SECTION 5 Advanced Opamp Circuits

download SECTION 5 Advanced Opamp Circuits

of 104

Transcript of SECTION 5 Advanced Opamp Circuits

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    1/104

    SECTION5:ADVANCEDOPAMPCIRCUITS

    MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    2/104

    Introduction2

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    3/104

    MoreOpampCircuits Opampcircuitscanbebroadlygroupedintotwocategories:linear

    circuitsandnonlinearcircuits.

    Inthefirstsectionofnotes,welookedatlinearopampcircuitsthoseemployingnegativefeedbacktoprovidelinearamplificationofaninputsignal.

    Inthissectionofnotes,wewilltakealookatacoupleofexamples

    ofnonlinear

    opamp

    circuits

    thosethatemploypositivefeedback

    (ornofeedback)toproduceoutputsthatswitchbetweenthepositiveandnegativelimits.

    Thefirstandmostimportantofthesearecomparators.

    Wewillalsolookatafewothertypesofopampcircuits: Activefilters

    Instrumentationamplifiers

    K.Webb MAE3055 MechetronicsII

    3

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    4/104

    Comparators4

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    5/104

    OpenLoopOpampBehavior Inthefirstsectionofnotes,welookedatopampamplifiercircuits

    Closedloopconfiguration

    Negativefeedback Outputremainswithintheopamps linearoutputrange

    Wellnowtakealookatwhathappenswhenyouuseanopampopenloop withoutfeedback orwithpositivefeedback Idealopamphasinfinitegain,soforanynonzerodifferentialinput

    voltage,theoutputwanttobeV CantgotoV limits,orsaturates,somewherenearthesupply

    voltages

    Saturationvoltageisnotatthesupplyvoltages,butforsimplicityinthissetofnotes,welltypicallyassumethattheopampoutputcanswingbetweenthepositiveandnegativesupplyvoltages

    Opampswhoseoutputscanswingalltheway(almost)tothesuppliesarecalledrailtorailopamps

    Gainissohigh(ideally,infinite)thatoutputwillalwaysbesaturatedhighorlow

    K.Webb MAE3055 MechetronicsII

    5

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    6/104

    Comparators

    K.Webb MAE3055 MechetronicsII

    6

    Inanopenloopconfiguration,theoutputofanopampisdeterminedbytherelative

    valueofthetwoinputs.

    V+,V Vid Vo

    V+ V > 0V +V

    Thedifferentialopampinputisthedifferencebetweenthevoltageatthetwoinput

    terminals:idV V V

    If ,V V then 0 ,idV V and oV V

    If ,V V then 0 ,idV V and oV V

    Theopampcomparesthetwoinputvoltagesandgeneratesanoutputbasedon

    whichinputishigher itisactingasacomparator.

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    7/104

    Comparators

    K.Webb MAE3055 MechetronicsII

    7

    Theoutputofacomparatorswitchesbetweentwostates theupperandlower

    outputlimits dependingontherelativevaluesoftheinputvoltages:

    ComparatorInputs

    ComparatorOutputs

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    8/104

    Comparators ExampleUses

    K.Webb MAE3055 MechetronicsII

    8

    Comparatorsareusedtocompareonevoltagewithanother.

    Forexample,thermostat,usedtoturnaheatingsystemonandoff: Invertinginputconnected toatemperaturesensor

    Noninvertinginputconnectedtoavariablereferencevoltagedeterminedby

    thetemperaturesetpoint Outputishighwhentheroom

    temperatureisbelowthesetpoint temperature

    Outputislowwhenroom

    temperatureisabovethe

    setpoint temperature

    Anotherexampleoftheuseofacomparatorisamotionsensinglight:

    Oneinputcomesfromamotionsensoroutput(analogvoltage)

    Otherinputisathresholdvoltagesetbythesensitivitysetting

    Wantlighttoturnonforpeople,cars,notinsects,birds

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    9/104

    ComparatorsandNoise9

    Considerthefollowingcomparatorcircuit:

    Invertinginput

    (V)

    is

    driven

    by

    a

    noiseless,1KHzsinusoidalsignal

    Noninvertinginput(V+),thethreshold

    voltage,isconnectedtoground(0V)

    Output,Vo,switchesasexpected Wheninputishigherthanthe

    thresholdvoltage(V >V+),outputis

    low,Vo=12V,andviceversa

    Zoomedinviewofasinglethresholdcrossing

    Voswitchescleanlyatthepointwhere

    theinputcrossesthreshold

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    10/104

    ComparatorsandNoise10

    Samecircuitandsourceasbefore

    Now,theinputsignaliscorruptedbynoise

    Thisisamorerealisticscenario thereis

    alwaysnoise

    Inputtraceisvisiblyfatternoisier Outputedgeslookfattertoo

    Somethingishappeningattheoutput

    transitions takeacloserlook

    Zoomingin,noiseoninputisvisible Noisyinputtransitionsbackandforth

    acrossthethreshold

    Voswitchesateachthresholdcrossing

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    11/104

    Hysteresis SchmittTrigger11

    Thiscomparatorcircuitusesfeedbacktogenerate

    hysteresis aphenomenainwhichthecharacteristics

    of

    a

    system

    are

    dependent

    on

    its

    previous

    states.

    Lookcloselynotanoninvertingamplifier

    feedbackispositive

    Thresholdvoltage,V+,isnolongerconstant

    dependentontheoutputvoltage:

    Theoutputcanassumeoneoftwostates,

    +12Vor12V,sothethresholdvoltagewillbe:

    2

    1 2o

    R

    V V R R

    2

    1 2

    122

    hystVR

    V VR R

    Iftheinputislow,theoutputwillbehigh,andthethresholdvoltagewillbea

    (relativelysmall,typically)positivevalue:V+ =+Vhyst/2 Astheinputrisesandtransitionsthroughthethresholdvoltage,+Vhyst/2,the

    outputwillswitchto12V,andthethresholdvoltagewillmoveawayfromthe

    risinginputsignaltoVhyst/2.theoppositeoccursfornegativeinputtransitions.

    Themagnitudeof+Vhyst/2willdeterminethecomparatorssensitivitytonoise.

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    12/104

    ComparatorsandNoiseHysteresis12

    Nowweveaddedhysteresistodesensitizethe

    comparatortothenoiseontheinputsignal

    Acomparatorwithhysteresisiscalleda

    Schmitttrigger

    R1andR2selectedtoprovideadequate

    hysteresisfortheamountofnoisepresent

    Inputisstillnoisy

    Outputedgesnowlookcleaner

    ThresholdvoltageswitcheswithVo

    Single,cleanoutputtransition

    Thresholdvoltageswitchesbetween

    Vhyst/2movesawayfromnoisyinput

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    13/104

    ComparatorsandNoiseHysteresis13

    K.Webb MAE3055 MechetronicsII

    400hystV mV

    Hysteresisismeasuredas

    thefullpeaktopeak

    swingofthethreshold

    voltage

    Hysteresisistwicethe

    magnitudeofthefeedbacksignal:

    2

    1 2

    2maxhyst o

    RV V

    R R

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    14/104

    ComparatorsandNoiseHysteresis14

    K.Webb MAE3055 MechetronicsII

    AnotherwaytoquantifyhysteresisistoperformabidirectionalDCsweepofthe

    input lowtohigh,thenhightolow whilemonitoringtheoutput:

    Vin

    increasing

    Vin

    decreasing

    Outputtracesadifferent

    path,dependentupon

    directionofVin increasing

    ordecreasing Thresholdvoltagedepends

    onhistoryofVin

    Thresholdvoltagesindicated

    byverticalportionsoftheVo

    trace Hysteresisgivenby

    differencebetweentwo

    thresholdlevels

    Vhyst=400mV

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    15/104

    ComparatorwithAdjustableHysteresis15

    K.Webb MAE3055 MechetronicsII

    Ifthelevelofnoiseattheinputtoacomparatorisnotknownaheadoftime,

    amountofhysteresiscanbemadeadjustablebyincludingapotentiometer(variableresistor)inthefeedbackpath.

    Magnitudeofthefeedbacksignal portionoftheoutputthatisfedback isvaried

    byvaryingtheresistanceofthepotentiometer

    R2

    isadjustablebetween0and

    somemaximumvalue,Rmax.

    WhenR2=0:

    WhenR2=Rmax:

    2

    1 22maxhyst o

    R

    V V R R

    1

    02 0

    0maxhyst oV V

    R

    max

    1 max

    2maxhyst o

    RV V

    R R

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    16/104

    SchmittTriggerExampleConsiderthefollowingscenario:

    Youhaveatestengineinstrumentedandrunningonadynamometerinthelab.

    Youwanttogenerateasignalthatwillilluminateawarninglight(LED)iftheenginetemperatureexceedssomeupperlimit.

    YouhaveanRTD(resistivetemperaturedetectororresistivethermaldevice)installedtomeasurecoolanttemperature.

    TheRTDisbiasedsuchthata0Voutputcorrespondstothethresholdtemperaturewewishtodetect.

    NoiseontheRTDsignalisapproximately100mVpp

    Anopampisavailableforuseasacomparator

    Opampsuppliesare5V

    Opampoutputssaturateat+VCC 500mVandVCC+500mV

    Maximumopampoutputcurrentisonly10mA

    Whenon,theLEDsinks9mA

    K.Webb MAE3055 MechetronicsII

    16

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    17/104

    SchmittTriggerExample

    K.Webb MAE3055 MechetronicsII

    17

    DesignaSchmitttriggertosatisfythecriteriaonthepreviousslide.Theentirecircuit

    isshownbelow.

    WhentheRTDoutputexceeds0VtheSchmitttriggeroutputwillgolowand

    theLEDwillbebiasedwith9mAandwillilluminate

    NotethattheRTDitselfisjustaresistor;itsbiasnetworkisnotshown.

    Currentflowingthroughthehysteresisfeedbacknetworkmustbelimitedto

    1mA

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    18/104

    SchmittTriggerExample

    K.Webb MAE3055 MechetronicsII

    18

    DesignaSchmitttriggertosatisfythecriteriaonthepreviousslide.

    Requiredhysteresisvalueisatleastthepeaktopeaknoisevalue.Wellset

    hysteresistobe150mV:

    Theoutputsaturatesat4.5V,so

    Opampoutputcurrent,excludingLEDbiascurrent,willbe

    Choosingastandardresistorvalueof5.1KforR1,wecanthencalculateR2:

    2

    1 2

    2 150maxhyst o

    RV V mV

    R R

    3 32 2 1

    1 2

    15016.67 10 16.95 102 4.5

    R mVR R

    R R V

    1 2

    1 2

    4.51 4.5oI mA R R K

    R R

    3 32 116.95 10 16.95 10 5.1 86.4R R K

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    19/104

    SchmittTriggerExample

    K.Webb MAE3055 MechetronicsII

    19

    Choosingthenearest(larger,soasnottodecreasehysteresisvalue)standard

    resistorvalueforR2gives:

    Recalculatingtheexpectedhysteresis:

    Andcheckingthatthecurrentthroughthefeedbacknetworkdoesnotexceed1mA:

    TheresultingSchmitttriggercircuit:

    1 25.1 91,R K R

    2

    1 2

    912 2 4.5 157

    5.1 91maxhyst o

    RV V V mV

    R R K

    1 2

    4.5867 1

    5191maxo

    o

    V VI mAA

    R R

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    20/104

    OpampRelaxationOscillator20

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    21/104

    Oscillators Oscillatorsarecircuitsorcomponentsthatprovideanoutputvoltagethat

    oscillatesatacertain(possiblyadjustable)frequency

    Oscillatingoutputmaybesinusoidal orsomethingapproximating

    sinusoidal oritmaybeasquarewave

    Crystaloscillatorsareusedforhighperformanceapplications(e.g.clock

    onthemotherboardinyourPC,oscillatorinmobilephonetransceiver,

    etc.)

    LowperformanceapplicationsmayuseoscillatorICs,suchasthe555

    timerIC

    Canalsobuildanoscillatorusinganopamp possiblyusefulinsome

    circumstances mostlyjustaninterestingcircuitthatwillaidinyou

    understandingofopamps,feedback,stepresponseofRCcircuits,andthe

    basicprinciplesbehindthefunctioningofmanytypesofoscillators

    K.Webb MAE3055 MechetronicsII

    21

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    22/104

    OpampRelaxationOscillator

    K.Webb MAE3055 MechetronicsII

    22

    Thefollowingcircuitiscalledarelaxationoscillator relaxationbecauseits

    oscillationisduetothecharginganddischargingofacapacitor.

    Thisisafairlytrickycircuittoanalyze.Letsbeginbynotingafewimportant

    propertiesandcharacteristicsofthecircuit:

    ThereispositivefeedbackprovidedbyR1andR2,so

    wellassumetheoutputisalwayssaturatedatV

    ThereisalsoanegativefeedbackpathfromVotoV Thevoltageatthenoninvertinginputisafunctionof

    theoutputvoltage.Itstheoutputvoltagescaledby

    thegainofthefeedbacknetwork.

    Thevoltageattheinvertinginputisthevoltageacross

    acapacitor.Itwantstochargeuptotheleveloftheoutputvoltage

    IfV V+,thentheoutputwillbelow,Vo=V

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    23/104

    OpampRelaxationOscillator

    K.Webb MAE3055 MechetronicsII

    23

    Toanalyzethebehaviorofthecircuit,letusbeginwiththeassumptionthatthe

    outputwillswitchbackandforthbetweenV(itisanoscillator,afterall).Well

    assumeanoutputstateandworkourwaythroughthedifferentcircuitnodes:

    Assumethatatt=0theoutputhasjustswitchedfrom

    low,V,tohigh,+V

    WhenVowaslow,thevoltageatthenoninverting

    inputwas:

    ThetransitionmusthaveoccurredbecauseV

    transitionedfrombeinghigherthantolowerthanV+.

    So,attheswitchinginstant:

    AssoonasVoswitchesfromlowtohigh,thecapacitor

    voltage,V,beginstochargetoward+V,and:

    2

    1 2

    RV VR R

    V

    V V

    V V

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    24/104

    OpampRelaxationOscillator

    K.Webb MAE3055 MechetronicsII

    24

    AstheoutputswitchesbackandforthbetweenV,twothingshappen

    Thenoninvertinginput,V+,switchesbetweenV

    Thecapacitorvoltageattheinvertinginputchargesanddischargesbetween

    VataratedeterminedbytheRCtimeconstantofthenegativefeedback

    network

    OutputswitchingoccurseachtimeV reachesV

    EachtimeVoswitches,V ischarging/dischargingtowardV

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    25/104

    OpampOscillatorfosc

    K.Webb MAE3055 MechetronicsII

    25

    Bynowitshouldbeclearthatthefrequencyofoscillationwillberelatedtotherate

    atwhichthecapacitorchargesanddischargesbetweentheswitchingpointsatV.

    WewillnowcalculatethefrequencyofoscillationtofindthatitisafunctionofboththeRCtimeconstantofthenegativefeedbacknetworkandthegainofthepositive

    feedbacknetwork,.

    Againassumethatatt=0,VoswitchesfromVto+V.

    RecallthatthestepresponseofafirstorderRCcircuit

    isgivenby:

    Att=0,V= V,andV thenbeginschargingtoward

    +V,so:

    Thechargingofthecapacitorfort>0isthengivenby:

    t

    RCF I FV t V V V e

    ,I FVV V V

    1t t

    RC RCV t V V V e V eV

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    26/104

    OpampOscillatorfosc

    K.Webb MAE3055 MechetronicsII

    26

    Thecapacitorvoltageneverreachesitsdestinationof+V,becauseonceitreaches

    +Vtheoutputswitchesagain,andthecapacitorbeginsdischarging

    Thecapacitorvoltagereaches+Vatt=T/2,whereTistheperiodof

    oscillation.So,

    212

    T

    RCVT

    V V V e

    T/2

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    27/104

    OpampOscillatorfosc

    K.Webb MAE3055 MechetronicsII

    27

    Solvingfortheperiodofoscillation,T:

    21 1 1

    21 2 1

    ln ln1

    T

    RC T

    RCC

    e TR

    T/2

    Thefrequencyofoscillation,fosc,is: 1

    l1

    n 1

    2

    osc

    f RC

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    28/104

    OpampIntegratorsand

    Differentiators28

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    29/104

    IntegratorsandDifferentiators Opampscanbeusedtobuildcircuitsthatperform

    manydifferentmathematicaloperations hencethenameoperationalamplifiers

    Wevealreadyseenopampscanbeusedtoaddandsubtractelectricalsignals

    Theycanalsobeusedtoperformintegrationanddifferentiationofelectricalsignals Especiallyimportantwhenbuildingfeedbackcontrol

    systems theverycommonproportionalintegral

    derivative(PID)controllercanbeimplementedwithasimpleopampcircuit

    K.Webb MAE3055 MechetronicsII

    29

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    30/104

    OpampIntegrator

    K.Webb MAE3055 MechetronicsII

    30

    Analyzetheopampintegrator:

    Thereisnegativefeedbackaroundthe

    opamp,sowecanassumethattheinputterminalvoltagesareequal:

    Thecurrentthroughtheresistoris:

    0V V V

    ( )

    ( )

    iv t

    i t R Theopamphasinfiniteinputimpedance,sonocurrentflowsintotheinverting

    terminal,andallofthecurrentthroughtheresistorflowsontothecapacitor.

    Theoutputvoltage,Vo,isthevoltageacrossthecapacitor:

    0 0 0( )1 1 1 ( )( ( )) t t

    io i

    t

    vv t i d d v d C C R RC

    0

    1( )) ( o i

    t

    v t v d RC

    Theoutputisthe(invertedandscaled)

    integraloftheinput:

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    31/104

    OpampIntegrator

    K.Webb MAE3055 MechetronicsII

    31

    NowinsteadofbothZ1andZ2beingresistive,Z2iscapacitive:

    Thefrequencyresponsefunctionofthecircuitis:

    Acoupleofthingstonotice:1)thephaseisalways90,and2)gaindecreaseswith

    frequencyandisinfiniteatDC! Mightthisposeaproblem?

    2

    1

    o

    i

    v Z

    v Z

    1 2

    1,Z Z

    CR

    j

    21

    1

    190

    C

    R RC

    Z jjH

    Z RC

    Wehavejustanalyzedtheopampintegratorcircuitin

    thetimedomain.Itisalsopossibletoanalyzethe

    circuitinthefrequencydomain:

    Thiscircuitlooksalotlikethesimpleinverting

    opampwelookedatinaprevioussectionofnotes.

    Itcanbetreatedassuch:

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    32/104

    OpampIntegrator Example

    K.Webb MAE3055 MechetronicsII

    32

    310 10

    90

    j

    CH R

    Theintegratorcircuittotherighthasthefollowing

    freq.responsefunction:

    anditsBodeplotis:

    Thegainoftheintegratorcircuit

    decreaseswithincreasing

    frequency.

    GainisinfiniteatDC capacitor

    lookslikeanopencircuit(infinite

    impedance)atDC. Phaseisalways90.Thinkof

    integratingacosine resultisa

    sine:a90 phaseshift,plusthe

    inversiongives+90.

    20dB/dec

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    33/104

    OpampIntegrator Example

    K.Webb MAE3055 MechetronicsII

    33

    NowthatweveseentheBodeplotfortheintegrator,

    letstakealookatitstimedomainresponsefora

    coupleofdifferentinputsignals.First,a1KHzsinusoid:

    0 0

    3

    3

    110 10 cos 2

    10 10sin 2 1.59si

    12

    1

    n 21 1

    t t

    o i

    o

    KHz

    KHz KHz

    KH

    v v dt t dt RC

    v

    z

    t t

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    34/104

    OpampIntegrator Example

    K.Webb MAE3055 MechetronicsII

    34

    Next,letstakealookattheintegratorsresponsetoa

    DC(f=0Hz)input.Wellassumethattheinputis

    switchedonatt=0,sothisisreallythecircuitsstepresponse.

    fort0: ( ) 1 ( )i

    v t V u t ( 1

    ( ) 11

    )iv Vi t mAR K

    t

    and

    Aconstantcurrentflowsontothecapacitor,andtheoutputisthe(negativeofthe)

    voltageacrossthecapacitor: 31( ( )0

    0 1.

    ) 1 01

    o c

    mI tt

    Av t v

    Ct t

    F

    Theoutputincreaseslinearlywithtime!Thisintegratorcircuitwillquicklysaturateif

    aDCvoltageisappliedtotheinput.Thisiswhatwewouldexpectfromacircuitwith

    infinitegainatDC.Thismaybeaproblem: SaywewantacircuitthatbehavesasanintegratorforsignalsintheKHzregion

    IfthesignalshaveanyDCoffset(oriftheopampisnotideal,andhasanonzero

    offsetvoltage morelater)theoutputwillsaturate.

    Fortunately,thereisasolution

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    35/104

    ABetterOpampIntegrator

    K.Webb MAE3055 MechetronicsII

    35

    Mainproblemwiththeidealintegratorcircuitisthe

    veryhigh(infinite)DCgain

    ThecircuitisessentiallyoperatingopenloopforDCthereisnoDCfeedback

    Addaresistorinparallelwiththeintegratingcapacitor

    DCgainislimitedtoRf/R

    Stillbehavesasanintegratorathigherfrequencies

    Treatthecircuitasasimpleinvertingamplifiertodeterminethefrequencyresponse:

    21

    ZH

    Z

    1Z R 2 1 1

    f

    f

    ff

    R

    RjZ

    j

    j

    C

    R CR

    C

    where and

    Thefreq.responsefunctionis:

    1

    1

    f

    f

    RH

    jR R C

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    36/104

    ABetterOpampIntegrator

    K.Webb MAE3055 MechetronicsII

    36

    AtDC(=0),thecapacitoris

    anopencircuit,andthegainissetbythetworesistors

    As,thegain0

    At=1/(RfC),thegainis3dB

    Thisisalowpassfilter!

    Aninvertingamplifierforfrequenciesbelowfc.

    Anintegratorforfrequencies

    wellabovefc.

    IntegratorAmplifier

    fc=159Hz

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    37/104

    OpampDifferentiator

    K.Webb MAE3055 MechetronicsII

    37

    Analyzetheopampdifferentiator:

    Thereisnegativefeedbackaroundthe

    opamp,sowecanassumethattheinputterminalvoltagesareequal:

    Thecurrentthroughthecapacitoris:

    0V V V

    ( ) i

    dv

    i t C dt Nocurrentflowsintotheinvertingterminal,andallofthecurrentthroughthe

    capacitorflowsthroughthefeedbackresistor.

    Theoutputvoltage,Vo,isthevoltageacrossthefeedbackresistor:

    ( ) ( ) io

    dvv t i t R RC dt

    ( ) iodv

    v t RC dt

    Theoutputisthe(invertedandscaled)

    derivativeoftheinput:

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    38/104

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    39/104

    OpampDifferentiator Example

    K.Webb MAE3055 MechetronicsII

    39

    Theintegratorcircuittotherighthasthefollowing

    freq.resp.function:

    anditsBodeplotis:

    Thegainofthedifferentiator

    circuitincreaseswithincreasing

    frequency.

    GainiszeroatDC capacitor

    lookslikeanopencircuit(infinite

    impedance)atDC.

    Phaseisalways90.Thinkof

    differentiatingasine resultisa

    cosine:a+90 phaseshift,plus

    theinversiongives90.

    +20dB/dec

    6100 10 90j RCH

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    40/104

    OpampDifferentiator Example

    K.Webb MAE3055 MechetronicsII

    40

    NowthatweveseentheBodeplotforthe

    differentiator,letstakealookatitstimedomain

    responsetoa1KHzsinusoidalinputsignal:

    6

    6

    100 10 cos 2

    100 10 2 sin 2 0.628cos

    1

    1 91 2 01

    io

    o

    KHdv d

    v RC t dt

    z

    KHz

    d

    KHz H t z

    t

    v t K

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    41/104

    OpampActiveFilters41

    K.Webb MAE3055 MechetronicsII

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    42/104

    ActiveFilters

    Inaprevioussectionofnoteswelookedatfirst andsecondorderpassivefiltersofdifferentvarietiesPassive,

    becausetheycontainedonlypassivecomponents resistors,capacitors,andinductors

    Itisalsopossibletoconstructfiltersusingopamp

    circuits wecalltheseactivefilters

    Activefiltershaveseveraladvantagesoverpassivefilters:CanbuildhighQfilterswithoutinductors

    Lowoutput

    impedance

    Easilyadjustable fc,QFiltercanprovidepositive(>0dB)gain

    K.Webb MAE3055 MechetronicsII

    42

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    43/104

    FirstOrderLowPassFilter

    K.Webb MAE3055 MechetronicsII

    43

    Wevealreadyseenthatafirstorderlowpassresponse

    canbeobtainedbyaddingafeedbackresistortoan

    opampintegratorcircuit:

    1

    1

    f

    f

    RH

    jR R C

    Thecornerfrequencyis:

    2

    1c

    fC

    fR

    Magnituderesponsetothe

    rightisforRf=R.Responsewouldshiftupordownby

    20log fR

    R

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    44/104

    FirstOrderHighPassFilter

    K.Webb MAE3055 MechetronicsII

    44

    Justastheintegratorwastransformedintoalow

    passfilterwiththeadditionofasingleresistor,a

    differentiatorcircuitcanbesimilarlytransformedtoahighpassfilter.

    Onceagainwelldeterminethiscircuitsfrequency

    responsebytreatingitasaninvertingamplifier:

    21

    ZHZ

    1 1 1Rj C

    Z

    2 2Z Rwhere and

    Thefreq.responseis:

    21 1

    C

    C

    j R

    RH

    j

    withcorner(3dB)frequency:

    12

    1c

    Cf

    R

    andpassbandgain:

    21

    c

    R

    RH

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    45/104

    HigherOrderActiveFilters

    Higherorderactivefilterscanbeconstructedinacoupleofdifferentways:CascadingfirstorderactivefiltersUsingsecondorderactivefilterstages(nexttopic)Cascadingsecondandfirstorderstages

    Cancreatehigherorderbandpass/stopfilters

    similarly:Cascadefirstorderhigh/lowpassfiltersUseand/orcascadesecondorderbandpass/stopstages

    Therearemanydifferentsecondorderactivefilter

    topologies.Welllookatoneofthemorepopularones:theSallenKeytopology.

    K.Webb MAE3055 MechetronicsII

    45

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    46/104

    SallenKeyFilter GeneralizedForm

    K.Webb MAE3055 MechetronicsII

    46

    TheSallenKeyfiltertopologycanbeusedtoconstructlowpassandhighpassfilters,aswellbandpass,andnotchfilterswithslightmodificationstothetopology(additionofafewmorecomponents).

    Wellfirsttakealookatthefilterinitsmostgeneralizedform,thenconsiderthespecificlowpassandhighpassfilterforms.

    Typeoffilterdependsonthelocationofcomponents resistorsandcapacitors.

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    47/104

    SallenKeyFilter GeneralizedForm

    K.Webb MAE3055 MechetronicsII

    47

    Toderivethefrequencyresponse

    functionforthiscircuit,performanodal

    analysis,applyingKCLatnodesvfandV+,

    andapplythefactthatavirtualshort

    existsbetweenV+ andV.

    Afterseveralpagesofreallyuglyalgebra,

    theresultingfrequencyresponse

    is:

    1 2 2 1 1

    3 4 4 4 3

    1

    1H

    Z Z

    Z Z

    Z Z Z

    Z Z Z

    where 1

    1 2

    f

    f f

    R

    R R

    isthegainofthenegativefeedbacknetwork.

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    48/104

    SallenKeyLowPassFilter

    K.Webb MAE3055 MechetronicsII

    48

    ForalowpassfilterZ1andZ2areresistors,

    andZ3andZ4arecapacitors.

    Thegeneralizedfrequencyresponsefunction

    thenbecomesalowpassfrequencyresponse:

    1 2 1 2 2 2 1 2 1 11

    1H

    R jR C C C R C Rj R j j j C

    Puttingthisintostandardform

    1 2 1 2

    2

    1 1 2 1 2 2 1 2 1 2

    11 1 1

    1R C C

    R C C C R C

    RH

    j jR R CR

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    49/104

    SallenKeyLowPassFilter

    K.Webb MAE3055 MechetronicsII

    49

    Thefrequencyresponseofanysecondorderlowpasssystemcanbewrittenina

    generalizedformas:

    1 2 1 2

    1o

    RR C C

    20

    2 200

    H

    j

    K

    jQ

    whereKistheDCgainofthesystem.ComparingtheSallenKeyfrequencyresponse

    tothegeneralfrequencyresponseprovidessomeinsightintothebehaviorofthis

    activefiltercircuit.Afewthingstonote:

    Theresonantfrequency

    is:

    Thequalityfactoris: 1 2 1 2

    2 2 1 1 1 1

    1

    R C CQ

    C R C R

    R

    R C

    TheDCgainis1/.Thiscanbeseenbyreplacingthefiltercapacitorswiththeir

    DCequivalents(opencircuits) filterbecomesasimplenoninvertingamplifier.

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    50/104

    SallenKeyLowPass Simplified

    K.Webb MAE3055 MechetronicsII

    50

    Thebandwidth(determinedbyoandQ)andtheQofthefiltercanbothbesetto

    thedesiredvaluebyproperlyselectingcomponentvalues.Thereare,however,more

    degreesoffreedomthanweneed,andthefrequencyresponsefunctionisabitmorecomplicatedthanwedlike.

    Thecircuitanditsfrequencyresponsecanbesimplifiedbysettingthecomponent

    valuesequal.Thecircuitanditsfrequencyresponsethenbecome:

    2

    2

    2

    1

    1

    3 1RCH

    j jRC RC

    where

    1o

    RC

    1

    13Q

    and

    Now,oandQaresimplyandindependentlydeterminedbyfourcomponentvalues.

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    51/104

    SallenKeyLowPass Simplified

    K.Webb MAE3055 MechetronicsII

    51

    Thesimplifiedfiltersfrequencyresponsehasbeengivenintermsofthegainofthe

    negativefeedbacknetwork,.ItcanalsobeexpressedintermsofthefiltersDC

    gain,K,asisdoneinthetext,byrecognizingthat,foranidealopampK=1/.

    2

    2

    2

    3 1

    K

    RCH

    j j

    R C

    K

    C R

    where

    1o

    RC

    1

    3Q

    K

    and

    Lookingatthingsthiswaybringsupanimportantpoint:theDCgainofthefilteris

    dependentonthefiltersQvalue,andviceversa.IfaDCgaindifferentthanthat

    givenbythedesiredQvalueisrequired,anadditionalgainstagemaybenecessary.

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    52/104

    SallenKeyLowPass BodePlot

    K.Webb MAE3055 MechetronicsII

    52

    NotethatthefiltersDC

    gainandQvalueare

    dependentonone

    another.

    QvalueandDCgainare

    bothsetbytheratioof

    resistorsinthenegativefeedbacknetwork.

    Qvalue(andDCgain)is

    independentofo.

    oissetbytheresistor

    andcapacitorvalues.

    Gainrollsoffat

    40dB/dec

    ll h l

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    53/104

    SallenKeyHighPassFilter

    K.Webb MAE3055 MechetronicsII

    53

    ASallenKeyhighpassfilterlooksverymuch

    likethelowpassversion,butwiththe

    positionoftheresistorsandcapacitorsswapped.

    Againmakingthesimplificationthatthe

    resistorandcapacitorvaluesareequal:

    2

    2

    2

    3 1

    K jH

    j jRC C

    K

    R

    where

    1o

    RC

    1

    3Q

    K

    and

    ThenaturalfrequencyandQvalueare

    thesameasinthelowpasscase.

    Notethatnow,aswedexpectfroma

    highpassfilter,gaingoesto0atDC. Kisstillthepassbandgain,butnowit

    it thethe highfrequency(asopposed

    toDC)gain.

    S ll K Hi h P B d Pl

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    54/104

    SallenKeyHighPass BodePlot

    K.Webb MAE3055 MechetronicsII

    54

    NotethatthefiltersHF

    gainandQvalueare

    dependentonone

    another.

    QvalueandHFgainare

    bothsetbytheratioof

    resistorsinthenegativefeedbacknetwork.

    Qvalue(andHFgain)is

    independentofo.

    oissetbytheresistor

    andcapacitorvalues.

    Gainrollsoffat

    40dB/dec

    S ll K Filt St bilit

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    55/104

    SallenKeyFilter Stability

    K.Webb MAE3055 MechetronicsII

    55

    Positivefeedbackpath

    Negative

    feedback

    path

    TheSallenKeyfilterisafeedbacksystem,andaswithallfeedbacksystems,

    stabilityisaconcern.

    Ithastwofeedbackpaths:apositivefeedbackpathandanegative

    feedback

    path

    Negativefeedbackgenerallyhasa

    stabilizingeffect.

    Positivefeedbackisdestabilizing.

    Negativefeedbackpathgaindeterminesratioofnegativetopositivefeedback.

    As,negativefeedback,K,and

    positivefeedback.

    ThereisanupperlimitonK:whenK=3,Q=.Thisistheborderbetweenstability(netnegativefeedback)and

    instability(netpositivefeedback).

    Forstability:K 3.

    Filt F ili

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    56/104

    FilterFamilies

    Higherorderfiltersofalltypes(i.e.LP,HP,BP,BR)canbedesignedtohave

    frequencyresponsefunctionsthatfitintooneofseveralfamiliesof

    filters.Forexample Butterworth(introducedinthetext)

    Chebyshev

    Elliptic

    Bessel

    Eachfilterfamilyisdefinedbythenatureofthepolynomialinthe

    denominatorofitsfrequencyresponse(itscharacteristicequation).

    Equivalently,eachfilterisdefinedbytherelativelocationsinthecomplex

    planeoftherootsofthedenominatorpolynomial(rootsofthe

    characteristicequation systempoles) Forexample,Butterworthpoleslieevenlyspacedonacircleinthelefthalfofthe

    complexplane.

    K.Webb MAE3055 MechetronicsII

    56

    Filt F ili F R

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    57/104

    FilterFamilies FrequencyResponse

    K.Webb MAE3055 MechetronicsII

    57

    Eachfilterfamilyhas

    advantagesanddisadvantages.

    Butterworth: Maximallyflatpassband

    Slowrolloff

    Chebyshev:

    Steeperrolloff

    Passbandripple

    Elliptic:

    Verysteeprolloff

    Passbandripple

    Stopbandripple Aswithallengineeringdesign,

    filterdesignisaboutmaking

    tradeoffs.

    Filt F ili S t P l

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    58/104

    FilterFamilies SystemPoles

    K.Webb MAE3055 MechetronicsII

    58

    Polelocationstellalotabout

    thebehaviorofasystem.

    Youlllearnmuchmoreaboutthisinfuturecourses.

    Butterworth:

    Polesareevenlyspaced

    alongasemicircleinthe

    lefthalfplane

    Chebyshev:

    Poleslieonasemiellipse

    inthelefthalfplane

    Rememberthesepolesaretherootsofthetransferfunctions

    denominatorpolynomial(the

    characteristicequation)

    Sallen Key Filter Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    59/104

    SallenKeyFilter Example

    DesignaButterworth(maximallyflat)lowpass

    activefiltertosatisfythefollowingspecifications: Cornerfrequency:fc=1MHz

    Frequencyresponserolloffbeyondfc:80dB/dec

    Passband(DC)gain:12dB(4)

    Rolloffspecof80dB/dec tellsusweneedafourth

    orderfilter cascadetwoSallenKeystages

    Addaconstantgainstageifnecessarytomeetgain

    specification

    K.Webb MAE3055 MechetronicsII

    59

    Sallen Key Filter Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    60/104

    SallenKeyFilter Example

    K.Webb MAE3055 MechetronicsII

    60

    ChooseRandCtogivethedesiredfc.

    ArbitrarilychooseC=1nF:

    1 1

    12 12cf MHRC R F zn

    1

    1 1159

    2 2 1cR

    C MHz nF f

    Assuming1%resistors,choosethe

    standardvalueresistorof158.

    AllfourresistorslabeledR,andfour

    capacitorslabeledC,willhavethesamevalues:

    1 , 158C nF R

    Sallen Key Filter Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    61/104

    SallenKeyFilter Example

    K.Webb MAE3055 MechetronicsII

    61

    Todeterminethegainrequiredforeach

    stagetogiveaButterworthresponse,

    consultTable14.1inthetext:

    1 21.152, 2.235K K

    ArbitrarilysetRf1=5.11K.

    Thesegainvalueswillbeachievedby

    settingtheratiooffeedbackresistors.

    2 1 1 1 5.11 0.152 777f fR KR K

    3 1 2 1 5.11 1.235 6.3f fR K K KR Choosingstandard1%resistorvalues:

    1 2787 , 6.34f fR R K

    Sallen Key Filter Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    62/104

    SallenKeyFilter Example

    K.Webb MAE3055 MechetronicsII

    62

    Thefinalcomponentvaluetodetermine

    isRf4,whichischosentosatisfythe

    overallgainspecification:

    1 2 3 31.152 2.235 4K K K K Choosingthecloseststandardvalued1%resistor:

    4 2.8fR K 1 4

    3

    1

    41.554

    2.575

    f f

    f

    RK

    R

    R

    4 1 3 1 5.11 0.554 2.83f fR KKR K

    Sallen Key Filter Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    63/104

    SallenKeyFilter Example

    K.Webb MAE3055 MechetronicsII

    63

    Thecomplete4thorderSallenKeyButterworthlowpassfilter:

    SallenKey Filter Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    64/104

    SallenKeyFilter Example

    K.Webb MAE3055 MechetronicsII

    64

    DCgainis12dB

    fc =1MHz

    Gainrolloffabovefc is

    80dB/dec

    Firststageisoverdamped

    Secondstageisunderdamped

    peaked Thirdstageisconstantgain

    Overallresponseistheproduct

    oftheindividualresponseson

    alinearscale

    Overallresponseisthesumof

    theindividualresponsesona

    dB(log)scale

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    65/104

    InstrumentationAmplifiers65

    K.Webb MAE3055 MechetronicsII

    SingleEnded Measurement

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    66/104

    Single EndedMeasurement

    Considerthefollowingscenario: Yourerunninganexperimentinthelab,inwhichyou

    aremeasuringthepressureinsideatube Youareamplifyingthepressuresensoroutputbefore

    measuringitwiththedataacq.System Thesensorhasasignaloutputandagroundoutput Thesensorisalongdistancefromthemeasurement

    systemandisconnectedwithasinglelongwire Thesensorisgroundedlocally

    Alotofnoise(frompowerline,pumps,motors,lights,etc.)couplesontothesignalwire,corruptingthemeasurement

    K.Webb MAE3055 MechetronicsII

    66

    SingleEnded Measurement

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    67/104

    Single EndedMeasurement

    K.Webb MAE3055 MechetronicsII

    67

    Sensorgroundandamplifiergroundmaynot

    beatthesamepotential(DCorAC)

    Thissituationiswhatwecallasingleendedmeasurement:

    Amplifierismeasuringandamplifyingthesinglevoltagesignalfromthesensor

    referencedtotheamplifiersground. Sensoroutputisreallydifferential voltagedifferencebetweensignalandground

    terminals

    Amplifierinputisreally

    differentialalso voltage

    differencebetweennoninvertingterminalandground

    Twoproblems:

    1) Groundsmaynotbeat

    thesamepotential

    2) Anynoisepickedupbythesignalwiregets

    amplifiedalongwiththe

    signal

    Differential Measurement

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    68/104

    DifferentialMeasurement

    Singleendedmeasurement:Sensorandamplifier/measurementsystemaregrounded

    separatelySingle,longsignalwirerunstotheamplifier,pickingupnoise

    Differentialmeasurement:Sensorsignalandgroundterminalsbothwiredtoamplifier

    inputVoltagedifferentialbetweensensoroutputterminalsis

    amplifiedSolvestwoproblems:

    1)Bothwirespickupthesamenoisecommonmode

    noise

    2)GroundpotentialdifferencesnolongeramplifiedwithsignalHowdowedothis?Differentialamplifier

    K.Webb MAE3055 MechetronicsII

    68

    Opamp Differential Amplifier

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    69/104

    OpampDifferentialAmplifier

    K.Webb MAE3055 MechetronicsII

    69

    Thisopampdifferentialamplifierhastwoinputs.Wecanapplysuperpositionto

    determinetheoutput.Lookslikeavoltagedivider

    andanoninvertingamplifiertoinputv1:

    1

    2 1 2 21 1

    1 2 1 1

    o v

    R R R Rv v v

    R R R R

    Lookslikeaninvertingamplifiertov2:

    2

    22

    1

    o v

    Rv v

    R

    Theamplifieroutputis:

    1 22

    1 21

    o o ov v

    R

    v v v v vR

    Theoutputvoltageisthe(scaled)differencebetweenthetwoinputvoltages.

    DifferentialandCommonModeInputs

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    70/104

    e e t a a d Co o ode puts

    K.Webb MAE3055 MechetronicsII

    70

    Inputsignalstothedifferentialamplifier,v1andv2,canbeexpressedintermsoftheir

    differentialandcommonmodecomponents.

    Differentialcomponentisthedifference

    betweenthetwoinputsignals:

    Commonmodecomponentistheaverage

    ofthetwoinputsignals:

    1 2idv v v

    1 22icm

    v v

    v

    Thinkofthecommonmodesignalasany

    signalthatappearsequallyatbothinputs.

    DifferentialandCommonModeGains

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    71/104

    K.Webb MAE3055 MechetronicsII

    71

    Foreachofthetwoinputcomponents differentialandcommonmode an

    amplifierwill,ingeneral,havedifferentgainvalues.Thatis,itwillamplifydifferential

    signalsandcommonmodesignalsbydifferentamounts.

    Differentialgain:

    Gainoftheamplifierwhendriven

    byapurelydifferentialinputsignal.

    od

    id

    vA

    v

    Commonmodegain:

    Gainoftheamplifierwhendriven

    byacommonmodeinputsignal.

    ocm

    icm

    vA

    v

    CommonModeRejectionRatio

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    72/104

    j

    K.Webb MAE3055 MechetronicsII

    72

    Theoutputoftheamplifieristhesumoftheinputcomponents,eachamplifiedby

    theirrespectivegain:

    o id d icm cm

    v v A v A

    Ideally,adifferentialamplifierwouldamplifyonlydifferentialinputsignals,andthe

    commonmodegainwouldbezero.Inthatcase:

    Theratioofthedifferentialgaintothecommonmodegain(typicallyexpressedin

    dB)iscalledthecommonmoderejectionratio(CMRR):

    20log d

    cm

    A

    CMRR A

    o id d v v A and CMRR

    d

    cmCMRR or

    OpampDifferentialAmplifier Ad&Acm

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    73/104

    p p p d cm

    K.Webb MAE3055 MechetronicsII

    73

    Fortheopampdifferentialamplifier,aslongastheratiooffeedbackresistorsis

    equaltotheratioofvoltagedividerresistors(as

    wevedefinedthemtobe)thenthecommonmodegainoftheamplifieris:

    Thedifferentialgainis:

    Inreality,anymismatchbetweenresistorratioswillresultinnonzerocommon

    modegainandfiniteCMRR.

    Anothersourceofnonzerocommonmodegainwouldbenonzero,andmismatchedsourceimpedances.

    Ifsourceresistancesaremismatchedbutarebothknownandstable(oftennotthe

    case)thenwecouldcompensateforthembyadjustingtheamplifierresistors.

    0cm

    A

    2

    1

    dR

    AR

    Thecommonmoderejectionratiois:

    CMRR

    Acm MismatchedSourceResistances

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    74/104

    cm

    K.Webb MAE3055 MechetronicsII

    74

    Herethedifferentialamplifierisdrivenbytwosourceswithmismatchedsource

    resistances,Rs1andRs2where

    Theoutputduetov1is:

    2'

    1 1sR R R and

    1

    ' '1 1

    ' ' ' '1 1 1

    2 2 2 21 1

    2 21

    o v

    R R R R R Rv v v

    R R R R RR R R

    2

    2'

    1

    2o v

    Rv v

    R

    1 2s sR R R Reanalyzethecircuit,makingthefollowing

    substitutions:

    1'

    1 1sRR R R

    Theoutputduetov2is:

    Acm MismatchedSourceResistances

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    75/104

    cm

    K.Webb MAE3055 MechetronicsII

    75

    1 2

    '1

    ' ' '

    1

    2 2 21 2

    2

    2 21

    1 1

    '1

    ' '1 1

    2

    2

    o o ov v

    o

    R R R Rv v v v v

    R R R RR R R

    v v vRRR R

    R

    Theoveralloutputis:

    wherenow,thev1inputisscaledbyanadditionalterm

    containingR.

    Foracommonmodeinput,bothinputsignalsarethesame:

    Theoutputduetoacommonmodeinputsignalis:

    1 2 icmv v v

    '1

    ' '2 2

    ' '

    1 1

    2

    1 12 2

    1o icm icmR R R R

    v v v

    R R R R

    R

    R RR R

    Thecommonmodegainis

    nolongerzero: 2

    2'

    1 1 2' '

    1

    cm d

    RA A

    R R

    R

    R R

    R

    R R R

    CMRR MismatchedResistances

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    76/104

    K.Webb MAE3055 MechetronicsII

    76

    Whetherduetomismatchedsourceresistances,orto

    mismatchedresistorsinthediff.ampitself,theresult

    ofresistormismatchisareductioninCMRR.

    Assumeresistancematchingto(e.g.for5%

    matching,=0.05).

    Notetherenumberingofresistorstoreflecttheir

    individualvariation.

    TheactualvaluesoftheworstcasecommonmodegainandCMRRdependonthe

    relativenominalvaluesofallresistors.Wewillconsiderasimplifiedcasewhereall

    resistorsarenominallyequalshortly.

    Theworstcasecommonmodegainand,therefore,theworstcaseCMRRofthe

    circuitoccurswhen:

    1 , 1 , 1 , 1

    OpampDifferentialAmplifier Problems

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    77/104

    Theopampdifferentialamplifiercanideallyprovidehighdifferentialgain,lowcommonmode

    gainandveryhighCMRR,butithasafewdrawbacks: HighCMRRisheavilydependentoncloseresistor

    matching GainandCMRRaredependentonsourceresistances.

    CMRRonsourceresistancematching,gainonabsolutevalues

    Thereisabetteralternative:theinstrumentation

    amplifier

    K.Webb MAE3055 MechetronicsII

    77

    Instrumentationamplifier

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    78/104

    K.Webb MAE3055 MechetronicsII

    78

    Stage1 Stage2

    Thefollowingcircuitisaclassicthreeopampinstrumentationamplifier.

    Bestunderstoodandanalyzed

    bytreatingitastwoseparatestages.

    Firststagehashigh

    impedanceinputs,highAd,

    whichisindependentof

    sourceimpedance,andlowAcm,whichreliesonlyonthe

    matchingoftheR2resistors.

    Secondstageisdiff.amp

    wevealreadylookedat.

    HighCMRRoffirststage

    relaxesmatching

    requirementsofsecondstage.

    Instrumentationamplifier Stage1

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    79/104

    K.Webb MAE3055 MechetronicsII

    79

    Wevealreadyanalyzedstage2.Letstakealookatstage1.Wellconsidertwo

    separatecases:first,apurelydifferentialinputand,second,apurelycommonmode

    input Foradifferential

    input,v1andv2moveoutof

    phasewithoneanother:1 2

    2idvv v

    Thereisnegativefeedbackaroundbothopamps,so

    wecanassumethatthevoltageateachoftheir

    inputterminalsareequal:

    1 1 1 2V V v v 2 2 2 1V V v v

    and

    Duetosymmetry,thenodelabeledvx,betweenthe

    twoR1resistors,mustbesittingatground:

    0xv V

    Wecanassumethatnodevxisgrounded,andtreat

    eachamplifierasaseparatenoninvertingamplifier.

    Instrumentationamplifier Stage1

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    80/104

    K.Webb MAE3055 MechetronicsII

    80

    Theoutputofstage1foradifferentialinputisthedifferencebetweentheoutputsof

    twononinvertingamplifiers: 1 2 1 2 1 21 1 2 1 2

    1 1 1

    1 2 1 21

    1 12 2

    o d

    id id o d id

    R R R R R Rv v v v v

    R R R

    v vR R R Rv v

    R R

    Thedifferentialgainisequaltothegainofeachof

    thenoninvertingamplifiers,consideredseparately.

    Thevalueofthedifferentialgaincaneasilybemadeverylargewithreasonableresistorvalues.

    Theoutputduetoadifferentialinputispurely

    differentialaswell.

    1 2

    11

    o d id

    R R

    v v R

    1 1 2

    11

    o d

    did

    v R R

    A v R

    Instrumentationamplifier Stage1

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    81/104

    K.Webb MAE3055 MechetronicsII

    81

    Nowletsconsidertheresponseofstage1toapurelycommonmodeinput:

    Foracommonmodeinput,v1andv2areequal:

    1 2 icmv v v Again,thereisavirtualshortattheopampinputs,

    butnow:

    1 1 1 2V V v v 2 2 2 1V V v v

    and

    NowthevoltageoneithersideofthepairofR1

    resistorsisthesame.

    Thereisnovoltagedropacrosstheseresistors,so

    nocurrentflows.

    IfnocurrentflowsthroughtheR1resistors,wecanremovethemfromthecircuitforthepurposeofthis

    analysis.

    Instrumentationamplifier Stage1

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    82/104

    K.Webb MAE3055 MechetronicsII

    82

    WiththeR1resistorsremoved,nocurrentflowsthroughtheR2resistors,because

    nocurrentcanflowintotheopampinputterminals.

    Thecommonmodegainofthefirststageisunity,

    whichcanbemuchsmallerthanthedifferentialgain.

    1o cm icmv v

    Eachopampcannowbetreatedasaseparateunitygainbuffer.

    Thecommonmodeoutputofstage1inresponseto

    acommonmodeinputisthevoltageattheoutput

    oftheunitygainbuffers:

    11 1

    o cmcm

    icm

    vA

    v

    CMRRforstage1is: 1 1 2

    1 1

    1 1

    dd

    cm

    A R RCMRR A

    A R

    CMRR MismatchedResistances

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    83/104

    K.Webb MAE3055 MechetronicsII

    83

    TheCMRRofthesecondstageisnominallyinfinite,

    howeverresistormismatcheswillresultinnonzero

    commonmodegainand,therefore,finiteCMRR.

    Assumeresistancematchingto(e.g.for5%

    matching,=0.05).

    TheworstcaseCMRRofthecircuitisoccursforthe

    resistorvaluesshown.Itis:

    Thisisanimportantresult:itprovidesalinkbetweenaCMRRrequirementand

    resistortolerancesforathreeopampinstrumentationamplifier.

    InstrumentationAmplifier

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    84/104

    TheoverallCMRRoftheInAmp istheproductof

    theCMRRofeachstage(sum,ifindB).

    ThehighCMRRofthefirststagesignificantlyeases

    thematchingrequirementsofthesecondstageto

    achievesimilar(ormuchhigher)overallCMRR.

    AdvantagesofInAmp overdifferentialamplifier: Highimpedanceinputs:sourceresistancesdonot

    affectgainorCMRR.

    Resistormatchingislesscriticalbecausethereare

    twocascadedhighCMRRstages

    K.Webb MAE3055 MechetronicsII

    84

    InstrumentationAmplifier Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    85/104

    DesignanInAmp forthefollowingapplication:MeasuringstrainwithaWheatstonebridgecircuit

    Strainsignalis100mVdifferentialatmax/minstrainWanttoamplifybridgeoutputtousefull5Vdynamic

    rangeofdataacq.system.

    Commonmodenoiseonthebridgeoutputsignalis

    200mVpp.Thatsthefulldynamicrangeofthestraingauge!

    Assumeresistorsinstage1arematched.

    Assume1%matchingofresistorsinstage2.

    WhatisworstcaseCMRR? HowmuchnoiseisthereattheoutputoftheInAmp?

    K.Webb MAE3055 MechetronicsII

    85

    InstrumentationAmplifier Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    86/104

    K.Webb MAE3055 MechetronicsII

    86

    DifferentialgainoftheInAmp shouldbe: 5 50100

    d

    VA

    mV

    ArbitrarilysetR2=10K.ChooseresistorR1togivetherequiredgain:1 2 2

    1 1

    1

    10204 205

    1 150d

    d

    R R R KA R R

    R A

    CMRRofthefirststageisthedifferentialgainofthatstage: 1 50dCMRR A

    WorstcaseCMRRofthesecondstageis:

    WorstcaseCMRRoftheoverallInAmp is:

    21 50 50 2500 wc wc wcCMRR CMRR CMRR

    2500 68 wcCMRR dB

    Arbitrarilysetallresistorsinstage2tobeR=10K.

    12

    50

    InstrumentationAmplifier Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    87/104

    K.Webb MAE3055 MechetronicsII

    87

    Theresultingcircuitis:

    Determinetheamountofnoisepresentonthe

    outputsignal:

    Commonmodegainof

    theInAmp underworst

    casemismatchconditionsis: 1 2 21cm cm cm cmwc wc wcA A A A

    Thecommonmodegainofstage2underworstcasematchingconditionsis:

    Thenoiseattheoutputis: 32 200 19.8 10 4ocm icm cm pp ppwc wcv v A mV mV

    2

    1 19.8 10

    InstrumentationAmplifier Example

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    88/104

    K.Webb MAE3055 MechetronicsII

    88

    Attheinputthefullscale

    signalis200mVpp.

    Noiseattheinputis200mVpp.

    Inputsignaltonoiseratio

    (SNR)is:

    200

    1 0200

    pp

    ipp

    mV

    SNR dBmV

    Attheoutputthefullscalesignalis10Vpp,whilethenoisehasbeenreducedtoonly

    4mVpp,resultinginanoutputSNRof:

    TheimprovementinSNRisequaltotheCMRR.

    Thisisabigdeal theInAmp hasallowedustoaccuratelymeasureadifferential

    signalthatwascompletelyburiedincommonmodenoise.

    102500 68

    4

    pp

    o

    pp

    VSNR dB

    mV

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    89/104

    DCOpampNonIdealities89

    K.Webb MAE3055 MechetronicsII

    RealOpamps

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    90/104

    Recallthecharacteristicsofanidealopamp:

    1) Infiniteinputimpedance zeroinputcurrent

    2) Infinite

    differential

    mode

    gain3) Zerocommonmodegain

    4) Zerooutputimpedance

    5) Infinitebandwidth

    6) Virtualshortatinputterminals(w/negativefeedback)(notpartoftheoriginallist followsfrom#2)

    Inpractice,realopampsarenonideal.

    Thetextcoversthreecategoriesofopampnonidealities.

    Welltakeabrieflookatafewnonidealitiesthatfallintojustoneofthesecategories:DCoffsets.

    K.Webb MAE3055 MechetronicsII

    90

    OpampDCOffsets

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    91/104

    TherearethreeprimaryDCimperfections

    associatedwithrealopamps: Bias

    current:

    DCcurrentsthatflowintotheopamp

    inputs

    Offsetcurrent:thedifferencebetweenbiascurrents

    atthenoninvertingandinvertinginputs Offsetvoltage:differenceininputterminalvoltagesin

    thepresenceofnegativefeedback.Or,theequivalent

    DCsourcethat,whenconnectedinserieswithoneof

    theinputs,wouldexplainanonzerooutputvoltage

    forzeroinputvoltage.

    K.Webb MAE3055 MechetronicsII

    91

    BiasCurrent

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    92/104

    Theinternaldevices(transistors)attheopampinputterminalsrequireasmallamountofDCbiascurrentto

    function. ThatcurrentmustflowinthroughtheinputterminalsOpampswithBJT(BipolarJunctionTransistor)input

    deviceshavehigherbiascurrents.OpampswithFET(FieldEffectTransistor)inputdeviceswill

    havemuchlowerbiascurrents.

    BiascurrentistheaverageDCinputcurrent

    Biascurrentcanbeaccountedforbyaddingcurrentsourcestotheidealopampmodel.

    K.Webb MAE3055 MechetronicsII

    92

    OffsetCurrent93

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    93/104

    Duetomismatchbetweeninternalopampinput

    devices,biascurrentsateachinputmaynotbe

    equal.

    Thedifferencebetweenthebiascurrentsateach

    inputterminalistheoffsetcurrent.

    Offsetcurrentcanbeaccountedforbyaddinga

    currentsource,inadditiontothebiascurrent

    sources,totheidealopampmodel.

    K.Webb MAE3055 MechetronicsII

    93

    ModelingBiasandOffsetCurrents94

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    94/104

    K.Webb MAE3055 MechetronicsII

    94

    Biascurrentistheaverageofthe

    DCinputcurrentsateach

    terminal:

    2B B

    B

    I II

    Offsetcurrentisthedifference

    betweenthebiascurrentsateach

    inputterminal:

    off B BI I I

    Opampmodelaccountingforbias

    andoffsetcurrents:

    IdealOpamp

    OffsetVoltage95

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    95/104

    Duetomismatchesandimperfectionsinthe

    internalopampcircuitry,theoutputvoltageofan

    opampmaynotbezeroeveniftheinputvoltage

    (differential)iszero.

    Thisoutputerrorvoltagecanbetreatedasan

    inputreferrederrorvoltage,modeledasaDC

    voltagesourceinserieswithoneoftheinputs.

    Thevalueofthisinputreferredsourceistheoffset

    voltage.

    K.Webb MAE3055 MechetronicsII

    95

    ModelingOffsetVoltage96

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    96/104

    K.Webb MAE3055 MechetronicsII

    96

    Offsetvoltageismodeledasasourceinserieswithoneoftheinputs.

    Usuallyspeced as somevalue,sopolarity(orwhatterminalits

    connectedto)isnotcritical.

    Anotherwaytothinkofoffsetvoltage:itisthevoltagerequiredacrossthe

    inputterminalstoforcetheoutputvoltagetozero.

    IdealOpamp

    ModelingOpampDCNonIdealities97

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    97/104

    K.Webb MAE3055 MechetronicsII

    97

    IdealOpamp

    ThefollowingmodelaccountsforallDCopampimperfections.

    TheresultofeacherrorsourceisaDCerrorvoltageattheoutput.

    Thismodelcanbeused

    in

    place

    of

    an

    ideal

    opamp

    modelforcircuitanalysisto

    determinetheeffectofeachnonidealityoncircuitperformance.

    Totaloutputerrorcanbe

    determinedbyapplying

    superpositiontodeterminethe

    errorduetoeachindividual

    source.

    Absolutevaluesforeacherror

    sourcewill,ingeneral,notbe

    known.Arangeforthevaluesistypicallyspecified,allowingfora

    worstcaseerroranalysis.

    DCErrorAnalysisExample98

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    98/104

    K.Webb MAE3055 MechetronicsII

    Forthenoninvertingamplifiershown,determinetheworst

    caseDCoutputerror(atanambienttemperatureofTA=25C),

    giventhefollowing:

    R1=20K,R2=100K.

    OpampisanLM741.

    |Voff| 5mV.

    Ibias 500nA. |Ioff| 200nA.

    Usesuperpositiontodeterminetheworstcaseoutputerrorduetoeacherror

    source,thensumtheindividualcontributionstodeterminethetotalworstcase

    outputerror.

    err off B off o o o oV I I

    V V V V

    DCErrorAnalysisExample99

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    99/104

    K.Webb MAE3055 MechetronicsII

    First,determinetheoutputduetotheinputoffsetvoltage:

    Here,theoffsetvoltageappearsasthe

    inputtoanoninvertingamplifier,with

    gain

    1 2

    1

    206

    2

    100

    0o

    i

    v R R K

    v R K

    K

    1 2

    1

    5 6 30off

    o off V

    R RV V mV mV

    R

    Theoutputduetotheinputoffsetvoltageis:

    30offo V

    V mV

    Theoffsetvoltagealwaysappearsattheoutputscaledbythenoninvertinggain,

    evenforinvertingamplifiers.

    DCErrorAnalysisExample100

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    100/104

    K.Webb MAE3055 MechetronicsII

    Next,determinetheoutputduetotheinputbiascurrent:

    Thebiascurrentatthenoninvertingterminal

    comesdirectlyfromgroundand,thereforehasnoeffectontheoutput.

    ApplyingKCLattheinvertinginput:

    2 500 100 50B

    o BIV R nA mI K V

    Becausetheopampmodelitselfisideal,there

    isavirtualshortattheinputterminals,and

    Vo=V =0V,whichgives:

    50B

    o IV mV

    1 2

    1 2

    oB

    V VVI I I

    R R

    Theoutputvoltageduetothebiascurrentis

    DCErrorAnalysisExample101

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    101/104

    K.Webb MAE3055 MechetronicsII

    Finally,determinetheoutputduetotheinputoffsetcurrent:

    Theanalysisfordeterminingtheoutputvoltage

    duetotheoffsetcurrentisessentiallyidenticaltotheanalysisforthebiascurrent,so

    2 2002

    100 20off

    off

    o I

    IV R nA K mV

    20off

    o IV mV

    Theoutputvoltageduetotheoffsetcurrentis:

    NotethatbotheffectofboththebiasandoffsetcurrentsisproportionaltoR2.ThistellsusthatwecanreducetheireffectsbyreducingthevalueofR2.The

    tradeoffisincreasedpowerdissipation.Wellseeshortlythatitsactuallypossible

    tocanceltheeffectofbiascurrent.

    DCErrorAnalysisExample102

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    102/104

    K.Webb MAE3055 MechetronicsII

    Theoveralloutputerrorvoltageisgivenbythesumofthe

    individualerrorvoltagecontributions:

    30 50 20 100

    err off B off

    err

    o o o oV I Imax maxmax max

    omax

    V V V V

    V mV mV mV mV

    Themaximumoutputerrorvoltageduetothese

    threeerrorsourcesis:

    100erro max

    V mV

    Notethatthepolarityofthebiascurrentisknown inthiscaseIBflowsintothe

    opampinputterminals whereasthepolaritiesoftheoffsetvoltageandthe

    offsetcurrent

    are

    not

    known

    and

    never

    are.

    Thisisnotalwaysentirelyobviousfromthedatasheet,butthesignofthebias

    currentshouldindicateitspolarity.

    BiasCurrentCancellation103

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    103/104

    K.Webb MAE3055 MechetronicsII

    Itispossibletocanceltheeffectofbiascurrentbyaddingasingleresistortoboth

    theinvertingandnoninvertingopampamplifiertopologies:

    InvertingAmplifier: NonInvertingAmplifier:

    Inbothcases: 1 2

    1 2

    1 2

    ||biasR R

    R R RR R

    OffsetVoltageNulling104

  • 7/23/2019 SECTION 5 Advanced Opamp Circuits

    104/104

    K.Webb MAE3055 MechetronicsII

    Manyopamps,includingthebasic741,provideameansfornulling theiroffset

    voltage.

    Thisistypicallydonebyinsertingapotentiometerbetweentwoadditionalopamp

    pins,typicallybothcalledoffset

    null,orsomethingtothateffect.

    Onthe741opampthesearepins1and5.

    Connecta10K(forthe741)potentiometerbetweentheoffsetnullpins,withthe

    wiperterminalconnectedtothenegativesupply.

    Shorttheinputs(oftheamplifierwithfeedbackconnected)togroundthenadjust

    thepotuntiltheoutputis0V.

    Thepotentiometerisoftenreferredtoasatrim

    pot,becauseitisusedfortrimmingtheoffset

    voltage. Trimpotconnectionsandrecommendedresistance

    valuewillvaryfromopamptoopamp checkthe

    datasheet.