 2D and 3D self‐assembled microsystems are becoming available

Th ld l d t di hift i d i d f t fThey could lead to a paradigm shift in design and manufacture of complex micro and nano systems

Manual labor: “0D” Conveyor belt: “1D” VLSI: “2D” 3D self‐assembly in Nature:

Radiolarium l. maritalis

1 March 2010© Karl F Böhringer

Page 37: Self assembly from Nano to MilliScales€¦ · Self‐assembly from Nano to MilliScales Prof. Karl F Böhringer, Electrical Engineering Freshman Seminar – GEN ST 197 D Nanoscience&

AcknowledgementsAcknowledgements

S Ab i J F J H K W X Xi ( d t t d t )• S. Abassi, J. Fang, J. Hoo, K. Wang, X. Xiong (graduate students);  J. Chang, J. Cheng, Y. Hanein, S. Park, A. Shastry, X. Xiong (postdocs), UW MEMS LaboratoryW W S Ji D S h t UW Ch E• W. Wang, S. Jiang, D. Schwartz, UW ChemE

• X. Cheng, B. Ratner, UWEB• R. Baskaran, Intel,• U. Srinivasan, R. Howe, Berkeley/Stanford• J. Lienemann, A. Greiner, J. Korvink, Freiburg• K Vaidyanathan ASTAR IME Singapore• K. Vaidyanathan, ASTAR IME Singapore

• Funding: Intel, NSF, DARPA, NIH, NIJ, Washington Technology Center, JSPS 

• Additional support: Agilent, HP, Intel, Microsoft, Tanner, Tektronix

1 March 2010© Karl F Böhringer