Runge-Kutta-Chebyshev Methods...Runge-Kutta-Chebyshev Methods Mirela Dar˘ au˘ Department of...

53
Introduction Stability Polynomials Integration Formulas Numerical Simulations Summary Runge-Kutta-Chebyshev Methods Mirela D ˘ ar˘ au Department of Mathematics and Computer Science TU/e CASA Seminar, 26 th November 2008 Mirela D ˘ ar˘ au Runge-Kutta-Chebyshev Methods

Transcript of Runge-Kutta-Chebyshev Methods...Runge-Kutta-Chebyshev Methods Mirela Dar˘ au˘ Department of...

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Runge-Kutta-Chebyshev Methods

    Mirela Dărău

    Department of Mathematics and Computer ScienceTU/e

    CASA Seminar, 26th November 2008

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Outline

    1 IntroductionStabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    2 Stability PolynomialsFirst-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    3 Integration Formulas

    4 Numerical SimulationsStability RegionsSimulations

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w ′(t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems→ stiff problems having a symmetricJacobian with spectral radius proportional to h−2, h spatial meshwidthstandard explicit methods: severe stability constraint⇒ highlyinefficientunconditionally stable implicit methods→ costly in higher spacedimension

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w ′(t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems→ stiff problems having a symmetricJacobian with spectral radius proportional to h−2, h spatial meshwidthstandard explicit methods: severe stability constraint⇒ highlyinefficientunconditionally stable implicit methods→ costly in higher spacedimension

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w ′(t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems→ stiff problems having a symmetricJacobian with spectral radius proportional to h−2, h spatial meshwidthstandard explicit methods: severe stability constraint⇒ highlyinefficientunconditionally stable implicit methods→ costly in higher spacedimension

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w ′(t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems→ stiff problems having a symmetricJacobian with spectral radius proportional to h−2, h spatial meshwidthstandard explicit methods: severe stability constraint⇒ highlyinefficientunconditionally stable implicit methods→ costly in higher spacedimension

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Explicit Runge-Kutta

    REMEMBER:

    wn0 = wn,

    wnj = wn + τΣj−1k=0αjk F (tn + ckτ,wnk ), j = 1, . . . , s,

    wn+1 = wns,

    wn being the approximation to the exact solution w at time t = tn andτ = tn+1 − tn the step-size.

    Specifying a particular method:s ∈ Z (number of stages)ck and αjkcj = Σ

    j−1k=0αjk

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit⇒ avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit⇒ avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit⇒ avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit⇒ avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + τΣsi=1biF (tn + ciτ,wni ),

    wni = wn + τΣsj=1αijF (tn + cjτ,wnj ), i = 1, . . . , s.

    stability analysis→ considering the complex test equationw ′(t) = λw(t)let z = τλ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I − zA)−1e, where b = (bi ), A = (αij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree ≤ sstability region: S = {z ∈ C : |R(z)| ≤ 1}

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + τΣsi=1biF (tn + ciτ,wni ),

    wni = wn + τΣsj=1αijF (tn + cjτ,wnj ), i = 1, . . . , s.

    stability analysis→ considering the complex test equationw ′(t) = λw(t)let z = τλ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I − zA)−1e, where b = (bi ), A = (αij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree ≤ sstability region: S = {z ∈ C : |R(z)| ≤ 1}

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + τΣsi=1biF (tn + ciτ,wni ),

    wni = wn + τΣsj=1αijF (tn + cjτ,wnj ), i = 1, . . . , s.

    stability analysis→ considering the complex test equationw ′(t) = λw(t)let z = τλ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I − zA)−1e, where b = (bi ), A = (αij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree ≤ sstability region: S = {z ∈ C : |R(z)| ≤ 1}

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + τΣsi=1biF (tn + ciτ,wni ),

    wni = wn + τΣsj=1αijF (tn + cjτ,wnj ), i = 1, . . . , s.

    stability analysis→ considering the complex test equationw ′(t) = λw(t)let z = τλ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I − zA)−1e, where b = (bi ), A = (αij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree ≤ sstability region: S = {z ∈ C : |R(z)| ≤ 1}

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + τΣsi=1biF (tn + ciτ,wni ),

    wni = wn + τΣsj=1αijF (tn + cjτ,wnj ), i = 1, . . . , s.

    stability analysis→ considering the complex test equationw ′(t) = λw(t)let z = τλ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I − zA)−1e, where b = (bi ), A = (αij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree ≤ sstability region: S = {z ∈ C : |R(z)| ≤ 1}

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + τΣsi=1biF (tn + ciτ,wni ),

    wni = wn + τΣsj=1αijF (tn + cjτ,wnj ), i = 1, . . . , s.

    stability analysis→ considering the complex test equationw ′(t) = λw(t)let z = τλ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I − zA)−1e, where b = (bi ), A = (αij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree ≤ sstability region: S = {z ∈ C : |R(z)| ≤ 1}

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Model Problem

    Consider the advection-diffusion-reaction equation

    ut + aux = εuxx + λu(1− u), 0 < x < 1, t > 0,ux (0, t) = 0, t > 0,

    u(1, t) =12

    (1 + sin(ωt)), t > 0,

    u(x ,0) = v(x), 0 < x < 1,

    wherea - advection velocity

    ε - diffusion coefficient

    λ - source term coefficient

    ω - frequency.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Shifted Chebyshev Polynomials

    Theorem

    For any explicit, consistent Runge-Kutta method we have βR ≤ 2s2.The optimal stability polynomial is the shifted Chebyshev polynomialof the first kind

    Ps(z) = Ts(

    1 +zs2

    ).

    Sketch of proof Chebyshev polynomials:Ts(x) = cos(s arccos(x)), x ∈ [−1,1] ORT0(z) = 1, T1(z) = z, Tj (z) = 2zTj−1(z)− Tj−2(z), 2 ≤ j ≤ s,z ∈ C.

    ⇒ |Ps(x)| ≤ 1 for −2s2 ≤ x ≤ 0.Uniqueness: largest stability

    boundary.-50 -40 -30 -20 -10

    -1.0

    -0.5

    0.5

    1.0

    P2

    P3

    P4

    P5

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Shifted Chebyshev Polynomials

    The coefficients of Ps are given by

    γ0 = γ1 = 1, γi =1− (i − 1)2/s2

    i(2i − 1)γi−1 for i = 2, . . . , s.

    P2(z) = 1 + z + 18P3(z) = 1 + z + 427 z

    2 + 4729 z3

    P4(z) = 1 + z + 532 z2 + 1128 z

    3 + 18192 z4

    P5(z) =1 + z + 425 z

    2 + 283125 z3 + 1678125 z

    4 + 169765625 z5

    -50 -40 -30 -20 -10

    -4

    -2

    2

    4P5 undamped

    For s large and z → 0, Ps(z) = ez − 13 z2 + O(z3)⇒ leading error

    coefficient 1/3.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p ≥ 2, coefficientsso that βR is as large as possibleRiha proved the existence ∀p ≥ 1 and s ≥ pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13− 1

    3s2

    )Ts

    (1 +

    3zs2 − 1

    ), βR ≈

    23

    (s2−1).

    this generates about 80% of the optimal interval

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p ≥ 2, coefficientsso that βR is as large as possibleRiha proved the existence ∀p ≥ 1 and s ≥ pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13− 1

    3s2

    )Ts

    (1 +

    3zs2 − 1

    ), βR ≈

    23

    (s2−1).

    this generates about 80% of the optimal interval

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p ≥ 2, coefficientsso that βR is as large as possibleRiha proved the existence ∀p ≥ 1 and s ≥ pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13− 1

    3s2

    )Ts

    (1 +

    3zs2 − 1

    ), βR ≈

    23

    (s2−1).

    this generates about 80% of the optimal interval

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p ≥ 2, coefficientsso that βR is as large as possibleRiha proved the existence ∀p ≥ 1 and s ≥ pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13− 1

    3s2

    )Ts

    (1 +

    3zs2 − 1

    ), βR ≈

    23

    (s2−1).

    this generates about 80% of the optimal interval

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p ≥ 2, coefficientsso that βR is as large as possibleRiha proved the existence ∀p ≥ 1 and s ≥ pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13− 1

    3s2

    )Ts

    (1 +

    3zs2 − 1

    ), βR ≈

    23

    (s2−1).

    this generates about 80% of the optimal interval

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Consistency Order

    Expanding Bs(z) we get:

    Bs(z) = 1 + z +z2

    2+

    −4 + s2

    10(−1 + s2)z3 + . . .

    ⇒ second order consistency!!

    For s large and z → 0, Bs(z) =ez − 115 z

    3 + O(z4)⇒ leading errorcoefficient 1/15. For the optimalpolynomial the error is ≈ 0.074.

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 undamped

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Stability Polynomials

    StabilityPolynomials

    First orderconsistency

    Second orderconsistency

    Ps

    Bs

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability⇒ we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(ω0 + ω1z)

    Ts(ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , ω0 > 1.

    Stability interval: −ω0 ≤ ω0 + ω1z ≤ ω0 ⇒ βR = 2ω0ω1 ;Ps(z) ∈ [−Ts(ω0)−1,Ts(ω0)−1].

    Convenient: ω0 = 1 + εs2 , ε smallDamping ≈ 5%Stability boundary ≈ 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability⇒ we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(ω0 + ω1z)

    Ts(ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , ω0 > 1.

    Stability interval: −ω0 ≤ ω0 + ω1z ≤ ω0 ⇒ βR = 2ω0ω1 ;Ps(z) ∈ [−Ts(ω0)−1,Ts(ω0)−1].

    Convenient: ω0 = 1 + εs2 , ε smallDamping ≈ 5%Stability boundary ≈ 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability⇒ we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(ω0 + ω1z)

    Ts(ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , ω0 > 1.

    Stability interval: −ω0 ≤ ω0 + ω1z ≤ ω0 ⇒ βR = 2ω0ω1 ;Ps(z) ∈ [−Ts(ω0)−1,Ts(ω0)−1].

    Convenient: ω0 = 1 + εs2 , ε smallDamping ≈ 5%Stability boundary ≈ 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability⇒ we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(ω0 + ω1z)

    Ts(ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , ω0 > 1.

    Stability interval: −ω0 ≤ ω0 + ω1z ≤ ω0 ⇒ βR = 2ω0ω1 ;Ps(z) ∈ [−Ts(ω0)−1,Ts(ω0)−1].

    Convenient: ω0 = 1 + εs2 , ε smallDamping ≈ 5%Stability boundary ≈ 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability⇒ we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(ω0 + ω1z)

    Ts(ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , ω0 > 1.

    Stability interval: −ω0 ≤ ω0 + ω1z ≤ ω0 ⇒ βR = 2ω0ω1 ;Ps(z) ∈ [−Ts(ω0)−1,Ts(ω0)−1].

    Convenient: ω0 = 1 + εs2 , ε smallDamping ≈ 5%Stability boundary ≈ 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability⇒ we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(ω0 + ω1z)

    Ts(ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , ω0 > 1.

    Stability interval: −ω0 ≤ ω0 + ω1z ≤ ω0 ⇒ βR = 2ω0ω1 ;Ps(z) ∈ [−Ts(ω0)−1,Ts(ω0)−1].

    Convenient: ω0 = 1 + εs2 , ε smallDamping ≈ 5%Stability boundary ≈ 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T ′′s (ω0)

    (T ′s(ω0))2(Ts(ω0 + ω1z)− Ts(ω0)), ω1 =

    T ′s(ω0)T ′′s (ω0)

    .

    βR ≈ (ω0+1)T′′s (ω0)

    T ′s (ω0)≈ 23 (s

    2 − 1)(1− 215ε

    ).

    Damping ≈ 5%Stability boundaryβR ≈ 0.9794βR,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T ′′s (ω0)

    (T ′s(ω0))2(Ts(ω0 + ω1z)− Ts(ω0)), ω1 =

    T ′s(ω0)T ′′s (ω0)

    .

    βR ≈ (ω0+1)T′′s (ω0)

    T ′s (ω0)≈ 23 (s

    2 − 1)(1− 215ε

    ).

    Damping ≈ 5%Stability boundaryβR ≈ 0.9794βR,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T ′′s (ω0)

    (T ′s(ω0))2(Ts(ω0 + ω1z)− Ts(ω0)), ω1 =

    T ′s(ω0)T ′′s (ω0)

    .

    βR ≈ (ω0+1)T′′s (ω0)

    T ′s (ω0)≈ 23 (s

    2 − 1)(1− 215ε

    ).

    Damping ≈ 5%Stability boundaryβR ≈ 0.9794βR,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T ′′s (ω0)

    (T ′s(ω0))2(Ts(ω0 + ω1z)− Ts(ω0)), ω1 =

    T ′s(ω0)T ′′s (ω0)

    .

    βR ≈ (ω0+1)T′′s (ω0)

    T ′s (ω0)≈ 23 (s

    2 − 1)(1− 215ε

    ).

    Damping ≈ 5%Stability boundaryβR ≈ 0.9794βR,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Method DescriptionAnsatz: Rj (z) = aj + bjTj (ω0 + ω1z), aj = 1− bjTj (ω0), 1 ≤ j ≤ s.Imposing Chebyshev recursion:

    R0(z) = 1, R1(z) = 1 + µ̃1z,Rj (z) = (1− µj − νj ) + µjRj−1(z) + νjRj−2(z) + µ̃jRj−1(z)z + γ̃jz,

    where j = 2, . . . , s and

    µ̃1 = b1ω1, µj =2bjω0bj−1

    , νj =−bjbj−2

    , µ̃j =2bjω1bj−1

    , γ̃j = −aj−1µ̃j .

    The RKC integration formulas are then of the form:

    wn0 = wn,wn1 = wn + µ̃1τFn0, (2)

    wnj = (1− µj − νj )wn + µjwn,j−1 + νjwn,j−2 + µ̃jτFn,j−1 + γ̃jτFn0, j = 2, swn+1 = wns,

    Fnk = F (tn + ckτ,wnk ), wn-approximation of the exact solution at tnMirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Formulas

    R(z): first-order damped polynomial Ps.we select bj so that

    Rj (z) =Tj (ω0 + ω1z)

    Tj (ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , j = 1, . . . , s.

    ⇒ bj = 1Tj (ω0) , j = 0, . . . , s.

    Observation: Rj (z) = ecj z + O(z2) with

    cj =Ts(ω0)T ′s(ω0)

    T ′j (ω0)Tj (ω0)

    ≈ j2

    s2(1 ≤ j ≤ s − 1) cs = 1.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Formulas

    R(z): first-order damped polynomial Ps.we select bj so that

    Rj (z) =Tj (ω0 + ω1z)

    Tj (ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , j = 1, . . . , s.

    ⇒ bj = 1Tj (ω0) , j = 0, . . . , s.

    Observation: Rj (z) = ecj z + O(z2) with

    cj =Ts(ω0)T ′s(ω0)

    T ′j (ω0)Tj (ω0)

    ≈ j2

    s2(1 ≤ j ≤ s − 1) cs = 1.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Formulas

    R(z): first-order damped polynomial Ps.we select bj so that

    Rj (z) =Tj (ω0 + ω1z)

    Tj (ω0), ω1 =

    Ts(ω0)T ′s(ω0)

    , j = 1, . . . , s.

    ⇒ bj = 1Tj (ω0) , j = 0, . . . , s.

    Observation: Rj (z) = ecj z + O(z2) with

    cj =Ts(ω0)T ′s(ω0)

    T ′j (ω0)Tj (ω0)

    ≈ j2

    s2(1 ≤ j ≤ s − 1) cs = 1.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Second-Order Formulas

    R(z): second-order damped polynomial Bs.we select bj so that

    Rj (z) = 1 + bjω1T ′j (ω0)z +12

    bjω21T′′j (ω0)z

    2 + O(z3)

    matchesRj (z) = 1 + cjz +

    12

    (cjz)2 + O(z3)

    ⇒ bj =T ′′j (ω0)

    (T ′j (ω0))2 , j = 2, . . . , s, b0 = b1 = b2

    Observation: Rj (z) = ecj z + O(z3) with

    cj =T ′s(ω0)T ′′s (ω0)

    T ′′j (ω0)T ′j (ω0)

    ≈ j2 − 1

    s2 − 1(2 ≤ j ≤ s − 1) cs = 1.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Second-Order Formulas

    R(z): second-order damped polynomial Bs.we select bj so that

    Rj (z) = 1 + bjω1T ′j (ω0)z +12

    bjω21T′′j (ω0)z

    2 + O(z3)

    matchesRj (z) = 1 + cjz +

    12

    (cjz)2 + O(z3)

    ⇒ bj =T ′′j (ω0)

    (T ′j (ω0))2 , j = 2, . . . , s, b0 = b1 = b2

    Observation: Rj (z) = ecj z + O(z3) with

    cj =T ′s(ω0)T ′′s (ω0)

    T ′′j (ω0)T ′j (ω0)

    ≈ j2 − 1

    s2 − 1(2 ≤ j ≤ s − 1) cs = 1.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Second-Order Formulas

    R(z): second-order damped polynomial Bs.we select bj so that

    Rj (z) = 1 + bjω1T ′j (ω0)z +12

    bjω21T′′j (ω0)z

    2 + O(z3)

    matchesRj (z) = 1 + cjz +

    12

    (cjz)2 + O(z3)

    ⇒ bj =T ′′j (ω0)

    (T ′j (ω0))2 , j = 2, . . . , s, b0 = b1 = b2

    Observation: Rj (z) = ecj z + O(z3) with

    cj =T ′s(ω0)T ′′s (ω0)

    T ′′j (ω0)T ′j (ω0)

    ≈ j2 − 1

    s2 − 1(2 ≤ j ≤ s − 1) cs = 1.

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    Stability Regions

    -2.5 -2.0 -1.5 -1.0 -0.5

    -3

    -2

    -1

    1

    2

    3RKF4

    -6 -4 -2

    -1.5

    -1.0

    -0.5

    0.5

    1.0

    1.5P2 with damping

    -30 -25 -20 -15 -10 -5

    -3

    -2

    -1

    1

    2

    3P4 with damping

    -2.0 -1.5 -1.0 -0.5

    -1.5

    -1.0

    -0.5

    0.5

    1.0

    1.5

    B2 with damping

    -10 -8 -6 -4 -2

    -2

    -1

    1

    2B4 with damping

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    From Stability to Instability

    a = −1, λ = 1, ε = 10−2, ω = 10, Nt = 100, Nx = 70,71,72,73

    Mirela Dărău Runge-Kutta-Chebyshev Methods

    test4.movMedia File (video/quicktime)

    test41.movMedia File (video/quicktime)

    test42.movMedia File (video/quicktime)

    test43.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    a = −1, λ = 1, ε = 10−2, ω = 10

    Nt = 100, stability function: P2, B2, P4, B4; Nx = 105,70,122,115

    Mirela Dărău Runge-Kutta-Chebyshev Methods

    test0.movMedia File (video/quicktime)

    test4.movMedia File (video/quicktime)

    test6.movMedia File (video/quicktime)

    test8.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    a = −1, λ = 1, ε = 1, ω = 10

    Nt = 200, stability function: P2, B2, P4, B4; Nx = 20,11,40,23

    Mirela Dărău Runge-Kutta-Chebyshev Methods

    test1.movMedia File (video/quicktime)

    test5.movMedia File (video/quicktime)

    test7.movMedia File (video/quicktime)

    test9.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    a = −1, λ = 1, ε = 10, ω = 10, Nt = 10000

    Stab Function NxP2 45B2 20P4 85B4 50

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    Changing ω

    a = −1, λ = 1, ε = 1, ω = 10,3, Nt = 200, stability function: P2

    Mirela Dărău Runge-Kutta-Chebyshev Methods

    test1.movMedia File (video/quicktime)

    test2.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Summary

    stability polynomials with extended stability regionbased on these Runge-Kutta-type numerical methodstested on the advection-diffusion-reaction equation→ stabilityregion grows for different numbers of stages

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Summary

    stability polynomials with extended stability regionbased on these Runge-Kutta-type numerical methodstested on the advection-diffusion-reaction equation→ stabilityregion grows for different numbers of stages

    Mirela Dărău Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Summary

    stability polynomials with extended stability regionbased on these Runge-Kutta-type numerical methodstested on the advection-diffusion-reaction equation→ stabilityregion grows for different numbers of stages

    Mirela Dărău Runge-Kutta-Chebyshev Methods

    IntroductionStabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability PolynomialsFirst-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Integration FormulasNumerical SimulationsStability RegionsSimulations

    Summary