Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition...

29
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular Spectroscopy @ Champaign-Urbana, Illinois, The United States 2014 / June / 16th MI13 Shunji Kasahara 1 , Kohei Tada 1† , Takashi Ishiwata 2 , and Eizi Hirota 3 1 Kobe University, Japan; 2 Hiroshima City University, Japan; 3 The Graduate University for Advanced Studies, Japan; Research Fellow of Japan Society for the Promotion of Science.

Transcript of Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition...

Page 1: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

Rotationally-resolved high-resolution laser spectroscopyof the B 2E’ – X 2A2’ transition of 14NO3 radical

69th International Symposium on Molecular Spectroscopy@ Champaign-Urbana, Illinois, The United States

2014 / June / 16th

MI13

Shunji Kasahara1, Kohei Tada1†, Takashi Ishiwata2, and Eizi Hirota3

1 Kobe University, Japan;2 Hiroshima City University, Japan;

3 The Graduate University for Advanced Studies, Japan;† Research Fellow of Japan Society for the Promotion of Science.

Page 2: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

  Introduction

D3h

2NO2

HNO3 + R etc.

NO2   + O

NO   + O2

+ NO+ RH

NO3

+ hν

+ hν

Wavenumber / 1000 cm-1

20

15

10

5

0

NO2 + O      NO3 NO + O2

O2 (b 1Σg+)

O2 (a 1Δg)

O2 (X 3Σg-)

B 2E’

A 2E’’

X 2A2’

Vibronic Band~ 16000 cm-1 (~ 625 nm)

0-0 band ~ 15100 cm-1 (~ 662 nm)

B - X 遷移

K. Mikhaylichenko et al., J. Chem. Phys., 105, 6807 (1996)

reaction coordinate

NO2 + O3 → NO3 + O2

N2O5 ⇄ NO3 + NO2

B 2E’ : … (4e’)3 (1e’’)4 (1a2)2 ~ 15000 cm-1

A 2E’’ : … (4e’)4 (1e’’)3 (1a2)2 ~ 7000 cm-1

X 2A2’ : … (4e’)4 (1e’’)4 (1a2)1 0 cm-1

662 nmAbsorption spectrum of 14NO3 (Visible)

J. Chem. Soc. Faraday 1176, 785 (1980).

Page 3: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

⑤ LIF and Absorption spectra of 14NO3 B-X transition

Absorption spectrum of 14NO3 (Visible)

J. Chem. Soc. Faraday 1176, 785 (1980).

15000     15200     15400     15600     15800     16000     16200     16400 Wavenumber / cm-1

N2O5 → NO3 + NO2

M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012)

Resolution : 0.2 cm-1

14NO3 B 2E’-X 2A2’ transition

Page 4: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

15000     15200     15400     15600     15800     16000     16200     16400 Wavenumber / cm-1

15000     15200     15400     15600     15800     16000     16200     16400 Wavenumber / cm-1

LIF spectra of 14NO3 and 14NO2

N2O5 → NO3 + NO2

R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975)

Vibronic band0 - 0 band

M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012)

NO2

Resolution : 0.2 cm-1

INTENSITY×5

?

14NO2 A 2B2-X 2A1 transition (Imax at 16849.8 cm-1)

Resolution : 0.0007 cm-1

14NO3 B 2E’-X 2A2’ transition

Page 5: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

D

  Exprimental setup

Absolute wavenumber mesurement system (Accuracy : 0.0001 cm-1)

Etalon

Liq.N2

Pump Pump

Pulsed Nozzle

Skimmer(ϕ= 2 mm)

Filter

N2O5 → NO3 + NO2 Slit(2 mm)

PBS

Molecular Beam (Typical linewidth : 0.0007 cm-1)

N2O5 + ArComputer

532 nm around 660 or 625 nm

Single mode laser ( Γ = 0.00003 cm-1 )PD

BS : Beam splitterPBS : Polarization beam splitterEOM : Electro-optic modulatorPD : Photo diodePMT : Photomultiplier tube

BS

EOM

I2 Cell

Heater 300 ℃NO2 + He

Ring DyeLaser

Nd:YVO4

Laser

Mirror Heater off

Photon Counter

PMT

Page 6: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

~ 150 strong (> 15% of max) lines and more than 3000 weak (< 15% of max) lines were observed. ← too many!

The rotational assignment was very difficult.

(1) Combination difference

→ 0.0248 cm-1 line pairs

(2) Zeeman effect

→ Unambiguous Assignment

  High-resolution LIF spectrum 14NO3 B-X 0-0 band at 662 nm

0.1 cm-1

15100.15 15100.20 15100.25

Wavenumber / cm-1

0.0248 cm-1

Page 7: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

σ-pump (H⊥E) ΔMJ = ±1 π-pump (H // E) ΔMJ = 0

15100.20 15100.25

0 G

42 G

71 G

102 G

125 G

163 G

188 G

223 G

245 G

280 G

303 G

335 G

360 G

Wavenumber / cm-1

15100.20 15100.25

0 G

42 G

71 G

102 G

125 G

163 G

188 G

223 G

245 G

280 G

303 G

335 G

360 G

Wavenumber / cm-1

0.0246 cm-1 0.0246 cm-1

  Zeeman effect around 15100.2 cm-1

40 G

70 G

100 G

160 G

190 G

220 G

305 G

40 G

70 G

100 G

160 G

190 G

220 G

305 G

σ-pump: ΔMJ = ±1

π-pump: ΔMJ = 0

(σ:4+6/π:2+3) pair

Page 8: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

Symmetry-adopted basis setsThe X 2A2’ state:

The B 2E’ state:

JJ

J

MkJSN

kNMkJS

N

kN

FMNJSkN

,,,22

1,,,

22

1

,,,,,

21

21

21

21

21

21

121

21

JJ

J

MkJSN

kNMkJS

N

kN

FMNJSkN

,,,2

,,,2

,,,,,

21

21

21

21

21

21

221

21

JPJ

J

J

MPJSMPJS

EMSPJ

,,,1)(,,,12

1

',,,,,

21

21

21

21

2/32

21

JPJ

J

J

MPJSMPJS

EMSPJ

,,,1)(,,,12

1

',,,,,

21

211

21

21

2/12

21

Hund’s case (b) basis

Hund’s case (a) basis

Page 9: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

The X 2A2’ state: HZ = gS μB H·S

The B 2E’ state: HZ = gS μB H·S + gL μB H·Leff

)12)(1(1

')()12)(1'2(

1

'

')(

0

1

'

')(''''

'''

'''''

SSSS

q

SgdgJJ

P

J

qP

J

M

J

M

JHJPMHMPJ

SSPPeL

PJ

JJq

MJMMBJZJ

J

JJ

ζ

JJ

JNSMJKKNNMMBSJZJ

M

J

M

JN

S

J

J

SSSSJJ

HgNKSJMHMJSKN J

JJ

0

1

'

'

1

')12)(1()12)(1'2(

)(''''' 1'''''

Refs: Endo et al., J. Chem. Phys., 81, 122 (1984)

Hirota, High-Resolution Spectroscopy of Transient Molecules, Springer (1985)

μB (= 4.6686×10-5 cm-1 G-1): Bohr magneton, gS: the electron spin g factor,

gL: the electron orbital g factor, and ζed: the effective value of <Λ|Lz|Λ>.

Zeeman Hamiltonians and matrix elements

Page 10: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

0 100 200 300 400

15100.18

15100.20

15100.22

15100.24

Transition Energy / cm-1

Magnetic Field / Gauss

R(+0.5)

P(+0.5)

R(-1.5)RR

(-0.5)(+0.5)

P (-0.5)P(+0.5)

P(+1.5)

R(-0.5)

P(-0.5)

(σ:4+6/π:2+3) pair Zeeman splitting: transition to (2E’3/2, J = 1.5)

J = 1.5 ← 1.5

J = 1.5 ← 0.5

At 300 G

+ 0.5+ 1.5

– 0.5– 1.5

– 0.5+ 0.5

+ 1.5

+ 0.5– 0.5– 1.5

MJ

σ-pumpΔMJ = ±1

gS = 2.0215(4)

gS = 2.103(6)gLζed = – 0.138(11)

0 200 400 600

0.88

0.90

0.92

0.94

0.96

+ 0.5– 0.5

+ 1.5

+ 0.5– 0.5– 1.5

+ 1.5

+ 0.5– 0.5– 1.5

MJ

Magnetic field / G

Term energy / cm-1

J’ = 1.5

J” = 0.5

J” = 1.5

0 200 400 60015101.10

15101.12

15101.14

15101.16

15101.18

15101.20

0 100 200 300 400

15100.18

15100.20

15100.22

15100.24

Transition Energy / cm-1

Magnetic Field / Gauss

R(+0.5)

P(+0.5)

R(-1.5)RR

(-0.5)(+0.5)

P (-0.5)P(+0.5)

P(+1.5)

R(-0.5)

P(-0.5)

0 100 200 300 400

15100.18

15100.20

15100.22

15100.24

Transition Energy / cm-1

Magnetic Field / Gauss

R(+0.5)

P (+0.5)

R(-1.5)RR

(-0.5)(+0.5)

P (-0.5)P (+0.5)

P (+1.5)

R(-0.5)

P (-0.5)

ΔMJ (MJ”)

1510

0.20

1510

0.250 G

42 G

71 G

102

G

125

G

163

G

188

G

223

G

245

G

280

G

303

G

335

G

360

G

Wav

enum

ber

/ cm

-1

Page 11: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

σ-pump (H⊥E) ΔMJ = ±1 π-pump (H // E)  

  ΔMJ = 0

  Zeeman effect around 15130.75 cm-1

15130.75 15130.80

0 G

71 G

125 G

Wavenumber / cm-1

188 G

245 G

303 G

360 G

70 G

360 G

0.0246 cm-1

15130.75 15130.80

0 G

71 G

125 G

Wavenumber / cm-1

188 G

245 G

303 G

360 G

70 G

305 G

190 G

0.0246 cm-1

σ-pump: ΔMJ = ±1

π-pump: ΔMJ = 0

(σ:2+3/π:1+2) pair

Page 12: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

σ-pump (H⊥E)ΔMJ=±1

Energy / cm-1

J’’=1.5

J’’=0.5

J’=0.5

MJ

+ 0.5

‐0.5

+ 0.5

‐0.5

+ 0.5

‐0.5

+ 1.5

‐1.5

Magnetic field / Gauss0 100 200 300 400

0.88

0.9

0.92

0.94

15131.66

15131.68

15131.7B 2E’1/2

X 2A2’(K’’=0 , N’’=1)

0 100 200 300 40015130.72

15130.74

15130.76

15130.78

15130.8σ-pump (H⊥E)

Wav

enu

mb

er /

cm-1

15130.7

15130.72

15130.74

15130.76

15130.78

15130.8

Wav

enu

mb

er /

cm-1

Magnetic field / Gauss

70 Gauss

15130.80 15131.70

The determined g-factors: lower: gS = 2.0215 (fixed) upper: gS = 1.892(26) gLζed = 0.214(51)

(σ:2+3/π:1+2) pair Zeeman splitting: transition to (2E’1/2, J = 0.5)

0 100 200 300 40015131.66

15131.67

15131.68

15131.69

Magnetic field / Gauss

En

ergy

/ c

m-1

σ-pump  : ●

π-pump  : ●

Calc : ―

MJ   =‐0.5

MJ   = +0.5

Perturbation ?

Page 13: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

2E’3/2

2E’1/2

2A2’ (K” = 0, N” = 1)

J’ = 1.5

J’ = 1.5

J’ = 0.5

J” = 0.5J” = 1.5

0.0246cm-1

QRR Q

Q P

2E’3/2 ← 2A2’ : 7 transitions

  Assigned line pairs from the Zeeman splittings

σ-pump: ΔMJ = ±1

π-pump: ΔMJ = 0

σ-pump: ΔMJ = ±1

π-pump: ΔMJ = 0

2E’1/2 ← 2A2’ : 15 transitions

Page 14: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

15000     15200     15400     15600     15800     16000     16200     16400 Wavenumber / cm-1

15000     15200     15400     15600     15800     16000     16200     16400 Wavenumber / cm-1

N2O5 → NO3 + NO2

R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975)

M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012)

NO2

Resolution : 0.2 cm-1

INTENSITY×5

0 + 950 cm-1 band :ν1

LIF spectra of 14NO3 and 14NO2

How about the vibronic bands?

Page 15: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

NO2

N2O5 → NO3 + NO2

  High-resolution LIF spectra 14NO3 0 + 950 cm-1 band and 14NO2

NO2

R (2)

R (0)

R (4)P (2)

0.2 cm-1 Resolution : 0.0007 cm-1

Page 16: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

N2O5 → NO3 + NO2

NO2

Small signal, large background → difficult to analyze

NO3 signal Resolution : 0.0007 cm-1

  High-resolution LIF spectra 14NO3 0 + 950 cm-1 band and 14NO2

Page 17: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

15000     15200     15400     15600     15800     16000     16200     16400 Wavenumber / cm-1

15000     15200     15400     15600     15800     16000     16200     16400 Wavenumber / cm-1

NO2

N2O5 → NO3 + NO2

R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975)

0 + 770 cm-1 band : 2ν4

M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012)

Resolution : 0.2 cm-1

INTENSITY×5

LIF spectra of 14NO3 and 14NO2

Page 18: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

N2O5 → NO3 + NO2

NO2

0.2 cm-1Resolution : 0.0007 cm-1

  High-resolution LIF spectra 14NO3 0 + 770 cm-1 band and 14NO2

Page 19: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

N2O5 → NO3 + NO2

0.0246 cm-1

  High-resolution LIF spectra 14NO3 0 + 770 cm-1 band and 14NO2 Resolution : 0.0007 cm-1

Large signal, small background, compared with 0 + 950 cm-1 band

Page 20: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

0 G

12 G

25 G

37 G

50 G

62 G

J’ = 1.5

MJ

+ 1.5

+ 0.5

- 0.5

- 1.5

- 0.5

+ 0.5

+ 0.5

- 0.5

- 1.5

J” = 0.5

+ 1.5

π - pump (H // E), ΔMJ = 0

  Zeeman Splitting at 15872.42 cm-1 line pair

J” = 1.5

0.0246 cm-1

0.0246 cm-1

Page 21: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

N2O5 → NO3 + NO2

0.0246 cm-1

R (0.5) Q (1.5)

  High-resolution LIF spectra 14NO3 0 + 770 cm-1 band and 14NO2 Resolution : 0.0007 cm-1

2E’3/2

2E’1/2

X 2A2’ (ʋ”=0, K” = 0, N” = 1)

J’ = 1.5

J’ = 1.5

J’ = 0.5

J” = 0.5J” = 1.5

0.0246cm-1

QRR Q

Q P

Page 22: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

Summary

We have observed high-resolution fluorescence excitation spectra of 14NO3 B-X transition.

(1) 0-0 band [15070 – 15145 cm-1]

(2) 0+770 cm-1 band [15872 – 15874 cm-1] *

(3) 0+950 cm-1 band [16048– 16055 cm-1] * (* Not full region.)

Rotational assignment is difficult except the transitions from the X 2A2’ (K” = 0, N” = 1) levels. (0.0248 cm-1 pairs)

Unambiguous assignment of these 0.0248 cm-1 pairs is completed from the observed Zeeman splittings.

How about 15NO3?

MI14

Page 23: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

Acknowledgement

Prof. Masaru Fukushima (Hiroshima City University) for his LIF spectrum of 15NO3.

Ms. Kanon Teramoto and Mr. Tsuyoshi Takashino (Undergraduate students, Kobe University) for their help.

Thank you for your attention!

Prof. Masaaki Baba (Kyoto University) for experimental setup at early stage.

How about 15NO3?

MI14

Page 24: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
Page 25: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
Page 26: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

Electronic states of NO3

B 2E’

A 2E”

X 2A2’

~ 15100 cm-1

(~ 662 nm)

~ 7000 cm-1

(~ 1430 nm)

E”

E’

A2’

A2” LUMO

SOMO

NO3 …Planer triangle ⇒ D3h

      Radical Doublet⇒

(Gaussian03, RHF/6-31g)

Page 27: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

  Vibrational Assignment

15000        15400         15800         16200     Wavenumber / cm-1

0 + 950 cm-1 bandM. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012)

振動モー

既約表現

遷移波数 (cm-1)

X[1] [2] A[3] B

ν1 a1’ 1060 780 950

ν2 a2” 762 710

ν3 e’ 1480 (?) 1435

ν4 e’ 380 530 ~ 385

2ν4

ν1

0 + 770 cm-1 band

[1] T. Ishiwata et al., J. Phys. Chem., 87, 1349 (1983)[2] R. R. Friedl et al., J. Phys. Chem., 91, 2721 (1987)[3] T. J. Codd et al., 68th Int. Symp. Mol. Spectrosc., WJ05 (2013)

Normal Mode of NO3

     +   -      -

-       ν2

   A2”

       ν1

   A1’

    ν3a

E’

    ν3b

    ν4a

E’

    ν4b

    E’   ν = E’

a1’, a2’, e’

B state

Vibrational level

Vibroniclevel

0 - 0 band

Page 28: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

Complicated structure of the 662 nm band

Vib. mode FrequencyAnharmonic

constant

ν1 (a1’)

ν2 (a2”)

ν3 (e’)

ν4 (e’)

772.73

713.59

1688.12

511.20

– 4.603

– 10.268

0

+ 4.785

[Codd et al., 67th OSU meeting, TI01 (2012)]

The A state vibrational frequencies in cm-1

X 2A2’

A 2E”

B 2E’ {

15070 – 15145 cm-1 region: 10 ~ 15 E’-type levels

Complicated structure of the 662 nm band:(mainly) vibronic interaction with dark A state??

7060 cm-1

E” × A2” = E’

15100 cm-1

Page 29: Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

B 2E’ :   Hund’s coupling case(a)

J RP

S

LΛΣ

z(c)

x(a)=y(b)

K NJ

R

L

S

z(c)

x(a)=y(b)

X 2A2’(v=0) :   Hund’s coupling case(b)

good quantum number :

Λ, S, Σ, J, P, MJ , K

good quantum number :

N, K, S, J, MJ  

  Hund’s Couplig Case