SDR'11 -WinnCom Washington DC Spread Spectrum Channel ...

33
SDR'11 - WinnCom Washington DC Spread Spectrum Channel Sounder Implementation with USRP Platforms SUPELEC - Campus de Rennes SCEE – Signal, Communications et Electronique Embarquée IETR – UMR CNRS 6164 Institut d'Electronique et Télécommunications de Rennes Adrien LE NAOUR, Olivier GOUBET, Christophe MOY , Pierre LERAY SUPELEC 1 December 2011

Transcript of SDR'11 -WinnCom Washington DC Spread Spectrum Channel ...

SDR'11 - WinnComWashington DC

Spread Spectrum

Channel Sounder

Implementation with

USRP Platforms

SUPELEC - Campus de RennesSCEE – Signal, Communications et Electronique Embarquée

IETR – UMR CNRS 6164Institut d'Electronique et Télécommunications de Rennes

Adrien LE NAOUR, Olivier GOUBET, Christophe MOY, Pierre LERAY

SUPELEC1 December 2011

Presentation outline

• Past experience on channel sounding

• Student project on channel sounding

• USRP 1 experiments

Christophe MOY - SUPELEC – 1 Dec. 2011 2IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• USRP 1 experiments

• N210 experiments

• Conclusion

Presentation outline

• Past experience on channel sounding

• Student project on channel sounding

• USRP 1 experiments

Christophe MOY - SUPELEC – 1 Dec. 2011 3IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• USRP 1 experiments

• N210 experiments

• Conclusion

15 years ago

• Implement a troposcatter channel sounder on a 200 km link @ 4.47 GHz

θtroposphere

scatteringvolume

Christophe MOY - SUPELEC – 1 Dec. 2011 4IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

dTransmitter ReceiverEarth

NANTES

BREST

RENNES

Atlantic

Ocean

Brittany

Normandy

English Channel

A lot of HW development

• RF• frequency translation • digital baseband

Christophe MOY - SUPELEC – 1 Dec. 2011 5IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

Wideband measures

1 11 21 31 41 51

S1-25

-20

-15

-10

-5

0

pui

ssan

ce r

eçue

(d

Bm

)

temps

-20

-15

-10

-5

0

pui

ssan

ce r

eçue

(d

Bm

)

temps

1 µs

12.5 ms

0

Christophe MOY - SUPELEC – 1 Dec. 2011 6IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Impulse response– short term

– medium term

1 11 21 31 41 51

retard relatif (x 50 ns)

1 11 21 31 41 51

S1-25

-20

pui

ssan

ce r

eçue

(d

Bm

)

retard relatif (x 50 ns)

1 µs

1112

1314

1

S 1

-25

-20

-15

-10

-5

0

pu

issance reçu

e (dB

m)

retard (x 50 ns)

temps (s)

1

0

2

2.5 s

Theoretical background (I)

• Direct Sequence Spread Spectrum sounder

– a m-sequence code is transmitted: eb(t) = c(t)

– matched filter at reception: h (t) = c(ξ-t)

h (τ ,t)e (t)

r (t)

bb

bh (τ)

FA bs (t)

Tx RxChannel

Christophe MOY - SUPELEC – 1 Dec. 2011 7IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– matched filter at reception: hFA(t) = c(ξ-t)

• ξ = Lc.Tc

• Lc is the number of chips of a code sequence

• Tc is the chip length

– rb(t) = (c ⊗ hb)(t)

– sb(t)=(c⊗hb⊗hFA)(t)=(c⊗hFA⊗hb)(t)=(Rc⊗hb)(t)

– where Rc is the code autocorrelation fonction

Theoretical background (II)

• Autocorrelation of m-sequence pseudo-random codes– example of a

127 chips longcode sequence

• Method: matched filtering0

Tc-Tc

127.Tc

127

-1

Christophe MOY - SUPELEC – 1 Dec. 2011 8IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Method: matched filtering• Consequence for sounding

– the larger the signal bandwidth

– the shorter the chip duration

� the closer to the "real" impulse response

• thiner peaks

• lower secondary lobes

0 127.Tc-1

Theoretical background (III)

• Direct Sequence Spread Spectrum sounder

– s (t)=

h (τ ,t)e (t)

r (t)

bb

bh (τ)

FA bs (t)

Tx RxChannel

τ⋅τ−ξ−⋅⋅α∑−

θ⋅− d)t(Re)t(1K

)t(j k

Christophe MOY - SUPELEC – 1 Dec. 2011 9IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– sb(t)= τ⋅τ−ξ−⋅⋅α∑=

θ⋅− d)t(Re)t( kc

0k

)t(j

kk

Quadrature

t

τInphase

τ0 τ1

τQuadrature

τ0

τ1

Inphase

tTheoretical

"perfect"

impulse

response

(infinite

bandwidth)

Obtained

band-limited

noisy

impulse

response τ1

τ1τ0

Presentation outline

• Past experience on channel sounding

• Student project on channel sounding

• USRP 1 experiments

Christophe MOY - SUPELEC – 1 Dec. 2011 10IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• USRP 1 experiments

• N210 experiments

• Conclusion

Student project goals

• How to make it now, thanks to SDR facilities?• Even with undergraduate students• Only 8 time slots of 4 hours (plus free time)

year 1, and the same year 2• Make students touch implementation

Christophe MOY - SUPELEC – 1 Dec. 2011 11IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Make students touch implementation difficulties

• Not only a (long and fastidious) theoretical approach as usual when making first steps in radio

• But directly in the reality so that it motivates to study theoretical explanations then

Simulations

• First step: understand (year 1)• Design Environment

– Ptolemy II

– Ptolemy project of Berkeley

– Edward LEE lab

Christophe MOY - SUPELEC – 1 Dec. 2011 12IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– Edward LEE lab

– multi-domains desing (continuous time, discret time, state machine, SDF, etc.)

– any application field: automatic, wireless, electronics, etc.

– http://ptolemy.berkeley.edu/ptolemyII/

Understand spread spectrum and CDMA

• Basic CDMA

Christophe MOY - SUPELEC – 1 Dec. 2011 13IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Matched filter based at Rx

Spread spectrum for channel sounding

• Insert channel effects– AWGN

– Multipath

Christophe MOY - SUPELEC – 1 Dec. 2011 14IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

Presentation outline

• Past experience on channel sounding

• Student project on channel sounding

• USRP 1 experiments

Christophe MOY - SUPELEC – 1 Dec. 2011 15IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• USRP 1 experiments

• N210 experiments

• Conclusion

• Rx• Tx

USRP USRP

Real channel sounder

Christophe MOY - SUPELEC – 1 Dec. 2011 16IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

16

fS=1 MHz

DAC

128 MHz↑↑↑↑

128RF

1,4 GHz↑↑↑↑+FIR

4chips

code

fDAC=128 MHz

RF

1,4 GHzADC

64 MHz ↓↓↓↓64

FIR

1FA

4x250 kcps

scope

fS=1 MHzfADC=64 MHz

fc=250 kcps

• Tx radio chain

Block diagram

USRP N210

DAC BB=>RF1 Msps

Tx1

128 MHz128

PC#1

RRCfilter ↑4PN code

MuxIQ

NullSource

USRPtx

250 kcps

Christophe MOY - SUPELEC – 1 Dec. 2011 17IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Rx radio chain

↓ADCRF=>BB64

1 Msps

Rx2

64 MHz

PC#2

RRCfilterDe

MuxIQ

Matched Filterto PN code

USRPrx

USRP N210

scope

RRCfilterMatched Filter

to PN codescope

USRP 1

• Development Environment– GRC (GNU Radio Companion)

• USB link (max data transfer rate we obtained: 1 Msps)

• With an oversampling of 4 in pulse shaping

Christophe MOY - SUPELEC – 1 Dec. 2011 18IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• With an oversampling of 4 in pulse shaping���� 250 kHz of bandwidth for sounding���� path discrimination of 4 µs

A starting point (enough for getting started in year 2)

Channel Sounder - GRC

• Tx

Christophe MOY - SUPELEC – 1 Dec. 2011 19IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Rx

Channel #1 measurements

• W = 250 kHz• carrier frequency is 2.4 GHz���� carrier desynchronization

inphase

Christophe MOY - SUPELEC – 1 Dec. 2011 20IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

inphase

quadrature

Student expectation

• Transmitted Received

Quadrature

t

xq(t)

t

x'q(t)

Inphase : code

t

xp(t) x'p(t)

Tc-Tc

7

-1

x'p(t)

Christophe MOY - SUPELEC – 1 Dec. 2011 21IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• versus reality

t

t

x'p(t)

t

t

x'q(t)

x'q(t)

Carrier desynchronization compensation

• In a data transmission perspective: how to compensate carrier desynchronization using a channel sounder?

• UMTS FDD uplink approach:

Christophe MOY - SUPELEC – 1 Dec. 2011 22IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• UMTS FDD uplink approach: – transmit spread data with code #1 on Inphase

– transmit a sounding code #2 on Quadrature

– use "sounding phase" to "re-phase data"

• Done by students by simulation only as carrier desynchronisation was too high for the implementation constraints

Data transmission

• Synchronisation proposal for a simulated data transmission– continuous phase

correction

Transmitted date: sequence of {+1,+1,-1}

Christophe MOY - SUPELEC – 1 Dec. 2011 23IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

data despreading

channel sounding

(just phase

recovery here)

data phase correction

If we want to implement it

• Carrier desynchronization is too high with the current system– USRP1 platform

– carrier at 2.4 GHz

– spreading factor of 127

���� phase is changing too much during one code

Christophe MOY - SUPELEC – 1 Dec. 2011 24IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

���� phase is changing too much during one code sequence so that correlation is corrupted

• Solutions – decrease spreading factor (but loss in

processing gain)

– increase chip rate

– decrease carrier frequency

new platform (USRP N210)

Presentation outline

• Past experience on channel sounding

• Student project on channel sounding

• USRP 1 experiments

Christophe MOY - SUPELEC – 1 Dec. 2011 25IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• USRP 1 experiments

• N210 experiments

• Conclusion

USRP N210

• Development Environment– SUPELEC proprietary environment (Windows)

• UHD library– from Ettus Research

• Supporting HDCRAM– Hierarchical and Distributed Cognitive Radio

Christophe MOY - SUPELEC – 1 Dec. 2011 26IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– Hierarchical and Distributed Cognitive Radio Architecture Management [1]

– HDCRAM is an architecture for the management of reconfiguration and cognitive facilities (metrics capture and decision/learning)

– for real-time (seemless) auto-adaptation[1] Christophe MOY, "High-Level Design Approach for the Specification of Cognitive Radio Equipments

Management APIs", Journal of Network and System Management - Special Issue on Management Functionalities for Cognitive Wireless Networks and Systems, vol. 18, number 1, pp. 64-96, Mar. 2010

• GUI (temporary)– not yet graphical

capture of theradio chain

– later: through UMLgraphs

USRP configuration

Christophe MOY - SUPELEC – 1 Dec. 2011 27IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

graphs

• Tx radio chain– up to 1 MHz BW

– more RF flexibility(from 100 MHz to 2 GHz in our case)

USRP N210

DAC BB=>RF4 Msps

Tx1

128 MHz32

PC#1

RRCfilter ↑4PN code

MuxIQ

NullSource

USRPtx

1 Mcps

Channel #2 measurements

• W = 1 MHz• 1.4 GHz

Christophe MOY - SUPELEC – 1 Dec. 2011 28IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

inphase signal

� no more (less visible indeed) carrier desynchronization (lucky!)

� no multipath

Channel #2 measurements

• Multipath environment• Depending on capturing

window zoom level

Christophe MOY - SUPELEC – 1 Dec. 2011 29IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

path #1

path #2

Channel #3 measurements

• Very easy to change of configuration (just do it!)

• W = 300 kHz• 800 MHz

Christophe MOY - SUPELEC – 1 Dec. 2011 30IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• That was not thateasy 15 years agowith the "old"approach!

���� flexibility

Presentation outline

• Past experience on channel sounding

• Student project on channel sounding

• USRP 1 experiments

Christophe MOY - SUPELEC – 1 Dec. 2011 31IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• USRP 1 experiments

• N210 experiments

• Conclusion

Conclusion

• Teaching level (project benefit for students)– spread spectrum

– digital communications in general, and more (channel sounding is not an easy thing)

– (some) implementation limitations

– writing a paper for a conference

Christophe MOY - SUPELEC – 1 Dec. 2011 32IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– writing a paper for a conference

• SDR for education– fast and easy to implement (even for beginner)

– very motivating for students compared to

• analytical analysis

• simulations more or less deconnected from reality

� not to replace them, but as as a complement

• Information can be found:http://www.rennes.supelec.fr/ren/perso/cmoy/SCEE-SERI/

• Thank you to/This is the work of students:

Christophe MOY - SUPELEC – 1 Dec. 2011 33IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

students:Olivier GOUBETAdrien LE NAOUR

Thanks for your attention