SE 517 Lecture_03_131

download SE 517 Lecture_03_131

of 23

Transcript of SE 517 Lecture_03_131

  • 7/29/2019 SE 517 Lecture_03_131

    1/23

    9/8/20

    L E C T U R E 2

    D Y N A M I C B E H A V I O R

    37

    SE517 Nonlinear Systems

    Dr. Sami El Ferik, KFUPM, Term 131.

    Introduction (Summary of Previous Lecture)38

    State space Models are systems of ODE.

    State space Model can be either Linear or non-linear.

    Time variant or Time invariant.

    Autonomous or Non-autonomous

    Deterministic or Stochastic

    The model can contain lags (delays at the level of the

    input or output)

    The model can contain delays at the level of thestates.

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    2/23

    9/8/20

    Objectives39

    Study the dynamic behavior of nonlinear systems.

    Introduce the concept of equilibrium point, stability,and limit cycles.

    Learn how to solve differential equations.

    Learn how to construct the phase portrait.

    Learn how to evaluate the stability of the solution.

    Understand the difference between global behaviorand local behavior.

    Dr. Sami El Ferik, KFUPM, Term 131.

    Expected Outcomes40

    Use tools to study the dynamic behavior of nonlinearsystems.

    Grasp the concept of equilibrium point, stability, andlimit cycles.

    Solve differential equations.

    Construct the phase portrait.

    Evaluate the stability of the solution of a differential

    equation. Differentiate between global behavior and local

    behavior.

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    3/23

    9/8/20

    Structure41

    Recall/use some of the motivating examples . Solution of differential equations. Use of modern software tools to solve such equations. Examples.

    Qualitative Analysis Phase portrait, equilibrium points, and limit cycles. Examples

    Stability Definition.

    Stability of linear systems and stability analysis via linearapproximation.

    Lyapunov stability analysis.

    Parametric and non-local behavior. Examples

    Dr. Sami El Ferik, KFUPM, Term 131.

    General State-Space Model42

    linearynecessarilnotsxoffunctionanyisuuxxxxf

    Where

    uuxxxxf

    dt

    dx

    uuxxxxfdt

    dx

    uuxxxxfdt

    dx

    ipni

    pnn

    n

    pn

    pn

    '),...,,,...,,,(

    ),...,,,...,,,(

    ),...,,,...,,,(

    ),...,,,...,,,(

    1321

    1321

    132122

    132111

    =

    =

    =

    In General if the system is nonlinear

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    4/23

    9/8/20

    General State-Space Model43

    Define

    then

    Dr. Sami El Ferik, KFUPM, Term 131.

    Comparison: State-Space Representation44

    Linear System Non-linear System

    ml

    tFx

    ml

    Bx

    l

    gx

    xx

    )()sin( 2212

    21

    +=

    =

    Xy

    tr

    M

    X

    M

    B

    M

    Kdt

    dX

    ]01[

    )(1010

    =

    +

    =

    ( )

    ( )

    dXAX Br t

    dt

    y CX Dr t

    = +

    = +

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    5/23

    9/8/20

    1-45

    1. Phenomena of Nonlinear Dynamics

    Linear vs. Nonlinear

    System

    Input Outputu y

    state,

    (1)x Ax Bu

    y Cx

    = +

    =

    ( , )(2)

    ( )

    x f x u

    y x

    =

    =

    :

    :

    n m n

    n p

    f R R R

    R R

    Definitions : Linear : when the superposition holds

    Nonlinear : otherwise

    x

    Dr. Sami El Ferik, KFUPM, Term 131.

    Linearity46

    A system is said to be linear if it satisfies thesuperposition theorem (addition) and alsohomogeneity

    If y1 is the output due to u1

    If y2 is the output of u2

    Let u=u1+u2 the new output y=y1+y2.

    Let u= u1 then the new output y= y1

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    6/23

    9/8/20

    Superposition

    47

    * Superposition

    Sys. Sys.1u 2u1y 2y

    = Sys.1 2u u+ 1 2y y+

    Is the system linear ?

    ( )1 0 10

    ( )2 0 20

    ( ) ( )

    ( ) ( )

    tAt A t

    tAt A t

    y t Ce x C e Bu d

    y t Ce x C e Bu d

    = +

    = +

    ( )

    1 2 0 1 202 { ( ) ( )}

    tAt A ty y Ce x C e B u u d

    + = + +

    +

    So is it linear? No, under zero initial conditions only.

    Dr. Sami El Ferik, KFUPM, Term 131.

    Linearity48

    What is the linearity when ? ( ) 0u t =

    11 0

    22 0

    ( )

    ( )

    A t

    A t

    y t C e x

    y t C e x

    =

    =

    1 21 2 0 0( )

    A ty y C e x x+ = +

    +

    A mnemonic rule for linear system :All functions in RHS of a differential equation

    are linear. System is linear at least at zero input or zero initial condition

    Ex:2

    1 2

    2 1

    n o n l i n e a rs in

    x x

    x x u

    =

    = +

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    7/23

    9/8/20

    49

    Time invariant vs. Time varying

    System (1) is time invariant parameters are constant

    Time invariant vs. Time varying

    ( ) ( )( 3 )

    ( )

    x A t x B t u

    y C t x

    = +

    =

    ( , , )

    ( 4 )( , )

    x f x u t

    y x t

    =

    =

    System (2) is time invariant no function has t as its argument.

    - Linear time varying system

    - Nonlinear time varying system

    Dr. Sami El Ferik, KFUPM, Term 131.

    1-50

    Time invariant system are called autonomous and time varying are

    called non - autonomous. In our book, autonomous is reserved for

    systems with no external input, i.e.,

    Thus autonomous are time invariant systems with no external input.

    Autonomous & Non - Autonomous

    Ex: ,

    ( ) , ( )

    x A x y C x

    x f x y x

    = =

    = =

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    8/23

    9/8/20

    Stability & Output of systems

    Stability depends on the systems parameter (linear)

    Stability depends on the initial conditions, input signals as well

    as the system parameters (nonlinear).

    Output of a linear system has the same frequency as the input

    although its amplitude and phase may differ.

    Output of a nonlinear system usually contains additional frequency

    components and may, in fact, not contain the input frequency.

    51

    Dr. Sami El Ferik, KFUPM, Term 131.

    Equilibrium Point

    Equilibrium Point We start with an autonomous system.

    or ( ),n

    x Ax x f x x R= =

    Definition: is an equilibrium point (or a steady state,

    or a singular point)

    nsx R

    0, ( ) 0, i.e., 0s sA x f x x= = =

    0s

    x =If det(A)0, the autonomous system has a unique equilibrium

    point, (Linear System).

    52

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    9/23

    9/8/20

    Time variant systems53

    x* is said to be an equilibrium point for

    If

    0 0

    ( , )

    ( )

    x f x t

    x t x

    =

    =

    ( *, ) 0f x t

    Dr. Sami El Ferik, KFUPM, Term 131.

    Comparison: Equilibrium relations

    Example 1: Mass-Damper54

    Xy

    tr

    M

    X

    M

    B

    M

    Kdt

    dX

    ]01[

    )(1010

    =

    +

    =

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    10/23

    9/8/20

    Example 2: Pendulum55

    ml

    tFx

    ml

    Bx

    l

    gx

    xx

    )()sin( 2212

    21

    +=

    =

    0 2 4 6 8 10 12 14-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example3: Predator Prey M156

    0

    /

    0

    /

    x

    or y a b

    y

    or x d c

    =

    =

    =

    =

    0

    0

    x ax bxy

    y cxy dy

    = =

    = =

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    11/23

    9/8/20

    Predator Prey M257

    ( )

    ( )

    x a by x x

    y cx d y y

    =

    =

    Dr. Sami El Ferik, KFUPM, Term 131.

    Comparison:58

    Linear System Non-linear System

    ml

    tFx

    ml

    Bx

    l

    gx

    xx

    )()sin( 2212

    21

    +=

    =

    Xy

    tr

    M

    X

    M

    B

    M

    Kdt

    dX

    ]01[

    )(1010

    =

    +

    =

    Equilibrium Linear SystemEquilibrium nonlinear Sys

    gm

    tFx

    ml

    tFx

    l

    gx

    xx

    )()sin(

    )()sin(0

    0

    1

    12

    21

    =

    +==

    ==

    )(

    0

    )(1

    0

    0

    0

    1

    2

    21

    2

    trKx

    x

    trM

    XxMBx

    MK

    x

    dt

    dX

    =

    =

    +

    =

    =

    0&00)( 21 === xxtrif0&0)( 21 === xkxtFif

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    12/23

    9/8/20

    Simulation

    59 mass_spring_sim.

    clc

    close all

    clear all

    global m k g r B

    m=1; k=2; g=9.8;r=0; B=0.5;

    X0=[2,8];

    [t,Y]=ode45(@mass_spring,[050], X0);

    figure(1)

    plot(t,Y(:,1))

    grid

    figure(2)

    plot(Y(:,1),Y(:,2))

    grid

    Pendulum_sim.m

    clc

    close all

    clear all

    global l m g F B

    l=2; m=1; B=2; g=9.8; F=2;

    X0=[pi/4,0];

    [t,Y]=ode45(@pendulum,[050], X0);

    figure(1)

    plot(t,Y(:,1))

    grid

    figure(2)

    plot(Y(:,1),Y(:,2))

    grid

    Dr. Sami El Ferik, KFUPM, Term 131.

    ODE45 Code60

    function[dXdt]=mass_spring(t,X)

    global m g r k B

    dXdt(1,1)=X(2);

    dXdt(2,1)=-k/m*X(1)-B/m*X(2)+r/m;

    function[dXdt]=pendulum(t,X)

    global l m g F B

    dXdt(1,1)=X(2);

    if abs(sin(X(1)))

  • 7/29/2019 SE 517 Lecture_03_131

    13/23

    9/8/20

    Additional real Example: Tunnel Diode61

    [ ]

    [ ]

    1

    1 2

    21 2

    1( )

    1

    dxh x x

    dt c

    dxx Rx E

    dt L

    = +

    = +

    Applications for tunnel diodes includedlocal oscillators for UHF television tuners,trigger circuits in Oscilloscopes,

    Dr. Sami El Ferik, KFUPM, Term 131.

    62

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    14/23

    9/8/20

    63

    h(x1)

    Step 1: compute the equilibrium point

    [ ]

    [ ]R

    ux

    RxuRxx

    L

    R

    ux

    Rxhxxh

    c

    +=+=

    +=+=

    1221

    1121

    110

    1)()(

    10

    Dr. Sami El Ferik, KFUPM, Term 131.

    Lets Summarize64

    Unique equilibriumPoint

    Stable Linear systemunder harmonic inputproduces an outputwith the samefrequency.

    Single mode ofbehavior

    Multiple equilibriumpoints.

    Nonlinear systemunder harmonic inputproduces an outputcontaining harmonicsand sub-harmonics

    Multiple modes ofbehavior.

    Linear System Non-linear System

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    15/23

    9/8/20

    Summary65

    Unique equilibriumPoint

    Stable Linear systemunder harmonic inputproduces an outputwith the samefrequency.

    Single mode of

    behavior Infinite escape time.

    Multiple equilibriumpoints.

    Nonlinear systemunder harmonic inputproduces an outputcontaining harmonicsand sub-harmonics

    Multiple steady State

    modes of behavior. Finite escape time.

    Linear System Non-linear System

    Dr. Sami El Ferik, KFUPM, Term 131.

    66

    Solution of the DynamicEquations

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    16/23

    9/8/20

    1-67

    Linear Autonomous Systems

    linear autonomous system

    01

    ( ) in

    tAti i

    i

    x Ax x t e x a e P

    =

    = = =

    where , 1, , : eigenvectors of A

    , 1, , : eigenvalues of A

    i

    i

    P i n

    i n

    =

    =

    For 1-dim sys.

    For 2-dim sys.

    0x0x

    0x0 = 0 > 0 Re 0, Im 0 <

    Dr. Sami El Ferik, KFUPM, Term 131.

    1-68

    Linear Autonomous Systems (Contd.)

    Having , i.e., , we can generate a rich set of patterns,but this would not be the eigenbehavior but the forced behavior.

    u x Ax Bu= +

    Note :

    i tjAll other motions are, basically superpositions of these (along with t e ,

    where is the multiplicity of ). Thus linear automonous system can

    exhibit only exponential behavior (possible labeled by

    ij

    harmonic

    function). Thus the set of possible patterns relatively poor.

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_03_131

    17/23

    9/8/20

    1-69

    Solution of Linear systems

    Solution always exists locally.

    Solution always exists globally.

    Solution is unique each initial condition produces a differenttrajectory.

    Solution is continuously dependent on initial conditions forevery finite t,

    Equilibrium point is unique (when det A0).

    0 0

    0 0

    , ,

    ( , ) ( , ) ,

    T

    x x t x x t t T

    x x

    < <