Runge-Kutta-Chebyshev Methods - TU/e Methods Mirela Dar˘ au ... let z = ˝ ; by applying the method...

53
Introduction Stability Polynomials Integration Formulas Numerical Simulations Summary Runge-Kutta-Chebyshev Methods Mirela D ˘ ar˘ au Department of Mathematics and Computer Science TU/e CASA Seminar, 26 th November 2008 Mirela D ˘ ar˘ au Runge-Kutta-Chebyshev Methods

Transcript of Runge-Kutta-Chebyshev Methods - TU/e Methods Mirela Dar˘ au ... let z = ˝ ; by applying the method...

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Runge-Kutta-Chebyshev Methods

    Mirela Darau

    Department of Mathematics and Computer ScienceTU/e

    CASA Seminar, 26th November 2008

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Outline

    1 IntroductionStabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    2 Stability PolynomialsFirst-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    3 Integration Formulas

    4 Numerical SimulationsStability RegionsSimulations

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w (t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems stiff problems having a symmetricJacobian with spectral radius proportional to h2, h spatial meshwidthstandard explicit methods: severe stability constraint highlyinefficientunconditionally stable implicit methods costly in higher spacedimension

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w (t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems stiff problems having a symmetricJacobian with spectral radius proportional to h2, h spatial meshwidthstandard explicit methods: severe stability constraint highlyinefficientunconditionally stable implicit methods costly in higher spacedimension

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w (t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems stiff problems having a symmetricJacobian with spectral radius proportional to h2, h spatial meshwidthstandard explicit methods: severe stability constraint highlyinefficientunconditionally stable implicit methods costly in higher spacedimension

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Motivation

    consider

    w (t) = F (t ,w(t)), t > 0, w(0) = w0, (1)

    representing semi-discrete, multi-space PDEparabolic problems stiff problems having a symmetricJacobian with spectral radius proportional to h2, h spatial meshwidthstandard explicit methods: severe stability constraint highlyinefficientunconditionally stable implicit methods costly in higher spacedimension

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Explicit Runge-Kutta

    REMEMBER:

    wn0 = wn,

    wnj = wn + j1k=0jk F (tn + ck,wnk ), j = 1, . . . , s,

    wn+1 = wns,

    wn being the approximation to the exact solution w at time t = tn and = tn+1 tn the step-size.

    Specifying a particular method:s Z (number of stages)ck and jkcj =

    j1k=0jk

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stabilized Runge-Kutta methods

    explicit avoid algebraic system solutionspossess extended real stability interval with a length proportionalto s2, s number of stagesuseful for: modestly stiff, semi-discrete parabolic problems forwhich the implicit system solution is really costly in terms of CPUtime3 families:

    RKCROCKDUMKA

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + si=1biF (tn + ci,wni ),

    wni = wn + sj=1ijF (tn + cj,wnj ), i = 1, . . . , s.

    stability analysis considering the complex test equationw (t) = w(t)let z = ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I zA)1e, where b = (bi ), A = (ij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree sstability region: S = {z C : |R(z)| 1}

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + si=1biF (tn + ci,wni ),

    wni = wn + sj=1ijF (tn + cj,wnj ), i = 1, . . . , s.

    stability analysis considering the complex test equationw (t) = w(t)let z = ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I zA)1e, where b = (bi ), A = (ij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree sstability region: S = {z C : |R(z)| 1}

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + si=1biF (tn + ci,wni ),

    wni = wn + sj=1ijF (tn + cj,wnj ), i = 1, . . . , s.

    stability analysis considering the complex test equationw (t) = w(t)let z = ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I zA)1e, where b = (bi ), A = (ij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree sstability region: S = {z C : |R(z)| 1}

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + si=1biF (tn + ci,wni ),

    wni = wn + sj=1ijF (tn + cj,wnj ), i = 1, . . . , s.

    stability analysis considering the complex test equationw (t) = w(t)let z = ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I zA)1e, where b = (bi ), A = (ij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree sstability region: S = {z C : |R(z)| 1}

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + si=1biF (tn + ci,wni ),

    wni = wn + sj=1ijF (tn + cj,wnj ), i = 1, . . . , s.

    stability analysis considering the complex test equationw (t) = w(t)let z = ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I zA)1e, where b = (bi ), A = (ij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree sstability region: S = {z C : |R(z)| 1}

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability Functions. Stability Regions.

    consider the general form of a Runge-Kutta method:

    wn+1 = wn + si=1biF (tn + ci,wni ),

    wni = wn + sj=1ijF (tn + cj,wnj ), i = 1, . . . , s.

    stability analysis considering the complex test equationw (t) = w(t)let z = ; by applying the method to the test equation we havewn+1 = R(z)wn, with R the stability function of the methodR(z) = 1 + zbT (I zA)1e, where b = (bi ), A = (ij ) ande = (1,1, . . . ,1)T

    for explicit methods R(z) is a polynomial of degree sstability region: S = {z C : |R(z)| 1}

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Model Problem

    Consider the advection-diffusion-reaction equation

    ut + aux = uxx + u(1 u), 0 < x < 1, t > 0,ux (0, t) = 0, t > 0,

    u(1, t) =12

    (1 + sin(t)), t > 0,

    u(x ,0) = v(x), 0 < x < 1,

    wherea - advection velocity

    - diffusion coefficient

    - source term coefficient

    - frequency.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Shifted Chebyshev Polynomials

    Theorem

    For any explicit, consistent Runge-Kutta method we have R 2s2.The optimal stability polynomial is the shifted Chebyshev polynomialof the first kind

    Ps(z) = Ts(

    1 +zs2

    ).

    Sketch of proof Chebyshev polynomials:Ts(x) = cos(s arccos(x)), x [1,1] ORT0(z) = 1, T1(z) = z, Tj (z) = 2zTj1(z) Tj2(z), 2 j s,z C.

    |Ps(x)| 1 for 2s2 x 0.Uniqueness: largest stability

    boundary.-50 -40 -30 -20 -10

    -1.0

    -0.5

    0.5

    1.0

    P2

    P3

    P4

    P5

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Shifted Chebyshev Polynomials

    The coefficients of Ps are given by

    0 = 1 = 1, i =1 (i 1)2/s2

    i(2i 1)i1 for i = 2, . . . , s.

    P2(z) = 1 + z + 18P3(z) = 1 + z + 427 z

    2 + 4729 z3

    P4(z) = 1 + z + 532 z2 + 1128 z

    3 + 18192 z4

    P5(z) =1 + z + 425 z

    2 + 283125 z3 + 1678125 z

    4 + 169765625 z5

    -50 -40 -30 -20 -10

    -4

    -2

    2

    4P5 undamped

    For s large and z 0, Ps(z) = ez 13 z2 + O(z3) leading error

    coefficient 1/3.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p 2, coefficientsso that R is as large as possibleRiha proved the existence p 1 and s pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13 1

    3s2

    )Ts

    (1 +

    3zs2 1

    ), R

    23

    (s21).

    this generates about 80% of the optimal interval

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p 2, coefficientsso that R is as large as possibleRiha proved the existence p 1 and s pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13 1

    3s2

    )Ts

    (1 +

    3zs2 1

    ), R

    23

    (s21).

    this generates about 80% of the optimal interval

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p 2, coefficientsso that R is as large as possibleRiha proved the existence p 1 and s pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13 1

    3s2

    )Ts

    (1 +

    3zs2 1

    ), R

    23

    (s21).

    this generates about 80% of the optimal interval

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p 2, coefficientsso that R is as large as possibleRiha proved the existence p 1 and s pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13 1

    3s2

    )Ts

    (1 +

    3zs2 1

    ), R

    23

    (s21).

    this generates about 80% of the optimal interval

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Second-Order Stability Polynomials

    For actual computational practice first-order consistency is oftentoo lowWe look for polynomials of consistency order p 2, coefficientsso that R is as large as possibleRiha proved the existence p 1 and s pFor p = 2: a suitable approximate polynomial in analytical form

    Bs(z) =23

    +1

    3s2+

    (13 1

    3s2

    )Ts

    (1 +

    3zs2 1

    ), R

    23

    (s21).

    this generates about 80% of the optimal interval

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Consistency Order

    Expanding Bs(z) we get:

    Bs(z) = 1 + z +z2

    2+

    4 + s2

    10(1 + s2)z3 + . . .

    second order consistency!!

    For s large and z 0, Bs(z) =ez 115 z

    3 + O(z4) leading errorcoefficient 1/15. For the optimalpolynomial the error is 0.074.

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 undamped

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Stability Polynomials

    StabilityPolynomials

    First orderconsistency

    Second orderconsistency

    Ps

    Bs

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(0 + 1z)

    Ts(0), 1 =

    Ts(0)T s(0)

    , 0 > 1.

    Stability interval: 0 0 + 1z 0 R = 201 ;Ps(z) [Ts(0)1,Ts(0)1].

    Convenient: 0 = 1 + s2 , smallDamping 5%Stability boundary 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(0 + 1z)

    Ts(0), 1 =

    Ts(0)T s(0)

    , 0 > 1.

    Stability interval: 0 0 + 1z 0 R = 201 ;Ps(z) [Ts(0)1,Ts(0)1].

    Convenient: 0 = 1 + s2 , smallDamping 5%Stability boundary 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(0 + 1z)

    Ts(0), 1 =

    Ts(0)T s(0)

    , 0 > 1.

    Stability interval: 0 0 + 1z 0 R = 201 ;Ps(z) [Ts(0)1,Ts(0)1].

    Convenient: 0 = 1 + s2 , smallDamping 5%Stability boundary 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(0 + 1z)

    Ts(0), 1 =

    Ts(0)T s(0)

    , 0 > 1.

    Stability interval: 0 0 + 1z 0 R = 201 ;Ps(z) [Ts(0)1,Ts(0)1].

    Convenient: 0 = 1 + s2 , smallDamping 5%Stability boundary 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(0 + 1z)

    Ts(0), 1 =

    Ts(0)T s(0)

    , 0 > 1.

    Stability interval: 0 0 + 1z 0 R = 201 ;Ps(z) [Ts(0)1,Ts(0)1].

    Convenient: 0 = 1 + s2 , smallDamping 5%Stability boundary 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Ps

    For Ps and Bs the stability intervals contain interior points where|R(z)| = 1 instability we introduce a little dampingDamped form of Ps:

    Ps(z) =Ts(0 + 1z)

    Ts(0), 1 =

    Ts(0)T s(0)

    , 0 > 1.

    Stability interval: 0 0 + 1z 0 R = 201 ;Ps(z) [Ts(0)1,Ts(0)1].

    Convenient: 0 = 1 + s2 , smallDamping 5%Stability boundary 1.93s2

    -40 -30 -20 -10

    -4

    -2

    2

    4P5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T s (0)

    (T s(0))2(Ts(0 + 1z) Ts(0)), 1 =

    T s(0)T s (0)

    .

    R (0+1)Ts (0)

    T s (0) 23 (s

    2 1)(1 215

    ).

    Damping 5%Stability boundaryR 0.9794R,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T s (0)

    (T s(0))2(Ts(0 + 1z) Ts(0)), 1 =

    T s(0)T s (0)

    .

    R (0+1)Ts (0)

    T s (0) 23 (s

    2 1)(1 215

    ).

    Damping 5%Stability boundaryR 0.9794R,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T s (0)

    (T s(0))2(Ts(0 + 1z) Ts(0)), 1 =

    T s(0)T s (0)

    .

    R (0+1)Ts (0)

    T s (0) 23 (s

    2 1)(1 215

    ).

    Damping 5%Stability boundaryR 0.9794R,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Damped Bs

    Damped form of Bs:

    Bs(z) = 1 +T s (0)

    (T s(0))2(Ts(0 + 1z) Ts(0)), 1 =

    T s(0)T s (0)

    .

    R (0+1)Ts (0)

    T s (0) 23 (s

    2 1)(1 215

    ).

    Damping 5%Stability boundaryR 0.9794R,undamped

    -15 -10 -5

    -3

    -2

    -1

    1

    2

    3B5 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Method DescriptionAnsatz: Rj (z) = aj + bjTj (0 + 1z), aj = 1 bjTj (0), 1 j s.Imposing Chebyshev recursion:

    R0(z) = 1, R1(z) = 1 + 1z,Rj (z) = (1 j j ) + jRj1(z) + jRj2(z) + jRj1(z)z + jz,

    where j = 2, . . . , s and

    1 = b11, j =2bj0bj1

    , j =bjbj2

    , j =2bj1bj1

    , j = aj1j .

    The RKC integration formulas are then of the form:

    wn0 = wn,wn1 = wn + 1Fn0, (2)

    wnj = (1 j j )wn + jwn,j1 + jwn,j2 + jFn,j1 + jFn0, j = 2, swn+1 = wns,

    Fnk = F (tn + ck,wnk ), wn-approximation of the exact solution at tnMirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Formulas

    R(z): first-order damped polynomial Ps.we select bj so that

    Rj (z) =Tj (0 + 1z)

    Tj (0), 1 =

    Ts(0)T s(0)

    , j = 1, . . . , s.

    bj = 1Tj (0) , j = 0, . . . , s.

    Observation: Rj (z) = ecj z + O(z2) with

    cj =Ts(0)T s(0)

    T j (0)Tj (0)

    j2

    s2(1 j s 1) cs = 1.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Formulas

    R(z): first-order damped polynomial Ps.we select bj so that

    Rj (z) =Tj (0 + 1z)

    Tj (0), 1 =

    Ts(0)T s(0)

    , j = 1, . . . , s.

    bj = 1Tj (0) , j = 0, . . . , s.

    Observation: Rj (z) = ecj z + O(z2) with

    cj =Ts(0)T s(0)

    T j (0)Tj (0)

    j2

    s2(1 j s 1) cs = 1.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    First-Order Formulas

    R(z): first-order damped polynomial Ps.we select bj so that

    Rj (z) =Tj (0 + 1z)

    Tj (0), 1 =

    Ts(0)T s(0)

    , j = 1, . . . , s.

    bj = 1Tj (0) , j = 0, . . . , s.

    Observation: Rj (z) = ecj z + O(z2) with

    cj =Ts(0)T s(0)

    T j (0)Tj (0)

    j2

    s2(1 j s 1) cs = 1.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Second-Order Formulas

    R(z): second-order damped polynomial Bs.we select bj so that

    Rj (z) = 1 + bj1T j (0)z +12

    bj21Tj (0)z

    2 + O(z3)

    matchesRj (z) = 1 + cjz +

    12

    (cjz)2 + O(z3)

    bj =T j (0)

    (T j (0))2 , j = 2, . . . , s, b0 = b1 = b2

    Observation: Rj (z) = ecj z + O(z3) with

    cj =T s(0)T s (0)

    T j (0)T j (0)

    j2 1

    s2 1(2 j s 1) cs = 1.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Second-Order Formulas

    R(z): second-order damped polynomial Bs.we select bj so that

    Rj (z) = 1 + bj1T j (0)z +12

    bj21Tj (0)z

    2 + O(z3)

    matchesRj (z) = 1 + cjz +

    12

    (cjz)2 + O(z3)

    bj =T j (0)

    (T j (0))2 , j = 2, . . . , s, b0 = b1 = b2

    Observation: Rj (z) = ecj z + O(z3) with

    cj =T s(0)T s (0)

    T j (0)T j (0)

    j2 1

    s2 1(2 j s 1) cs = 1.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Second-Order Formulas

    R(z): second-order damped polynomial Bs.we select bj so that

    Rj (z) = 1 + bj1T j (0)z +12

    bj21Tj (0)z

    2 + O(z3)

    matchesRj (z) = 1 + cjz +

    12

    (cjz)2 + O(z3)

    bj =T j (0)

    (T j (0))2 , j = 2, . . . , s, b0 = b1 = b2

    Observation: Rj (z) = ecj z + O(z3) with

    cj =T s(0)T s (0)

    T j (0)T j (0)

    j2 1

    s2 1(2 j s 1) cs = 1.

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    Stability Regions

    -2.5 -2.0 -1.5 -1.0 -0.5

    -3

    -2

    -1

    1

    2

    3RKF4

    -6 -4 -2

    -1.5

    -1.0

    -0.5

    0.5

    1.0

    1.5P2 with damping

    -30 -25 -20 -15 -10 -5

    -3

    -2

    -1

    1

    2

    3P4 with damping

    -2.0 -1.5 -1.0 -0.5

    -1.5

    -1.0

    -0.5

    0.5

    1.0

    1.5

    B2 with damping

    -10 -8 -6 -4 -2

    -2

    -1

    1

    2B4 with damping

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    From Stability to Instability

    a = 1, = 1, = 102, = 10, Nt = 100, Nx = 70,71,72,73

    Mirela Darau Runge-Kutta-Chebyshev Methods

    test4.movMedia File (video/quicktime)

    test41.movMedia File (video/quicktime)

    test42.movMedia File (video/quicktime)

    test43.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    a = 1, = 1, = 102, = 10

    Nt = 100, stability function: P2, B2, P4, B4; Nx = 105,70,122,115

    Mirela Darau Runge-Kutta-Chebyshev Methods

    test0.movMedia File (video/quicktime)

    test4.movMedia File (video/quicktime)

    test6.movMedia File (video/quicktime)

    test8.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    a = 1, = 1, = 1, = 10

    Nt = 200, stability function: P2, B2, P4, B4; Nx = 20,11,40,23

    Mirela Darau Runge-Kutta-Chebyshev Methods

    test1.movMedia File (video/quicktime)

    test5.movMedia File (video/quicktime)

    test7.movMedia File (video/quicktime)

    test9.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    a = 1, = 1, = 10, = 10, Nt = 10000

    Stab Function NxP2 45B2 20P4 85B4 50

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Stability RegionsSimulations

    Changing

    a = 1, = 1, = 1, = 10,3, Nt = 200, stability function: P2

    Mirela Darau Runge-Kutta-Chebyshev Methods

    test1.movMedia File (video/quicktime)

    test2.movMedia File (video/quicktime)

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Summary

    stability polynomials with extended stability regionbased on these Runge-Kutta-type numerical methodstested on the advection-diffusion-reaction equation stabilityregion grows for different numbers of stages

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Summary

    stability polynomials with extended stability regionbased on these Runge-Kutta-type numerical methodstested on the advection-diffusion-reaction equation stabilityregion grows for different numbers of stages

    Mirela Darau Runge-Kutta-Chebyshev Methods

  • IntroductionStability PolynomialsIntegration Formulas

    Numerical SimulationsSummary

    Summary

    stability polynomials with extended stability regionbased on these Runge-Kutta-type numerical methodstested on the advection-diffusion-reaction equation stabilityregion grows for different numbers of stages

    Mirela Darau Runge-Kutta-Chebyshev Methods

    IntroductionStabilized Explicit Runge-Kutta MethodsAdvection-Diffusion-Reaction Equation

    Stability PolynomialsFirst-Order Stability PolynomialsSecond-Order Stability PolynomialsDamped Stability Polynomials

    Integration FormulasNumerical SimulationsStability RegionsSimulations

    Summary