Schlumb_MWD LWD Basic

download Schlumb_MWD LWD Basic

of 36

Transcript of Schlumb_MWD LWD Basic

  • 8/20/2019 Schlumb_MWD LWD Basic

    1/119

     S  ch l   um b  er  g er P  u b l  i   c

     S  ch l   um b  er  g er P  u b l  i   c

    MWD and LWD Introduction

    Graham Raeper

    LWD Interpretation & Development

    Schlumberger DCS Scandinavia

  • 8/20/2019 Schlumb_MWD LWD Basic

    2/119

     S  ch l   um b  er  g er P  u b l  i   c

    2 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    © Schlumberger 2004

    An asterisk is used throughout this presentation to denote a markof Schlumberger. Other company, product, and service names maybe trademarks, registered trademarks, or service marks of others.

  • 8/20/2019 Schlumb_MWD LWD Basic

    3/119

     S  ch l   um b  er  g er P  u b l  i   c

    3 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Measurement While Drilling Tools

    – Measure the Direction & Inclination of the wellbore

    – Allow drilling tools to be oriented (mud motors,

    Whipstocks)

    – Provide mechanism for transmitting downhole data

     to surface

    – May provide Gamma Ray & Drilling Mechanics

    measurements

    – May provide power for LWD tools

    Logging While Drilling Tools

    – Measure petrophysical properties

  • 8/20/2019 Schlumb_MWD LWD Basic

    4/119

     S  ch l   um b  er  g er P  u b l  i   c

    4 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    MWD History

    • Early Patents

    •Jakosky patent, 1929

    • Otis & Alder, 1955

    First WL log (resistivity) 1927

    SP 1931Induction Resistivity & dipmeter 1947

    Density – 1957

    SNP (neutron) & compensated density - 1962

    First DD in 30’s (1934 for first relief well)

  • 8/20/2019 Schlumb_MWD LWD Basic

    5/119

     S  ch l   um b  er  g er P  u b l  i   c

    5 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    MWD Evolution

    – 1960’s – Teledrift tool developed - mechanical inclinometer with

    positive mud pulse, still used today

    – 1969 – SNEA & Raymond Precision Industries start development

    work on mud pulse telemetry MWD system (these projects are

    combined to form Teleco in 1972)

    – 1978 – Teleco MWD tool commercialized

    – 1980 – Schlumberger complete first MWD job in the Gulf of Mexico

    -Multi-Sensor MWD tool (D&I/ GR/ RES/ DWOB/ DTOR)

    – 1984 – NL Baroid Introduce first 2MHz resistivity tool

    – 1986 – First Triple Combo (GR/ RES/ Density Neutron) LWD string

    – 1993 – Sonic compressional LWD tools introduced

    – 2001 – Seismic while drilling, Formation Pressure while drilling

  • 8/20/2019 Schlumb_MWD LWD Basic

    6/119

     S  ch l   um b  er  g er P  u b l  i   c

    6 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Telemetry PrinciplesMudMud

    Pressure

    Time

    Pressure

    Time

    MudMud

    Pressure

    Time

    Pressure

    Time

    MudMudMud

    Pressure

    Time

    Pressure

    Time

    Positive Pulse:1 BPS

    Negative Pulse:

    2 BPS

    Continuous wave:

    up to 12 Bits Per Second

    Starting with our telemetry, on this slide is represented the PowerPulse

    series of MWD tools.

     All those tools specifications are listed in the drilling services catalogs that

    you were provided. Please refer to this documentation for specifications.

     All PowerPulse tools are identical except for the 6” holes where the

    standard PowerPulse is replaced by the Vision475 MWD, a combination of

    PowerPulse and Vision Resistivity.

    The PowerPulse comprises 5 elements, a collar, which only has one plugs

    on the outside (the read out port), extenders to allow communication with

    LWD tools, a turbine to power the tools, an electronic cartridge to control

    turbines and modulator as well as communication with LWD tools, andfinally a unique telemetry system, the modulator.

    The way the modulator is working is simple as you can see on the right

    side of the slide, it is composed of a stator and a rotor, when the rotor

    turns it is closing and opening the gap on the stator thus creating a

    pressure wave.

    This pressure wave is captured on surface. The interesting thing is that we

    are actually not looking at the delta pressure seen on surface but rather at

    the frequency of this pressure wave.

    This gives us the fastest and the most reliable telemetry on the market

    today.

  • 8/20/2019 Schlumb_MWD LWD Basic

    7/119

     S  ch l   um b  er  g er P  u b l  i   c

    7 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    MWD Inside...

    The MWD Sonde is centered in the collar (Mud flow in the center of the tool for some LWD tools)

  • 8/20/2019 Schlumb_MWD LWD Basic

    8/119

     S  ch l   um b  er  g er P  u b l  i   c

    8 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    9/119

     S  ch l   um b  er  g er P  u b l  i   c

    9 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    PowerPulse*

    Impulse*

    SlimPulse*

    MWD Systems available in different sizes

    Objective: MWD tools available today

  • 8/20/2019 Schlumb_MWD LWD Basic

    10/119

     S  ch l   um b  er  g er P  u b l  i   c

    10 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    MWD Surveys Sensors

    3 Accelerometers + 3 Magnetometers

    Extender

    Extender

  • 8/20/2019 Schlumb_MWD LWD Basic

    11/119

     S  ch l   um b  er  g er P  u b l  i   c

    11 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    MWD Surveys Sensors

    Sensor sets arranged orthogonally

    Inclination Error:

    - Movement

    - Misalignment of the MWD

    collar in the wellbore- Accelerometer misalignment

    - Temperature

    Azimuth Error:

    - Magnetic parts

    - LWD Power 

    - Collar Mass

    - Collar Hot Spots

  • 8/20/2019 Schlumb_MWD LWD Basic

    12/119

     S  ch l   um b  er  g er P  u b l  i   c

    12 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    UncertaintiesWell path is computed from surveys by minimum curvature method

    -1200 -1000 -800 -600 -400 -200 0 200 400 600 800

    -600

    -400

    -200

    0

    200

    400

    -1200 -1000 -800 -600 -400 -200 0 200 400 600 800

    -600

    -400

    -200

    0

    200

    400

    Default Color 

     Main

    Proposal

    Survey

    1600

    1500

    1400

    1 3 0 0 

    1   2   0   0   

    A-3 H Plan

     2  3 2  5

     2  3 0 0

     2 2 0 0

      2 1  0  0

       2   0   0

       0

       1    9    0    0

         1     8      0      0

    1      7      0      0      

    1    6     0    0    

    1  5  0  0  

    140 0 

    1300

    A-2 H Pil ot Survey

      2  1   7   7

      2  1   7   7

       2   1   0   0

        2    0    0    0

        1    9    0    0

    A-2 AH Survey

         2     1     0     0

          2      0      0      0

            1        9         0         0 

    1         8       0       0       

    1        7        0        0        

    1        6        0        0        

    A-1 H Survey

    2 1 0 0 

    2  0  0  0  

    1    9    0    0    

    1     8     0     0     

    1       7       0       0       

           1       6        0        0 

           1       5        0 

           0 

           1       4       0        0 

           1       3 

           0        0 

           1       2       0        0 

    A4H Plan

    SPIDER VIEW

    Scal e (1 cm= 100 m)

      <  <  <

       S   O   U   T   H

       N   O   R   T   H

      >  >  >

    >

    Inclination accuracy: 0.1°

    (FMI GPIT Incl. Acc. = 0.5°)

    Azimuthal Accuracy: 1°

    (FMI GPIT Az. Acc. = 2°)

  • 8/20/2019 Schlumb_MWD LWD Basic

    13/119

     S  ch l   um b  er  g er P  u b l  i   c

    13 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Link from MWD tool to LWD tools

    A BHA must be assembled from tools around 30 ft long

    A link must be provided for electrical connection to other tools in the string

    – SLB use extenders to provide the link to between MWD and other tools

    – An alternative method is to use an electrode set into the thread face of the

    collar– Extenders provide both the communication and power link

    Extender

    Extender

  • 8/20/2019 Schlumb_MWD LWD Basic

    14/119

     S  ch l   um b  er  g er P  u b l  i   c

    14 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Logging While Drilling

    The goal in developing LWD tools was to provide nearwireline quality measurements while drilling

    Early MWD tools provided basic electrode (shortnormal) type resistivity & Gamma Ray measurements

    2 MHz resistivity tools developed to obtain higherquality resistivity measurement in all mud types

    Density/ Neutron measurement developed to provide

    Triple Combo service – supports large percentage ofwells

  • 8/20/2019 Schlumb_MWD LWD Basic

    15/119

     S  ch l   um b  er  g er P  u b l  i   c

    15 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Triple Combo

    Gamma Ray, Resistivity, Density, Pef, Neutron

    • Providesmeasurements of

    most commonly

    used wireline

    string

    • Majority of LWD

    logs are not

    duplicated by

    equivalent wireline

    service

  • 8/20/2019 Schlumb_MWD LWD Basic

    16/119

     S  ch l   um b  er  g er P  u b l  i   c

    16 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    LWD FE Capability - Today…

    Thermal Neutron Ø

    Bulk Density

    Azimuthal Density

    Photoelectric factor

    Spectroscopy / Sigma

    Multi-depth Propagation R

    Multi-depth Laterolog R

    Azimuthal Resistivity

    Micro-Resistivity Image

    Compressional Dt

    Shear Dt

    Seismic Check shot

    VSP

    Formation Pressure

    Fluid samples

    NMR

    yes yes

    yes yes

    no 16-bins

    yes yes

    yes no

    5 outputs 20 outputs

    5 outputs 5 outputs

    12-bins 56-bins

    yes no

    yes yes

    yes yes

    yes yes

    Yes yes (memory only)

    yes yes

    yes no

    yes yes

    Measurements Conveyance WL Conveyance LWD

    Objective: High Service Quality

  • 8/20/2019 Schlumb_MWD LWD Basic

    17/119

     S  ch l   um b  er  g er P  u b l  i   c

    17 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    LWD Acquisition Workflow - Differences

    between Wireline and LWD

    Wireline

    Data is directly associated to depth indexes as it is acquired- DLIS

    Depth is calculated from length of cable in hole - independant

    LWD

    Tools do not know the depth / only surface systems know the bit depth

    Tools record data in time (clock, resets, shifts)

    2 types of acquisition: Real-Time and Recorded Mode

    Real time data, transmitted by the MWD tool via pressure pulses in the mud

    column is associated with depth as it is acquired

  • 8/20/2019 Schlumb_MWD LWD Basic

    18/119

     S  ch l   um b  er  g er P  u b l  i   c

    18 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Surface Sensors

    Depth sensor

    SPT

    Weight/Torque

    Pump press.

    Pump stroke

    Surf. RPM

    Etc…

  • 8/20/2019 Schlumb_MWD LWD Basic

    19/119

     S  ch l   um b  er  g er P  u b l  i   c

    19 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    The MWD unit

  • 8/20/2019 Schlumb_MWD LWD Basic

    20/119

     S  ch l   um b  er  g er P  u b l  i   c

    20 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Signal Demodulation

    Principles

    Type of signals

    Downhole (MWD-Motor..)

    Uphole (Pumps-Rig..)

    Echoes & Reflections

    Electrical Noise

    Characteristics

    Frequencies

    Attenuation Direction

  • 8/20/2019 Schlumb_MWD LWD Basic

    21/119

     S  ch l   um b  er  g er P  u b l  i   c

    21 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    DSPScope

  • 8/20/2019 Schlumb_MWD LWD Basic

    22/119

     S  ch l   um b  er  g er P  u b l  i   c

    22 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    DSPScope Spectrogram

  • 8/20/2019 Schlumb_MWD LWD Basic

    23/119

     S  ch l   um b  er  g er P  u b l  i   c

    23 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Demodulation

    Objective: Understand Demodulation

    The Frame Display function is the parent application of SPM Demodulation. Thisapplication performs the following functions:

    • Translates the raw bits demodulated by the receiver module into raw data point

    values (D-points).

    • Sends the D-points to the IDEAL backend.

    • Displays the decoded frame and decoding status.

    The Frame Display application also contains a toolbar to launch or open the

    associated window of many of the SPM Demodulation functions. Simply clicking

    on one of the toolbar buttons displays the appropriate control window.

    The Frame Display window displays any number of previous frames and is only

    limited by screen size. Simply resizing the window with the mouse covers or

    uncovers as much frame history as desired. The values are displayed in raw

    decimal format. The conversion to engineering units occurs after being sent to

    IDEAL.

    The Frame Display window displays the most important demodulation

    information on the screen. You can check the

    • Decoded raw D-points

    • Sync status (In Sync, Out Of Sync Pump Down, Signal Loss, Searching, or

    Precursor)

    • History decoded frame quality

    • Frame ID

  • 8/20/2019 Schlumb_MWD LWD Basic

    24/119

     S  ch l   um b  er  g er P  u b l  i   c

    24 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    (m/hr)

    Increased rate of penetration 

    Telemetry is KeyDrilling Optimisation Data…

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    1500 2000 2500 3000 3500 4000 4500 5000

    MD(ft)

          I      N      C     L

          (      d    e    g      )

    0

    10

    20

    30

    40

    50

          A      Z      I      (      d    e    g

     P W D  C D & I  S t i c k  S l i p

    Formation Evaluation Data…1 bit per second 3 bits per second 6 bits per second

    Or 2.2 BPS log and a

    Real-time density image

    0.8 BPS

    Or 2.2 BPS log and a

    Real-time density image

    0.8 BPS

    Or 4.3 BPS log and a

    Real-time resistivity

    image

    1.7 BPS

    Or 4.3 BPS log and a

    Real-time resistivity

    image

    1.7 BPS

     Q C  D a t a

     H i g h R e s

    A d v a n c e d  L W

     D

  • 8/20/2019 Schlumb_MWD LWD Basic

    25/119

     S  ch l   um b  er  g er P  u b l  i   c

    25 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Recording Mode Acquisition Rate

    To record 2 samples/ft

    with an acquisition

    rate programmed at 10

    sec, your ROP have to

    be limited to180ft/hr

    (60m/hr)

  • 8/20/2019 Schlumb_MWD LWD Basic

    26/119

     S  ch l   um b  er  g er P  u b l  i   c

    26 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Read-Out Port (ROP)

    ROP Communication with tool

    to downlaod memory

    Battery switch (LWD)

  • 8/20/2019 Schlumb_MWD LWD Basic

    27/119

     S  ch l   um b  er  g er P  u b l  i   c

    27 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Data vs Time -> Data vs Depth

    + Data vs Time = Data vs DepthDepth vs Time

  • 8/20/2019 Schlumb_MWD LWD Basic

    28/119

     S  ch l   um b  er  g er P  u b l  i   c

    28 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Time Based Data

    Time to Depth Conversion

    0.00 Gamma Ray 150.00

    Depth Based Data

    HOUR0.00 Gamma Ray 150.00

  • 8/20/2019 Schlumb_MWD LWD Basic

    29/119

     S  ch l   um b  er  g er P  u b l  i   c

    29 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Errors from Time/Depth merge

    To present recorded LWD logs, the data (recorded downhole against time) needs to be

    combined with a surface measurement of depth (also recorded against time).

    This can lead to additional errors due to the incorrect alignment of the two independently

    recorded times:

    The clocks might be incorrectly synchronized.

    Clocks are not perfect, and will drift.

    Clocks can “reset”, causing jumps.

    Each of these effects cause unpredictable effects on the log.

    However, the time/depth merge can easily be checked by comparing the RM

    data with the RT data.

  • 8/20/2019 Schlumb_MWD LWD Basic

    30/119

     S  ch l   um b  er  g er P  u b l  i   c

    30 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Depth Tracking

  • 8/20/2019 Schlumb_MWD LWD Basic

    31/119

     S  ch l   um b  er  g er P  u b l  i   c

    31 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Depth Acquisition

    Any changes in depth entered

    by the engineer is reported

    Depth Log / Tracking Sheet

    Depth encoders

  • 8/20/2019 Schlumb_MWD LWD Basic

    32/119

     S  ch l   um b  er  g er P  u b l  i   c

    32 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Depth - What does the Client Want?

    True Depth

    Absolute Depth

    Relative Depth

    Reproducible Depth

  • 8/20/2019 Schlumb_MWD LWD Basic

    33/119

     S  ch l   um b  er  g er P  u b l  i   c

    33 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    rue depth

    Driller’s depth

    Anadrill’s depth

    at time t1

    Anadrill’s depth

    at time t2

    Wireline depth,

    attempt 1

    Wireline depth,

    attempt 2

    Which Depth is That?

    What is the depth of this formation top?

  • 8/20/2019 Schlumb_MWD LWD Basic

    34/119

     S  ch l   um b  er  g er P  u b l  i   c

    34 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    LWD Depth vs Wireline Depth

    Wireline depth is the Geoscientist’s reference. Driller’s depth is

     the Driller’s reference.

    If Wireline depth is corrected properly, it is more accurate; but

     those corrections are difficult to apply, and are often

    incomplete. The corrections are greater than the inaccuracy

    of driller’s depth.

    The industry does not want two different measurements of the

    same thing. They want a repeatable measurement.

    Depth is our most important measurement.

  • 8/20/2019 Schlumb_MWD LWD Basic

    35/119

     S  ch l   um b  er  g er P  u b l  i   c

    35 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Depth Measurement

    LWD’s depth is the driller s depth.

    There are 3 different areas that affect the accuracy of LWD depth (closeness to

     true value):

    1. Difference between driller’s depth and true depth.

    2. Difference between LWD’s measurement of depth and

    driller’s depth

    3. Errors caused by the incorrect alignment in time of the depth

    file and the data file (time/depth merge problems)

  • 8/20/2019 Schlumb_MWD LWD Basic

    36/119

     S  ch l   um b  er  g er P  u b l  i   c

    36 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Difference Between Driller’s Depth and

    True Depth

    Driller’s depth comes from measuring the length of pipe in the

    derrick. Effects it does not account for include:

    Drillpipe stretch

    Thermal Expansion

    Ballooning effects

    Errors in the measurement

    It is a valid measurement, useful for

    determining bed thicknesses and

    geosteering applications 

    It is a valid measurement, useful for

    determining bed thicknesses and

    geosteering applications 

    •Additional errors are introduced whenmeasuring the depth of deviated holes

    as the pipe does not lie in the center of

     the hole.

    •Errors are also introduced in the

    conversion from measured to truevertical depth.

  • 8/20/2019 Schlumb_MWD LWD Basic

    37/119

     S  ch l   um b  er  g er P  u b l  i   c

    37 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Summary of stretch calculations

    Horizontal Well.

    A well was analyzed using drilling engineering software. The well was vertical to 3000ft. Then, it built at 3 deg/100 ft to 38 degrees, which was held until 13000 ft. It built again

    at 3 deg/100 ft to 90 degrees This was achieved at 14679 ft. Total depth was 17960 ft.

    The following results were obtained from the analysis for the amount of pipe stretch:

    Sliding into the hole 3.75 ft

    Reaming into the hole at 200 ft/hr 8.67 ft

    Rotating off bottom 8.75 ft

    Reaming out of the hole 9.08 ft

    Sliding out of the hole 13.52 ft

  • 8/20/2019 Schlumb_MWD LWD Basic

    38/119

     S  ch l   um b  er  g er P  u b l  i   c

    38 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Difference between LWD’s measurement of

    depth and driller’s depth

    Draworks sensor, Geolograph and/or Rig Motion Sensor

    (RMS) used to determine block position

    Clamp Line Tensiometer (CLT) used to determine when

    drillpipe goes into and out of slips.

    Combination of above used to determine length

    of pipe in the hole.

    Checked against driller’s pipe tally every connection.

  • 8/20/2019 Schlumb_MWD LWD Basic

    39/119

     S  ch l   um b  er  g er P  u b l  i   c

    39 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    MWD Depth Measurement

  • 8/20/2019 Schlumb_MWD LWD Basic

    40/119

     S  ch l   um b  er  g er P  u b l  i   c

     S  ch l   um b  er  g er P  u b l  i   c

    LWD Measurements

  • 8/20/2019 Schlumb_MWD LWD Basic

    41/119

     S  ch l   um b  er  g er P  u b l  i   c

    41 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Resistivity Frequency Range

  • 8/20/2019 Schlumb_MWD LWD Basic

    42/119

     S  ch l   um b  er  g er P  u b l  i   c

    42 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Why 2MHz?

    Induction-type LF measurement relies on cancellation of the direct

    coupling (balanced arrays)

    very sensitive to geometry, not suited to LWD (shock)

    At 2MHz, phase-shift and attenuation can be

    measured between two coils

    Borehole compensation cancels differences between the two

    receivers

  • 8/20/2019 Schlumb_MWD LWD Basic

    43/119

     S  ch l   um b  er  g er P  u b l  i   c

    43 GR

     S  ch l   um b  er  g er P  u b l  i   c

    2 MHz Resistivity Theory

    Current from Top Transmitter induces an

    electromagnetic field within the formation. This

    propagates away from the transmitter.

    The wave induces a current at the receivers. The phase

    and amplitude of the wave are measured and

    converted to resistivity.

  • 8/20/2019 Schlumb_MWD LWD Basic

    44/119

     S  ch l   um b  er  g er P  u b l  i   c

    44 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    EM-wave is attenuated inconductive formations

    Finite propagation speed

    causes phase-differences

    Propagation Measurement

    Transmitter

    Receiver

    Receiver

    Transmitter

    Near receiver

    Far receiver

  • 8/20/2019 Schlumb_MWD LWD Basic

    45/119

     S  ch l   um b  er  g er P  u b l  i   c

    45 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    46/119

     S  ch l   um b  er  g er P  u b l  i   c

    46 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    47/119

     S  ch l   um b  er  g er P  u b l  i   c

    47 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Emag Wave Geometry

    Equal phase lines Equal amplitude lines

  • 8/20/2019 Schlumb_MWD LWD Basic

    48/119

     S  ch l   um b  er  g er P  u b l  i   c

    48 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    ARC475/Phasor induction DOI

  • 8/20/2019 Schlumb_MWD LWD Basic

    49/119

     S  ch l   um b  er  g er P  u b l  i   c

    49 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    ARC475/Phasor induction

  • 8/20/2019 Schlumb_MWD LWD Basic

    50/119

     S  ch l   um b  er  g er P  u b l  i   c

    50 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    DOI Considerations

    2 Parameter Influencing DOI:

    Distance from Transmitter to Receiver• The greater the distance T/R the deeper the DOI

    Signal frequency• The lower the frequency the deeper the DOI

  • 8/20/2019 Schlumb_MWD LWD Basic

    51/119

     S  ch l   um b  er  g er P  u b l  i   c

    51 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    400 KHz Measurement

    Depth of investigation:

    Deeper in conductive formations

    Similar in resistive formations

    Advantages:

    Better signal in conductive formations (< 1 Ohm.m)

    Less sensitive to eccentering

    Limitation:

    Less accurate at higher resistivity (low PS & ATT sensitivity toRt)

  • 8/20/2019 Schlumb_MWD LWD Basic

    52/119

     S  ch l   um b  er  g er P  u b l  i   c

    52 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Depth Of Investigation Comparison

  • 8/20/2019 Schlumb_MWD LWD Basic

    53/119

     S  ch l   um b  er  g er P  u b l  i   c

    53 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Blended (Best) Resistivity

    Eccentering Effect

    2MgHz Phase Shift

    400KHz Phase Shift

    2MgHz Attenuation

    400KHz Attenuation

    Sorry about the quality--

    This log shows a log that has been severely affected by eccentering. 2-MHz tools are severely affected by

    eccentering when there is a large Rt/Rm contrast or a large Rm/Rt contrast. In this case the blue curves in

    track two are the 2-MHz phase shift outputs and the black curves in track three are the attenuation curves.

    Both are affected by eccentering that has been exaggerated by a washout. In this case the environment

    had a large Rm/Rt contrast (OBM and a Rt of less than 1 ohmm.

    One of the biggest advantages of the 400-kHz outputs is the immunity to eccentering. To take advantage

    of the deeper reading 400-kHz at low resistivity and the immunity to eccentering as well as take advantage

    of the higher signal to noise ratio and better vertical resolution of the 2-MHz a new output was created. It

    is called the blended or best resistivity (P16B--Phase shift 16 -in spacing /blended output). The 400kHz

    curve is presented below 1 ohmm, the 2MHz output is presented above 2 ohmm and the output is a

    weighted average between 1 & 2 ohmm. This will be the standard presentation for the commercial version

    of IDEAL 6.1 The blended outputs are the red and green curves. Note that they are very well behaved.

  • 8/20/2019 Schlumb_MWD LWD Basic

    54/119

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    55/119

     S  ch l   um b  er  g er P  u b l  i   c

    55 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Polarization Horn Effect

  • 8/20/2019 Schlumb_MWD LWD Basic

    56/119

     S  ch l   um b  er  g er P  u b l  i   c

    56 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Polarization Horn Effect

  • 8/20/2019 Schlumb_MWD LWD Basic

    57/119

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    58/119

     S  ch l   um b  er  g er P  u b l  i   c

    58 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    VISION

    Resistivity

    vs. AIT

    The VISION resistivity log is extensively used for formation evaluation. It has a similar

    response to the Array Induction Tool. Here five PS curves are plotted against the AIT. At low

    resistivities, PS curves have about a one foot vertical resolution. The resolution is not

    constant like the AIT, as the PS resolution degrades to 2 feet at 50 ohmms.

    The attenuation curve resolution is severely affected by an increase in resistivity. The

    attenuation curve has a resolution of 2 feet at 1 ohmm but 8 feet at 50 ohmms.

    The curve mnemonics are also different from that of an AIT.

    For a VISION curve:

    •1st letter denotes the curve--either P for Phase Shift or A for attenuation

    •second two numbers represent the spacing (10,16,22,28,34, or 40 -inch)

    • Unlike the AIT this is not the constant depth of Investigation!!!

    •The last letter is either “H” for High frequency (2-MHz) or “L” for low frequency (400-kHz)

    Note that the IMPulse currently does not have the 400-kHz option but will be modified latter in

    2000 that will provide it with increased memory to 50 MB, dual frequency, digital electronics

    and simultaneous acquisition.

  • 8/20/2019 Schlumb_MWD LWD Basic

    59/119

     S  ch l   um b  er  g er P  u b l  i   c

    59 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    GeoVISION Resistivity Tool

  • 8/20/2019 Schlumb_MWD LWD Basic

    60/119

     S  ch l   um b  er  g er P  u b l  i   c

     S  ch l   um b  er  g er P  u b l  i   c

    GVR Azimuthal Button Resistivity Measurements

    GeoVISION Resistivity

  • 8/20/2019 Schlumb_MWD LWD Basic

    61/119

     S  ch l   um b  er  g er P  u b l  i   c

    61 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    GeoVISION Current Focusing

  • 8/20/2019 Schlumb_MWD LWD Basic

    62/119

     S  ch l   um b  er  g er P  u b l  i   c

    62 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Ring Resistivity Principle

  • 8/20/2019 Schlumb_MWD LWD Basic

    63/119

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    64/119

     S  ch l   um b  er  g er P  u b l  i   c

    64 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    WL dual laterolog Resistivity response

  • 8/20/2019 Schlumb_MWD LWD Basic

    65/119

     S  ch l   um b  er  g er P  u b l  i   c

    65 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    GVR focused Ring Resistivity response

  • 8/20/2019 Schlumb_MWD LWD Basic

    66/119

     S  ch l   um b  er  g er P  u b l  i   c

    66 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    GRV Imaging: Break-outs and

    Button Averaging

  • 8/20/2019 Schlumb_MWD LWD Basic

    67/119

     S  ch l   um b  er  g er P  u b l  i   c

    67 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    GVR Azimuthal Caliper

    Caliper data can be acquired from several sources using LWD data.

    • A real-time ultrasonic caliper is made with the Vision675 density tool• resistivity caliper from the CDR, ARC and RAB in WBM

    Today the resistivity calipers are only available in memory but should be available in real-time

    by the end of the year (99).

    The caliper data provides a picture of the shape of the bore hole, indicating the severity of

    formation breakout and the primary directions of failure

    The diagram above shows caliper data from the Geovision resistivity tool at different depths,

    highlighting that breakout has occurred long the north-west / south-east plane.

    The resistivity image data from the same tool over the same interval clearly shows the areas ofbreakout along that plane

    The caliper data can also be used to potential hazardous areas while tripping, running tubulars

    or wireline

  • 8/20/2019 Schlumb_MWD LWD Basic

    68/119

     S  ch l   um b  er  g er P  u b l  i   c

    68 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Azimuthal Resistivity for Geological and Fracture Analysis

    GVR and FMI Comparison

    • Fracture presence and orientation are often key parameters to

    drilling successful horizontal wells.

    • This examples compares a wireline FMI Formation Micro-

    Imager (left image) to a GeoVISION resistivity image (right

    image) acquired during the drilling process.

    • Note the fracture in the middle of each image. This sine wave

    has a different orientation to the bedding planes.

  • 8/20/2019 Schlumb_MWD LWD Basic

    69/119

     S  ch l   um b  er  g er P  u b l  i   c

    69 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Real Time Image Recorded Mode Image

    GeoVISION Real Time Images

    70 ft

    Ref.: SPE - 71331

    This is an example of a compressed and decompressed image compared

    to a recorded mode image straight from the tool memory (I.e. retrieved

    when the tool was on the surface. Although the resolution of the

    compressed and decompressed image is poorer the main feature of

    cutting up through a thin conductive bed can clearly be seen.

  • 8/20/2019 Schlumb_MWD LWD Basic

    70/119

     S  ch l   um b  er  g er P  u b l  i   c

    70 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Density Neutron Measurement

    Wireline density tools typically use a skid mountedsource & detector to obtaingood contact with borehole

    LWD tools use differentmethods to record densitydata with the loweststandoff as the tool rotates

    Neutron porositymeasurements can becorrected for mud standoff

  • 8/20/2019 Schlumb_MWD LWD Basic

    71/119

     S  ch l   um b  er  g er P  u b l  i   c

    71 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Vision Azimuthal Density Neutron (VADN)

    Density

    Section

    -C137 Gamma ray source

    -Two gain-stabilized Nal

    scintillation detectors

    Neutron

    Section

    -AmBe neutron source-He3 detectors

    -Thermal neutrons

  • 8/20/2019 Schlumb_MWD LWD Basic

    72/119

     S  ch l   um b  er  g er P  u b l  i   c

    72 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    RHOb

    Density Borehole Compensation

    RHO ss

    RHO ls

    RHOmc

    RHOmc < RHOb

    DRHO > 0

    RHOb = RHO ls + DRHO

    DRHO = f (RHO ls - RHO ss)

    “SPINE & RIBS” algorithm

    compensates up to 1” stand-off

    RHOmc > RHOb

    DRHO < 0

  • 8/20/2019 Schlumb_MWD LWD Basic

    73/119

     S  ch l   um b  er  g er P  u b l  i   c

    73 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    74/119

     S  ch l   um b  er  g er P  u b l  i   c

    74 GR

     S  ch l   um b  er  g er P  u b l  i   c

    ADN Dual Source Assembly 

    Density Source

    Neutron Source

     Assembly

  • 8/20/2019 Schlumb_MWD LWD Basic

    75/119

     S  ch l   um b  er  g er P  u b l  i   c

    75 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

  • 8/20/2019 Schlumb_MWD LWD Basic

    76/119

     S  ch l   um b  er  g er P  u b l  i   c

    76 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    CLAMP-ON STABILISER

    BUILT-IN STABILISER

  • 8/20/2019 Schlumb_MWD LWD Basic

    77/119

     S  ch l   um b  er  g er P  u b l  i   c

    77 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    ADN Images Theory

    Azimuthal source and detectorszimuthal source and detectors

    Quadrant arrays

    uadrant arrays

    Color

    scale

    Color

    scale

    ADN Density Image

    DN Density Image

  • 8/20/2019 Schlumb_MWD LWD Basic

    78/119

     S  ch l   um b  er  g er P  u b l  i   c

    78 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Image Resolution

    (Relative pixel sizes)

    One inch

    scale

    Density

    GVR

    UBI

    FMI

    Pef

    Despite this coarseness of image, density images can prove invaluable.

    They can be acquired in oil and water based muds. Using LWD allows

    measurements in complex shaped wells that would require risky TLC runs

    if they are possible at all.

    Furthermore many of these wells are logged at high angles, where even

    thin bed are seen over many feet within the borehole.

     As with any imaging tool a contrast in the medium being measured is

    required to identify beds.

  • 8/20/2019 Schlumb_MWD LWD Basic

    79/119

     S  ch l   um b  er  g er P  u b l  i   c

     S  ch l   um b  er  g er P  u b l  i   c

    Image resolution Limitation

        6    i   n

    The sinusoids are not

    resolved for apparent dips of

    less than 35 Degrees

    8.5 in

    35°

  • 8/20/2019 Schlumb_MWD LWD Basic

    80/119

     S  ch l   um b  er  g er P  u b l  i   c

    80 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    VADN Images

    Ultrasonic

    Pef

    RHOS

    RHOB (quad.) ROSI

    RHOB (sect.) ROIM

    RHOL

    PowerDrive - 2D Images

  • 8/20/2019 Schlumb_MWD LWD Basic

    81/119

     S  ch l   um b  er  g er P  u b l  i   c

    81 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Comparison Real Time vs. Memory Image

    RTI RMI

  • 8/20/2019 Schlumb_MWD LWD Basic

    82/119

     S  ch l   um b  er  g er P  u b l  i   c

    82 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    LWD Calipers

    Ultrasonic Caliper direct

    Density CaliperPhase Caliper from Propagation Tool

    Caliper from multiple DOI Resistivity

    Neutron Caliper

    Derived

  • 8/20/2019 Schlumb_MWD LWD Basic

    83/119

     S  ch l   um b  er  g er P  u b l  i   c

    83 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Ultrasonic Caliper Measurement

    Borehole spiraling

  • 8/20/2019 Schlumb_MWD LWD Basic

    84/119

     S  ch l   um b  er  g er P  u b l  i   c

    84 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Factors that Affects Accuracy

    Acoustic Impedance Contrast between Mud and Formation

    Signal Attenuation in Heavy MudStandoff Range up to 2.5 in.

    Hole Rugosity / Target Alignment

    Advantages of the Ultrasonic Caliper

    • Direct and Azimuthal Measurement

    • Works in OBM and WBM

    • Good Precision (0.1 –0.2 in.)

    • Available in Real Time

  • 8/20/2019 Schlumb_MWD LWD Basic

    85/119

     S  ch l   um b  er  g er P  u b l  i   c

    85 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    VADN/FMSImage Comparison

    Drilling

    down

    sequence

    parallel to

    bedding

    Drilling

    down

    sequence

  • 8/20/2019 Schlumb_MWD LWD Basic

    86/119

     S  ch l   um b  er  g er P  u b l  i   c

     S  ch l   um b  er  g er P  u b l  i   c

    VADN

    Density

    Dynamic

    Image

    VADN

    Pef

    Dynamic

    Image

  • 8/20/2019 Schlumb_MWD LWD Basic

    87/119

     S  ch l   um b  er  g er P  u b l  i   c

    87 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Azimuthal Density Reveals Filtrate DrapeAzimuthal Formation Evaluation - Gravity Segregation of Fluids

    Gas

    filtrate

    • This is a quadrant density presentation from a horizontal well in a highpermeability gas zone.• All quadrant densities (top, bottom, left and right) are “crossed-over” the neutron in

    the characteristic gas signature.

    • The quadrant densities themselves do not agree in the homogeneous formation.

    The bottom density has the highest reading. The top density is the lightest.

    • This is due to filtrate drape - gravity segregation to the bottom of the wellbore.

    This generally occurs in high permeability gas zones due to the buoyancy force.

    •Note the difference that this may make on resistivity measurements - GVR would

    be useful in this case to compute quadrant water saturations.

  • 8/20/2019 Schlumb_MWD LWD Basic

    88/119

     S  ch l   um b  er  g er P  u b l  i   c

    88 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Azimuthal Porosity GeoSteering

    This example illustrates the benefit of azimuthal density geosteering. A gas zone is overlain by a shale. In

    zone A, all four quadrants measure low densities and crossover the neutron, indicating a gas zone. The

    top quadrant has a lower density than the bottom quadrant. This may be a result of “filtrate drape”, whichis gravity segregation of filtrate invasion toward the low side of this horizontal well.

    The drillpipe is sliding for a short section, until zone B. The density measurement for the top of the

    wellbore has increased as it is now measuring the shale bed above the wellbore. The other three

    quadrants (bottom, left and right) still indicate gas. With the azimuthal measurement, you would now make

    a decision to turn down, away from the shale boundary. However, with an average density, it may not

    even be recognized that the wellbore was approaching a shale boundary.

    The tool and drill pipe slides again to zone C. Now the wellbore is further into the shale section. Only the

    bottom density indicates gas. Only now, would an average density reading indicate that a steering

    decision would need to be made, but it still would not provide a direction.

  • 8/20/2019 Schlumb_MWD LWD Basic

    89/119

     S  ch l   um b  er  g er P  u b l  i   c

    89 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Sonic while drilling

    Transmitter

    Attenuator

    Receivers

     transmitter Receivers

    Bottom Hole Assembly - ISONIC

    The ISONIC8 is combinable with any 8-in. LWD measuring device and is

    traditionally run with LWD triple combo tools (e.g. CDR/RAB and CDN).

    Similarly, the ISONIC6 can be run with all 6 3/4-in. collar LWD/MWD tools.

    Both tools can be run with all bit types. Pictured is a typical quad-combo bottom

    hole assembly. In such a configuration, the ADN/CDN will always be at the top

    of the BHA to allow for source retrieval. The ISONIC would be typically next,

     but it can be placed anywhere in the string, above or below the MWD tool, even

     just above the bit in “low noise” environments (e.g. rotary drilling - not hard

    rocks).

    The ISONIC can be run with or without a downhole motor or geosteering

    assembly.

  • 8/20/2019 Schlumb_MWD LWD Basic

    90/119

     S  ch l   um b  er  g er P  u b l  i   c

    90 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    ISONIC-Array Sonic While Drilling

  • 8/20/2019 Schlumb_MWD LWD Basic

    91/119

     S  ch l   um b  er  g er P  u b l  i   c

    91 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Recorded Mode Data

  • 8/20/2019 Schlumb_MWD LWD Basic

    92/119

     S  ch l   um b  er  g er P  u b l  i   c

    92 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    ISONIC Vs. Wireline Sonic

  • 8/20/2019 Schlumb_MWD LWD Basic

    93/119

     S  ch l   um b  er  g er P  u b l  i   c

    93 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Delta-T in Overpressure Zone

  • 8/20/2019 Schlumb_MWD LWD Basic

    94/119

     S  ch l   um b  er  g er P  u b l  i   c

    94 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    ISONIC Applications

    Real-timePorosity measurement

    Lithology identification

    Seismic correlation real-time input for synthetic seismograms

    Pore pressure trends while drilling

    Real-time decision making

    Recorded modePorosity measurement

    Lithology identification

    Mechanical properties (hard rocks)

    Improved quality sonic measurements Formation alteration (shales) & invasion

    Hole enlargement

    ISONIC Applications

    ISONIC applications can be divided into two groups - real time and recorded modeapplications . Real time measurements provide the client with unique opportunities forbetter drilling decisions. The two main applications are real time seismic correlation andpore pressure indication.

    Real Time Seismic Correlation

    From real time ISONIC compressional slowness measurements, real time syntheticseismograms can be computed. These seismograms can be used to correlate the client’ssurface seismic data to driller’s depth. The client will learn where the bit is located on hisseismic section. This gives the client the opportunity to re-evaluate his drilling operationbefore he reaches total depth.

    Pore Pressure Indication

    In most sand/shale sequences, compaction increases with depth due to increasingoverburden with depth. Sound travels faster through sand/shale sequences the morecompacting occurs. Therefore, compressional delta-t lessens with depth at relativelyconstant rate. When overpressured formations occur, pore space is greater than normaland the delta-t value increases above the expected trend. Therefore, slow delta-t valuesabove the compacting trend indicate overpressured formations.

    Recorded Mode

    The major recorded mode application is wireline sonic replacement. Seismic tie andsonic porosity (computed from delta-t and used as an input to the petrophysicalevaluation (i.e. lithology, porosity, etc.) are the primary customer objectives for sonic data.When running ISONIC in fast rocks, shear slowness can be acquired from the recordeddata. Combining shear with compressional slowness allows for mechanical propertycomputations such as IMPact*, MechPro* and Frachite*.

    ISONIC compressional data is gathered well before wireline data can be acquired. Thismeans that the measurements are made before formation alteration, stress relief,invasion and increasing hole enlargement can occur. The result is that ISONIC slownessmeasurements may be a truer representation of the formation properties than subsequentwireline sonic measurements.

  • 8/20/2019 Schlumb_MWD LWD Basic

    95/119

     S  ch l   um b  er  g er P  u b l  i   c

    95 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    The presence of drill collar requires an alternative tostandard wireline-like technology.

    A Dipole measurement requires a very large

    dispersion correction

    R&D programs led to the starting of development

    work in quadrupole technology for LWD

    LWD Shear Measurement

    in Slow Formations

  • 8/20/2019 Schlumb_MWD LWD Basic

    96/119

     S  ch l   um b  er  g er P  u b l  i   c

    96 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Dipole

    Why Quadrupole?

    Empty

    borehole

    Borehole

    with collar

    Quadrupole

    Less sensitive

     to shear

    More sensitive

     to shear

    Strong collarinterference

    Small collarinterference

    Formation Shear 

    Formation Shear 

    Borehole mode

    Borehole mode

    Collar mode

    Collar mode

    Shear slowness in slow formations is derived from the measurement of

    dipole or quadrupole modes. Both of these modes are dispersive. They

    propagate at the shear slowness at low frequencies. As the frequency gets

    higher sensitivity to the shear slowness decrease and sensitivity to mud

    slowness and other environmental parameters increase. Therefore, one

    would like to make the measurement at as low frequency as possible.

    However, for the dipole mode the presence of the drilling collar in the

    borehole interferes with the formation dipole wave at the low frequencies

    making it very difficult to extract formation shear information if at all

    possible. The quadrupole collar mode on the other hand is cut-off at low

    frequencies and interferes very little with the formation quadrupole wave.

    In summary quadrupole measurement is much better suited to shearlogging in slow formations in LWD environment.

  • 8/20/2019 Schlumb_MWD LWD Basic

    97/119

     S  ch l   um b  er  g er P  u b l  i   c

    97 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Seismic While Drilling Principle

    Surface sourceDownhole receivers

    Waveforms recorded in

    downhole memory

    Downhole processing

    Real-time check-shot

    via MWD telemetryLook-ahead imaging

    seismic reflector

    LWD Tool

    sea floor    M    W    D   t   e    l   e   m   e   t   r   y

    Source

    Surface System

  • 8/20/2019 Schlumb_MWD LWD Basic

    98/119

     S  ch l   um b  er  g er P  u b l  i   c

    98 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    SeismicVision System

    Downhole Tool Surface System

    Rugged LWD technology

    Multiple sensors (3 Geophones, 1Hydrophone)

    Processor, memory, telemetry

    Triangular cluster (450 in3)

    Bottled air supplySpecial control system

    SPE71365

    The SeismicMWD system has two main components, a downhole tool and

    a surface system.

    The downhole tool was constructed of typical rugged LWD technology. It

    was configured with multiple sensors including geophones, hydrophones

    and accelerometers. In addition, it has a processor for downhole

    computations, memory for storing data and a telemetry system for 

    transmitting data to the surface.

    The surface system for these tests included a triangular airgun cluster with

    a total volume of 450 cu in. A bottled air supply was used to reduce

    maintenance for the long “while-drilling” operation. A specially developed

    control system was used to activate the source in a manner that would be

    synchronized with the downhole recordings.

  • 8/20/2019 Schlumb_MWD LWD Basic

    99/119

     S  ch l   um b  er  g er P  u b l  i   c

    99 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Wireline

    Check shot data from Seismic While Drilling

    First field test in Wyoming.

    Traces in top section acquired while tripping down.

    Bottom trace acquired while drilling at connection time.

    Wireline VSP was run after the test. Very good match in

    che-ckshot times.

  • 8/20/2019 Schlumb_MWD LWD Basic

    100/119

     S  ch l   um b  er  g er P  u b l  i   c

    100 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Applications

    Real-time check-shot

    Put the bit on seismic map Update seismic velocities for PPP

    Optimize ECD boundaries and drilling parameters

    Update velocities for seismic reprocessing

    Real-time salt proximity

    Seismic look-ahead, 500+ ft (2003)

    Replace intermediate wireline check-shot, save

    rigtime

  • 8/20/2019 Schlumb_MWD LWD Basic

    101/119

     S  ch l   um b  er  g er P  u b l  i   c

    101 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Pressure rampPressure ramp

    Normally pressuredNormally pressuredclasticsclastics

    ReservoirReservoir

    20”

    13 3 / 8”

    9 5 / 8”

    16”

    11 3 / 4”

    Example Exploration Well Plan

    Now let’s imagine drilling an exploration well in a highly challenging

    environment with the SeismicMWD tool.

    The exploration basin is characterized by normally pressured clastics in

    the shallow section, then a section with a severe pressure ramp and highly

    over-pressured reservoirs.

    To reach a deeper reservoir, the well must be geosteered accurately

    through a step out section with an uncertain velocity profile.

    To meet all of the objectives, wells in this region normally require flawless

    planning, many casing strings and careful execution.

    The well plan calls for a 20-, 13 3/8- and 9 5/8-in casing sequence and

    contingent liners of 16 and 11 3/4-in. If needed, the contingent liners would

    require underreaming and add considerable extra cost.

    The key to success is to push the 20-in casing as deep as possible and to

    set the 13 3/8-in casing exactly at the top of the pressure ramp that is an

    obvious reflector on the surface seismic map but not easily recognizable

    as a lithology change.

  • 8/20/2019 Schlumb_MWD LWD Basic

    102/119

     S  ch l   um b  er  g er P  u b l  i   c

    102 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Drilling Office - Bit on Seismic

    Distance

     to Target

    Surface

    Seismic

    in Depth

    Time-DepthCurve and

    Depth

    Prediction

  • 8/20/2019 Schlumb_MWD LWD Basic

    103/119

     S  ch l   um b  er  g er P  u b l  i   c

    103 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Bit On Seismic

  • 8/20/2019 Schlumb_MWD LWD Basic

    104/119

     S  ch l   um b  er  g er P  u b l  i   c

    104 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    LWD-NMR

    This is a picture of the tool taken while testing at RMOTC (Rocky Mountain Oilfield Test Center) in June 1999

    this is actually a picture of the first generation tool, but the second generation is essentially identical in the

    antenna region shown here. The only difference is in the new tool has a longer section of slick drill collar thanthe original tool. The tools currently being deployed are second generation tools.

    Describe picture

    The spiral piece at the bottom is the field replaceable screw on stabilizer that is changed in the same way as a

    drilling motor stabilizer.

     Above this are antenna and wear bands.

    The rest of the tool is slick.

    Outline Presentation.

    Questions rules (encourage interruption?)

  • 8/20/2019 Schlumb_MWD LWD Basic

    105/119

     S  ch l   um b  er  g er P  u b l  i   c

    105 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    NMR While Drilling

    Tools available tomeasure T2 (or T1)

    in real time

    Measurement

    complicated

    compared to

    wireline by tool

    motion

  • 8/20/2019 Schlumb_MWD LWD Basic

    106/119

     S  ch l   um b  er  g er P  u b l  i   c

    106 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    LWD-NMR Outputs

    Real Time Outputs

    – Lithology Independent Porosity

    – Bound Fluid Volume (BFV) / Free Fluid Volume (FFV)

    – T2LM (Log mean of T2)

    – Permeability

    – Hydrocarbon from Multi-Wait Time Porosities

    Additional Outputs from Recorded Mode

    – Raw Echoes

    – Full Data Re-Processing

    – Full T2 Spectra– Motion Data

    LWD-NMR Outputs

    The tool performs downhole a T2 inversion and computes outputs for transmission in real

    time. These real-time outputs could be used for GeoSteering, well placement, sidetrack

    decisions, etc….

    Direct hydrocarbon identification using porosities from multiple polarization times (examples

    shown later) (see FAQ’s for description of hydrocarbon identification/characterization

    methods)

    Permeability is calculated uphole from the bound fluid free-fluid ratio using Coates-Timur 

    equation or from the SDR equation if T2LM is transmitted, coefficients and exponents for

    these equations can be set by the user at the wellsite based on client desires.

    The tool records the raw echoes and this data can be used to reprocess the data in the

    IDEAL wellsite software. A more detailed (more components in T2 spectrum) can be

    computed from the raw data. In addition, the tool records full accelerometer and

    magnetometer data whose primary purpose is for QC of NMR data, but some interesting

    drilling engineering applications will also be shown.

    -------------------------------

    Note that the downhole memory of the tool is obviously not unlimited. No “maximum footage

    loggable” specification can be given as the tool records verses time. Currently the tool can

    record around 104 megabytes of memory. Note that the tool only records while circulating.

    Prior to the job during the planning stage the memory can be set up to record for longer

    periods of time by stackking the raw echoes. As NMR data is inherently statistical and when

    reprocessed the echoes are stacked anyway, there is no significant loss of information. In

    this way, the memory can be programmed to last as long as required.

  • 8/20/2019 Schlumb_MWD LWD Basic

    107/119

     S  ch l   um b  er  g er P  u b l  i   c

    107 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Measurement & Motion

        R   e   s   o   n   a   n   t   r   e   g    i   o   n

    Borehole Wall

    ResonantRegion Experiment

    Region

    The slide above shows the tool at first centered in the borehole at the beginning of

    the measurement cycle. An experiment region is established with the 90degreepulse, the 180 pulse should then be performed with a coincident resonant zone, i.e.

    the tool should not move. The diagram on the right shows how the resonant region

    stays at a fixed radius around the tool but the experiment zone is fixed in the

    formation. In other words the experiment is now in error due to movement.

    This is clearly a very great challenge with the drilling environment, either the

    experiment has to be fast compared to the motion and or the tool should be

    stabilized to reduce motion.

     Also the slide demonstrates where the measurement is made. In a cylinder of a

    particular thickness around the tool. It is where the magnetic field and the frequencyof the radio signal combine to produce a resonant effect in the hydrogen nuclei, this

    is how only hydrogen is measured in the experiment. And also that no signal is

    received from in front of or behind the resonant zone. In other words there is a well

    defined and constant measurement region from this tool unlike other nuclear or

    resistivity tools.

  • 8/20/2019 Schlumb_MWD LWD Basic

    108/119

     S  ch l   um b  er  g er P  u b l  i   c

    108 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Drilling Dynamics From Accelerometry

    Bit Whir ling

    Hole

    Enlargement 

    0.1 cm

    1.0 cm

    Bit Whir ling

    Hole

    Enlargement 

    0.1 cm

    1.0 cm

    The above are examples of the kinds of whirling motion it is possible to resolve using the

    tools capabilities.Each graph shows the locus of lateral movement of the center of the tool, as it moves in the

    bore hole. The scale is in meters, top left shows millimeter size whirl, top right sub millimeter

    and bottom left shows centimeter range movement of about an inch that was constrained by

    the tool hitting the borehole wall.

    These motions are more or less damaging according to their shape and frequency of

    oscillation. The lower left hand one may be particularly damaging as the oscillations are

    much larger amplitude (6-7 cm) and the BHA is whirling around the outside of the borehole

    contributing to borehole enlargement and possibly damaging formation by compressing mudcake into the formation.

    -------------------------------------------------------------------------

    These were all recorded in one bit run in a shallow vertical hole with a rock bit at 500 ft/hr and

    80-150 rpm parameters.

  • 8/20/2019 Schlumb_MWD LWD Basic

    109/119

     S  ch l   um b  er  g er P  u b l  i   c

    109 GR

    4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Quality Control of Motion Effects

    Lateral motion leads to

    shortening of T2’s

    Effects Understood

    Accelerometers lateral

    motion velocity

    QC from Accelerometry data.

    QC from NMR data

    Accelerometry Data Maximum Measurable T 2 

    Accelerometer Package is for QC Purposes

    The motion data can be used for quality control of the log in recorded mode or real-time by

    utilizing the lateral velocity of the tool, to compute the maximum T2 that can be resolved.

    This is an example drilling through a gas sand. From the accelerometry package we can

    calculate an average lateral velocity shown in track 1. This leads to the red line in the T2 track

    that shows the limit of the T2 that could be resolved under the motion conditions experienced

    by the tool while the measurements are made. You can see that the transition from shale to

    the shaley gas sand sees the appearance of a second T2 peak that is to the left of the T2

    maximum line. A separation from the line of about a decade indicates that there is probably

    little or no motion shortening of the T2. Further down in the slightly better pay the T2 peakincreases in time to the right but is still to the left of the line so is certainly not noise, but

    because it is a little closer to the line it will be somewhat shortened due to tool motion.

    NMR standalone QC is also being investigated by looking only at the NMR data and

    determining motion effects by looking at the NMR data itself.

  • 8/20/2019 Schlumb_MWD LWD Basic

    110/119

     S  ch l   um b  er  g er P  u b l  i   c

    110 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Formation Pressure While Drilling

    Measurementprinciple identical towireline formation pressuremeasurements

    Rely on direct contact with theformation

    Drill string movement must be stopped

    A small area of the formation is sealedoff, and the pressure & mobility is tested

    Dual packer type tools also existTool shown is not a Schlumberger tool

    Draw Down Pump 

    Pressure Gauge

    Sealing Element

    System Volume 

  • 8/20/2019 Schlumb_MWD LWD Basic

    111/119

     S  ch l   um b  er  g er P  u b l  i   c

    111 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    GeoSteering -The full picture…

    T T R

    UDR Distance to boundary

    GVR or VDN Real-Time Image

    Vision Res. Medium DOI

    Base Heimdal

    BaseBalder

    TopChalk

    TopHeimdal

    Base Heimdal

    BaseBalder

    TopChalk

    TopHeimdal

    Producers shall be drilled 9 m above

    OWC or near base reservoir 

    Producers shall be drilled 9 m above

    OWC or near base reservoir 

    Gas injectors shall bedrilled near top reservoir Gas injectors shall bedrilled near top reservoir 

  • 8/20/2019 Schlumb_MWD LWD Basic

    112/119

     S  ch l   um b  er  g er P  u b l  i   c

    112 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Drilling Performance Sensors

    VISION has a variety of Drilling performance sensors

    Downhole weight, torque and multi-axis vibrations are not available on

    VISION475.

    PERFORM is a service which provides a Specialist Engineer who uses the

    drilling performance sensors, surface indicators, offset well data,

    knowledge database and local knowledge to improve the drilling process

    to identify and reduce risk as well as improve overall ROP.

  • 8/20/2019 Schlumb_MWD LWD Basic

    113/119

     S  ch l   um b  er  g er P  u b l  i   c

    113 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Increase Drillstring and Bit LifeBHA whirling in vertical hole

    Multi axis shocks

    • Reduce drillstring fatigue

    • Reduce borehole enlargement

    • Increases ROP/bit life

    Larger shocks result in more shock counts

     All of Anadrill’s MWD and LWD tools are designed with downhole shock

    measurements.

    In the MWD tools shock data is transmitted in real-time such that in the

    event of high shocks drilling parameters can be adjusted and the effects

    monitored.

    Real-time shocks can reduce non productive time, as trips can be saved

    by:

    • reducing pipe fatigue

    • failure of downhole components

    • increasing bit life.Multi axis shock measurements are also available (ie. Axial, lateral and

    torsional) With this information it is possible to determine the type of

    vibrations experienced (e.g. bit bounce, stick slip, resonance etc.) and

    thus take appropriate action

    The shock measurements are alsoused to track wear and tear on the tools

    and the level of maintenance required on a tool is based upon the severity

    of shocks experienced.

    It should be noted that although the MWD/LWD electronics are the most

    susceptible damage from shocks, failure of these components is not

    catastrophic. Where as the effect of high shocks on BHA connections can

    lead to catastrophic failures.

  • 8/20/2019 Schlumb_MWD LWD Basic

    114/119

     S  ch l   um b  er  g er P  u b l  i   c

    114 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Early Washout Detection

    BHA whirling in vertical hole

    Output Voltage vs. Flow Rate for 8-in. Turbine

    The PowerPulse/Impulse MWD system uses a downhole turbine to

    generate power. The output voltage from this turbine is directly

    proportional to the flow rate passing through the tool and is thus a valuable

    downhole flow meter which is sensitive to very small changes in flow.

     As the example shows, any washout above the MWD tool is easily seen

    from the turbine voltage, a lot earlier than it is seen at surface. Early

    identification can help reduce non productive time for expensive fishing

    trips. This can be set up as a smart alarm on the IDEAL system, thus

    requiring no continuous interpretation of the data by the engineer.

  • 8/20/2019 Schlumb_MWD LWD Basic

    115/119

     S  ch l   um b  er  g er P  u b l  i   c

    115 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Stuck Pipe Avoidance

    Weight on Bit Torque

    The PowerPulse tool can be configured to provide real-time

    measurements of downhole weight on bit and torque. These

    measurements are made based on strain gauges mounted in the MWDtool.

    The gauges for the weight on bit are aligned so that they are only sensitive

    to the axial load (tension and compression on the drillstring). The torque

    gauges are aligned so that they are only sensitive to the torsional effects

    on the drillstring (I..e. not the axial forces)

    These measurements are particularly valuable in deviated wells where

    surface parameters of weight and torque can be unrepresentative of the

    true downhole conditions. By using the downhole measurements the

    performance of the bit can be optimized and premature damage of PDCbits avoided.

    By comparing both surface and downhole parameters a calculation of the

    friction in the wellbore can be made and the onset of pipe.sticking

    detected and action taken

    The example shows how the sliding friction (drag) is increasing, indicating

    the onset of a potential sticking problem. A wiper trip was made and the

    log shows the impact of the corrective action. In this case it was

    successful and drilling was resumed.

    Thus using these measurements NPT an be reduced by optimizing bit

    performance and avoiding stuck pipe.

    The calculated friction factors are also a valuable input into the planning of

    the next well.

  • 8/20/2019 Schlumb_MWD LWD Basic

    116/119

     S  ch l   um b  er  g er P  u b l  i   c

    116 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    • Key for Deepwater drilling

    • Detect shallow water flows

    • Detect cuttings loading and swab/surge effects

    • Manage the pore pressure fracture grad window

    • Minimize mud weight for optimum ROP

    Accurate control of ECDModeled vs. Actual ECD

     Anadrill can provide real-time annular pressure measurements in each

    hole size. This measurement is used to calculate the true ECD (effective

    circulating density) while drilling to ensure that the ECD remains higher

    than the formation pore pressure, yet lower than the fracture gradient of

    the formation.

    Right hand diagram: shows the theoretical ECD (black). Without

    downhole measurements this is the value used to define the mud weight

    required to drill the well. The red curve shows the actual ECD as

    measured by the downhole sensor and shows that there are major

    fluctuations, compared to the modeled value, as a result of changing flow

    rate and RPM. Other key factors that can effect the ECD are cuttings

    loading pipe eccentricity, swab surge effects and temp/pressure effects. It

    is clear therefore that in a well where there is a tight window between the

    formation pore pressure and the fracture gradient to rely on a modeled

    ECD value is dangerous and that real-time monitoring is crucial. This is

    particularly true in the case of deepwater drilling where there can be a very

    narrow window.

    The ECD can also be calculated there is no circulation for accurate leak

    off/formation integrity test measurements and to monitor swab/surge

    effects

    The APWD measurement has also proven to be a valuable tool for the

    early detection of shallow water flows (a sharp increase is seen)

     All annular pressure measurement can also be stored in the tools

    downhole memory.

  • 8/20/2019 Schlumb_MWD LWD Basic

    117/119

     S  ch l   um b  er  g er P  u b l  i   c

    117 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Staying within the Pressure Window

    ISONIC example

    taying within the pressure window

    Left hand diagram: shows a real-time plot of the real-time ECD

    measurement plotted against the theoretical fracture gradient and a real-

    time calculation of pore pressure based on LWD resistivity. The pore

    pressure calculation is compared to the seismic pore pressure calculation

    that was made prior to drilling the well.

     Accurate monitoring of both the pore pressure and ECD are key. This is

    particularly the case in deepwater wells were the window between fracture

    gradient and pore pressure can be very narrow.

    Right hand diagram:shows an example of how LWD sonic data can also

    be used for real-time pore pressure evaluation. The normal compaction

    trend of the formation would result in a gradual decrease in sonic transittime. However, in overpressured formations we see that the formation

    becomes less compacted and the sonic transit time diverges from its

    normal trend and increases as a function of over pressure.

  • 8/20/2019 Schlumb_MWD LWD Basic

    118/119

     S  ch l   um b  er  g er P  u b l  i   c

    118 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Shear Failure

    Mud Weight too

    Low

    Tensile Failure

    Mud Weight too

    HighStress Direction

    Identification of Failure Modes

    LWD images can be acquired from both the GVR

    (GeoVISION Resistivity) and ADN (vision density).

     As well as clearly showing the interbedding of the

    formations and the dip of the beds, these images can

    be used to define fractures. Both the direction of the

    fractures and the failure mode can be determined.

    When combined with Real time images, this will be veryvaluable in refining or confirming wellbore stability

    models and drilling practices.

    But in the above example, the explanation shows that

    the mud weight is too high AND too low. How can this

    be--which is it?

  • 8/20/2019 Schlumb_MWD LWD Basic

    119/119

     S  ch l   um b  er  g er P  u b l  i   c

    119 GR4/23/2004

     S  ch l   um b  er  g er P  u b l  i   c

    Conclusion

    MWD/ LWD has developed quickly compared to wireline technology

    The technique is widely used in deviated wells and where rig ratesare high

    In vertical wells and low rig day rates wireline is more economical– is there a need for RT data?

    Almost all OH wireline measurements can be performed with LWD– fluid sampling and high definition images are the significant

    measurements not yet available

    DEPTH control is the biggest single quality factor thataffects LWD measurements