SE 517 Lecture_02_131

download SE 517 Lecture_02_131

of 18

Transcript of SE 517 Lecture_02_131

  • 7/29/2019 SE 517 Lecture_02_131

    1/18

    9/8/20

    LECTURE 02:DYNAMIC BEHAVIOR

    TERM 131

    1

    SE 517 Nonlinear Systems

    Dr. Sami El Ferik, KFUPM, Term 131.

    Part I: Modeling

    2

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    2/18

    9/8/20

    Objectives :3

    Define key modeling concepts.

    Introduce simulation packages for model analysisand simulation.

    Describe the modeling methodology.

    Introduce examples to illustrate modeling.

    Dr. Sami El Ferik, KFUPM, Term 131.

    Expected Outcomes4

    Recognize the key concepts of Modeling.

    Recognize the fact that a system can have manymodels depending on the question we are trying toanswer.

    Master simulation packages for analysis andsimulation.

    Grasp the modeling methodology.

    Apply the modeling methodology for real systems.

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    3/18

    9/8/20

    Structure5

    Modeling Concepts

    Why modeling? and How to obtain a model?

    State space model. Examples

    A Systematic Approach for Developing DynamicModels Examples

    Dr. Sami El Ferik, KFUPM, Term 131.

    General Modeling Principles6

    The model equations are at best an approximation tothe real process.

    Adage: All models are wrong, but some are useful.

    Modeling involves a compromise between modelaccuracy and complexity on one hand, and the cost,effort, and time required to develop the model, onthe other hand.

    Modeling is both an art and a science. Creativity isrequired to make simplifying assumptions that resultin an appropriate/useful model.

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    4/18

    9/8/20

    Why modeling?7

    Models can be used to improve our understanding of thesystem.

    Models allow to reason about a system and predict systemsbehavior under different conditions which may be difficult orimpossible to do because of safety or financial aspects.

    Models are needed in system design or for designing bettercontrollers.

    A model can be a part of some controllers like feed forwardcontrollers (model-based controllers)

    A model can be very valuable in optimizing the operating

    conditions to get the best performance of the system. Models are immerging in monitoring of faults and anomalies,

    especially for early warning systems.

    Dr. Sami El Ferik, KFUPM, Term 131.

    How to Obtain Models8

    Identification(Black-Box)(Experimental)

    Conduct an experiment

    Collect data

    Fit data to a model

    Verify/validate the model

    The first-principleapproach (white-boxmodels) (Theoretical) Construct a simplified version

    using idealized elements

    Write element laws

    Write interaction laws Combine element laws and

    interaction laws to obtain themodel

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    5/18

    9/8/20

    9

    Depending on the level of details and focus, a system canhave multiple models.

    The model selected depends on what we want to do withit.

    Modeling can be costly and time consuming.

    Defining the objective of the modeling exercise can savetime and money.

    Models should not be more complicated than what isrequired to achieve these objectives.

    For control purposes simple models can be used. Themodel does not have to be exact.

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example of Multiplicity ofModels: Valve Models

    10

    STEM

    AIR

    PRESSURE IN

    DIAPHRAGM

    SPRING

    AIR FORCE

    2

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    6/18

    9/8/20

    Valve models11

    C. Garcia / Control Engineering Practice, (2008)

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example of Multiplicity of Models:

    Glucose-Insulin System

    Model I

    () = + ())1 ) ()() + ())) = 2 + () ())3 )

    () = () + ()

    () =

    5

    ()

    = ()

    Model II BergmansMinimal

    12

    () = )) = g 2() 3() 4() + ))5 ))

    () = )) = 1() ()1

    Model III Introducing TimeDelay in one State

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    7/18

    9/8/20

    Example I:13

    Gravity Drained Tank

    h1LT

    wI

    h1A

    C=h2

    A

    C+

    dt

    dh2A

    w_in=h1

    A

    C+

    dt

    dh1(white-box models)

    0 20 40 60 80 100 120 140 160 180 2000.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    Time

    Measured and simulated model output

    h2 LT

    w2

    wout

    (Experimental or black-box mod

    Schematic Diagram

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example II: Mass-Spring14

    massofpositionisy

    dt

    tdyv

    dt

    tyda

    whereyKtvBtrMa

    )(

    )(

    )())(()(

    2

    2

    =

    =

    =

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    8/18

    9/8/20

    Mass-Spring Model15

    Use Hooks law.

    Ideal friction element

    ( )

    massofpositiontheisy

    massofspeedtheisdt

    tdy

    yKdt

    tdyBtr

    dt

    tydM

    elementfrictionIdealtvBtvB

    lawsHookyKyK

    )(

    )()(

    )(

    )())((

    )'()(

    2

    2

    =

    =

    =

    How many initial conditions arerequired to solve this equation?

    We conclude that knowledge of the speed and position are enough to predictthe future dynamic of the system

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example 3: HIV Drug Administration16

    F. Doyle et al. / Journal of ProcessControl 17 (2007) 571594

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    9/18

    9/8/20

    Example 4: Predator Prey Model17

    Volterra-Lokta Predator Prey Model for Small fish inthe Adriatic

    x ax bxy

    y cxy dy

    =

    =

    ( )

    ( )

    x a by x x

    y cx d y y

    =

    =

    M1 M2

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example 5: Steering Problem Bicycle Model18

    Chih-Lyang et al. 2009

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    10/18

    9/8/20

    Example 6:Vectored thrust aircraft19

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example 7: Internet Congestion Control20

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    11/18

    9/8/20

    The System Viewpoint

    21

    Dr. Sami El Ferik, KFUPM, Term 131.

    Actuator Nonlinearities22

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    12/18

    9/8/20

    Example 8 : Valve nonlinearities23

    BacklashValve with Stitcion

    Valve with Stiction and Slip Jump

    Dr. Sami El Ferik, KFUPM, Term 131.

    Model Formulation

    State-Space Model: ODE24

    Definition State of a system is a collection of variables that summarize the past of a

    system for the purpose of predicting the future.

    Lets define

    X is called state vector.

    In general, where n is the number of state variables. The control variable (in our case r(t)) is represented by

    where p is the number of inputs. The output where q is the number of outputs.

    dt

    dyy &

    =

    dt

    dy

    y

    X

    n

    X

    pu

    qY

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    13/18

    9/8/20

    State Space Models: ODE25

    Let assume that

    =

    =

    ==

    =

    =

    =

    2

    2

    2

    2

    2

    1

    2

    1

    2

    1

    dt

    yd

    dt

    dx

    x

    dt

    dx

    dt

    dx

    dt

    dXX

    dt

    dyx

    yx

    x

    x

    X

    122

    2

    2

    2

    )(1)()(1)(

    )()(

    )(

    xMKx

    MBtr

    My

    MK

    dttdy

    MBtr

    Mdttyd

    yKdt

    tdyBtr

    dt

    tydM

    ==

    =

    =

    =

    12

    2

    2

    1

    )(1

    xM

    Kx

    M

    Btr

    M

    x

    dt

    dx

    dt

    dx

    dt

    dX

    ),(

    ),(

    1

    2

    1

    rXhxY

    rXf

    dt

    dx

    dt

    dx

    dt

    dX

    ==

    =

    =

    Dr. Sami El Ferik, KFUPM, Term 131.

    State Space Models: ODE26

    General Form

    The .number of states n is called the order of thesystem

    State Space Model

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    14/18

    9/8/20

    General State-Space Model27

    linearynecessarilnotsxoffunctionanyisuuxxxxf

    Where

    uuxxxxfdt

    dx

    uuxxxxfdt

    dx

    uuxxxxfdt

    dx

    ipni

    pnn

    n

    pn

    pn

    '),...,,,...,,,(

    ),...,,,...,,,(

    ),...,,,...,,,(

    ),...,,,...,,,(

    1321

    1321

    13212

    2

    13211

    1

    =

    =

    =

    Dr. Sami El Ferik, KFUPM, Term 131.

    General State-Space Model28

    Define

    then

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    15/18

    9/8/20

    Introduction: State-Space Model of LinearSystems

    29

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example 9: Two-Carts System30

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    16/18

    9/8/20

    31

    Continued in Class to generate SS model

    Dr. Sami El Ferik, KFUPM, Term 131.

    Example 10: Mass-Spring32

    massofpositionisy

    dt

    tdyv

    dt

    tyda

    whereyKtvBtrMa

    )(

    )(

    )())(()(

    2

    2

    =

    =

    =

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    17/18

    9/8/20

    Mass-Spring Model33

    ( )

    massofpositiontheisy

    massofspeedtheisdt

    tdy

    yKdt

    tdyBtr

    dt

    tydM

    elementfrictionIdealtvBtvB

    lawsHookyKyK

    Assume

    )(

    )()(

    )(

    )())((

    )'()(

    2

    2

    =

    =

    =

    =

    =

    12

    2

    2

    1

    )(1

    xM

    Kx

    M

    Btr

    M

    x

    dt

    dx

    dt

    dx

    dt

    dX

    Xy

    tr

    M

    X

    M

    B

    M

    K

    dt

    dX

    ]01[

    )(1010

    =

    +

    =

    Dr. Sami El Ferik, KFUPM, Term 131.

    LTI Block representation34

    U(t)

    A

    CB ++

    ++

    Dy(t)

    dX/dtt X

    General Form

    where A, B, C and D areconstant matrices.

    A is called the dynamicsmatrix,

    B is called the controlmatrix,

    C is called the sensormatrix

    D is called the direct term.

    Dr. Sami El Ferik, KFUPM, Term 131.

  • 7/29/2019 SE 517 Lecture_02_131

    18/18

    9/8/20

    Example 11: Pendulum35

    BmgltlFml

    Bmgltml

    =

    =

    )sin()(

    )sin()(

    2

    2

    mg

    F

    B

    ml

    tFx

    ml

    Bx

    l

    gx

    xx

    xx

    )()sin(

    ;

    2212

    21

    21

    +=

    =

    ==

    )sin(mg

    l

    Dr. Sami El Ferik, KFUPM, Term 131.

    Linear vs Nonlinear

    36

    Dr. Sami El Ferik, KFUPM, Term 131.