Role of the Efflux Pumps in Antimicrobial...

41
1 Role of the Efflux Pumps in Antimicrobial Resistance Patrick Plésiat Bacteriology Department Teaching Hospital Besançon, France

Transcript of Role of the Efflux Pumps in Antimicrobial...

  • 1

    Role of the Efflux Pumps inAntimicrobial Resistance

    Patrick PlésiatBacteriology Department

    Teaching HospitalBesançon, France

  • 2

    ANTIBIOTIC

    TARGET[n]

    [Cint]

    affinity

  • 3

    Bacterial targets for antibiotics

    Chromosome

    Cell wall

    Cytoplasmic membrane

    Ribosomes

  • 4

    Main resistance mechanisms to drugs

    ANTIBIOTIC

    TARGET

    Protection

    Reduced affinity- mutations- recombinaisons- enzymatic modification

    InactivationModification

    EffluxImpermeability

    SubstitutionAmplification

    Cleaning

  • 5

    Drug resistance mechanisms

    Drug inactivation

    Target alteration

    Decreased mb permeability

    Active efflux

    ß-lact

    ams

    Amino

    glycos

    ides

    Macro

    lides

    Tetra

    cyclin

    es

    Tetra

    cyclin

    es

    Quino

    lones

    +++

    +++

    +

    +

    +++

    +

    +

    +

    +/-

    +++

    +

    +

    +/-

    +++

    +

    +

    +/-

    ++

    +

    +++

  • 6

    Antibiotic efflux

    First description60’: E. coli strains resistant to nalidixic acid (K. Arima)80’: Tet determinants (S. Levy)

    Since early 90’Several hundreds of characterized or putative efflux systemsreported in the literature…

    Definition of efflux systemsTransmembrane proteins able to actively transport diversesubstrate molecules from the cell interior to the external mediumPumps : functional export systems

  • 7

    Drug accumulation experiments

    TimeTime

    Intra

    cellu

    lar a

    ccum

    ulat

    ion

    CCCP

    ATPglucose

    S

    R

  • 8

    Gram-negative species with known efflux systems

    −Escherichia coli−Salmonella Typhimurium−Shigella dysenteriae−Klebsiella pneumoniae−Enterobacter aerogenes−Serratia marcescens−Proteus sp.−Citrobacter freundii...

    −Pseudomonas aeruginosa−Pseudomonas putida−Burkholderia cepacia−Burkholderia pseudomallei−Stenotrophomonas maltophilia−Alcaligenes eutrophus−Acinetobacter baumannii...

    −Neisseria gonorrhoeae−Haemophilus influenzae−Campylobacter coli, jejuni−Helicobacter pylori−Vibrio parahaemolyticus−Vibrio cholerae−Yersinia pestis...

    −Bacteroides fragilis...

  • 9

    Other bacterial species with known efflux systems

    −Staphylococcus aureus−Staphylococcus sp.−Streptococcus pneumoniae−Streptococcus pyogenes−Streptococcus agalactiae−Enterococcus sp…

    −Bacillus subtilis−Listeria monocytogenes−Corynebacterium sp−Lactococcus lactis−Lactobacillus brevis...

    −Mycoplasma hominis...

    -Mycobacterium smegmatis-Mycobacterium tuberculosis...

  • 10

    Efflux mechanisms: practical implications

    Do efflux systems produce clinically relevant levels of resistance ?

    Does the expression of drug transporters impair the virulence ofbacterial pathogens ?

    What is the prevalence of efflux systems relative to other resistancemechanisms among the clinical isolates ?

    How to recognize efflux mutants in laboratory practice ?

    What recommendations can be made to the physician for thetreatment of patients infected with mdr strains ?

  • 11

    Structure of bacterial efflux systems

    One component systems– Mostly in Gram positive species (except Tet...)

    – A single transporter protein in the cytoplasmic membrane

    – Determines the substrate specificity and resistance

    Three component (tripartite) systems

    – Exclusively in Gram negative species (GNB)

    ♦♦ A A transportertransporter protein protein

    ♦♦ A periplasmic A periplasmic adaptoradaptor lipoprotein lipoprotein

    ♦♦ A outer membrane A outer membrane channelchannel protein protein

  • 12

    Energy sources

    ABC transporters

    – ATP binding cassette pumps

    – Hydrolysis of ATP into ADP + Pi

    – Mostly in Gram positive species

    Secondary transporters

    – H+/substrate antiporters (proton motive force)

    – Na+/substrate antiporters

  • 13

    PMF secondary transporters

    Major Facilitator Superfamily (MFS)– Drug efflux

    ♦ 12 TMS transporters♦ 14 TMS transporters

    – Active uptake/export♦ sugars...♦ amino acids, secondary metabolites...

    Small Multidrug Resistance Family (SMR)♦ 4 TMS transporters

    Resistance/Nodulation Cell Division Family (RND)♦ 12 TMS transporters

    Multi Antimicrobial Extrusion Family (MATE)♦ 12 TMS transporters

  • 14

    Structure of drug efflux systems

    H+

    ATP ADP

    antibiotic

    MFS, SMR MATE ABC RND (MFS, ABC)

    Na+

    antibiotic

    H+

  • 15

    Efflux-based resistance in Staphylococci

    Species System Family Substrates Genes Fqcyr

    S. coagulase - MsrA ABC 14,15-M, strept.B P ++

    S. aureus MsrA-like ABC 14,15-M, strept.B P +/-

    S. epidermidis ErpA ABC ? 14,15-M P ?

    S. aureus NorA MFS Fq, Cmp, Org. Ch ?

    S. aureus QacA/B MFS Antisept. P +

    S. aureus TetK MFS Tc P +++

    14,15-M: 14 et 15-macrolides ; Strept.B: streptogramin B ; Fq: fluoroquinolones ; Cmp: chloramphenicol;Organic cations.: acriflavin, cetyltrimethylammonium, Ethidium bromide, triphenylphosphonium, rhodamine ;Antisept.: chlorhexidin, benzalkonium, cetyltrimethylammonium, pentamidine...; Tc: tetracycline.

  • 16

    System NorA in System NorA in S. aureusS. aureus

    ExpressionExpression–– Constitutive or Constitutive or slightly inducible slightly inducible by by FQs FQs in wild-type in wild-type strainsstrains

    –– Increased Increased by mutations in by mutations in the promoter region the promoter region of of norA norA or inor inother lociother loci

    SubstratesSubstrates–– Identical Identical to to those those of of pump Bmr pump Bmr in in Bacillus subtilisBacillus subtilis–– Specificity related Specificity related to C-7 to C-7 residue and hydrophobicity residue and hydrophobicity of C-8of C-8

    residueresidue

    InhibitorsInhibitors–– CCCP, CCCP, nigericinnigericin, , reserpinreserpin, , verapamilverapamil, , omprazoleomprazole,,

    lanzoprazolelanzoprazole

  • 17

    System NorA in S. aureus

    Antibiotics Wild-type NorA+++ NorA-

    Nalidixic acid 25 - 125 100 - >1000 ndNorfloxacin 0.8 - 1.6 50 - 80 0.2 - 0.3Ciprofloxacin 0.25 - 0.7 6 0.1 - 0.2Ofloxacin 0.2 - 0.5 1.5 - 3 0.4

    Pefloxacin 0.5 12.5 nd

    Sparfloxacin 0.1 0.2 0.1

    Cetrimide 0.4 6.5 nd

    Benzalkonium 1 3 nd

    Ethidium bromide 5 - 6.5 25 0.5

    (CMI µg/mL

  • 18

    Active efflux

    Membranepermeability

    Other mechanisms

    Interplays between resistance mechanisms

  • 19

    Combination of mechanisms in S. aureus

    Strains GyrA ParC NorA+ Cip Sparflo

    1 - - - 0.5 0.1

    2 - S80Y - 8 13 - E84K - 8 14 - E84K efflux 64 25 E88K S80Y - 128 326 E88K S80Y efflux >128 647 S84L E84K efflux >128 64

    I. Guillemin, thesis Paris XI(CMI µg/mL

  • 20

    Efflux mechanisms in Streptococci

    Species System Family Substrates Genes Fqcy

    S. pyogenes MefA MFS ? 14,15-M Tn +++

    S. pneumoniae MefE MFS ? 14,15-M Tn ++

    S. pneumoniae ? MFS ? 14,15-M, strept.B Ch ? ?

    S. pneumoniae PmrA MFS ? Cip, Nor, BET Ch ?

    14,15-M: 14 et 15-macrolides ; Strept.B: streptogramin B ; Cip: ciprofloxacin; Nor: norfloxacin; BET: Ethidium

  • 21

    PmrA-mediated resistance in S. pneumoniae

    Antibiotics Wild type PmrA++

    Norfloxacin 2 16

    Norfloxacin + reserpin 2 4

    Ciprofloxacin 0.5 2

    Moxifloxacin 0.12 0.12

    Sparfloxacin 0.25 0.25

    Acriflavin 4 16

    Ethidium bromide 2 16

    Gill, M. J. Antimicrob. Agents Chemother. 1999, 43: 187Gill, M. J. Antimicrob. Agents Chemother. 1999, 43: 187

  • 22

    Combinaison of mechanisms in S. pneumoniae

    Strains GyrA ParC ParE Efflux Cip Levo Trova Moxi

    S10B4 - - - + 1 1 0.25 0.25

    S10A6 - - I460V - 1 1 0.25 0.125

    S7A2 - - I460V + 2 1 0.25 0.125

    S7B7 - K137N - + 2 1 0.5 0.25

    S7C2 - S79F I460V + 4 2 0.5 0.25

    S9E9 - K137N I460V + 16 4 0.5 0.25

    S10D9 S81F K137N D435N + 16 16 1 1I460V

    S7E1 S81F K137N I460V + 32 16 32 4

    Ho, P. L. J. Antimicrob. Chemother. 2001, 47: 655

  • 23

    Other Gram positives

    Species System Family Substrates Genes Fqcy

    B. subtilis Bmr MFS Cmp, Fq, Org. Ch ?

    B. subtilis Blt MFS Cmp, Fq, Org. Ch ?

    B. subtilis Bmr3 MFS Oflox, lévo, Org. Ch ? ?

    Streptomyces sp Cml MFS Cmp Ch +++

    Streptomyces sp Ptr MFS Pristina, Rif Ch +++

    Cmp: chloramphenicol ; Fq: fluoroquinolones ; Organic cations: acriflavine, cetyltrimethylammonium,ethidium, triphenylphosphonium, rhodamine ; Oflox.: ofloxacin ; Levo.: levofloxacin ; Pristina: pristinamycins I-II ; Rif: rifampicin.

  • 24

    Efflux systems in E. coli

    Chromosomal genes– 37 putative drug transporters: 19 MFS, 3 SMR, 7 RND, 7 ABC,

    1 MATE– 20 pumps are able to transport toxic/antibiotic molecules– 15-17 pumps may provide with some resistance to antibiotics when

    overproduced from cloned genes (Nishino K et al. J. Bacteriol. 2001)– Most of these intrinsic systems are not expressed in standard

    laboratory growth conditions– Spontaneous mutations may result in stable overproduction of a

    single pump and resistance

    Foreign genes– Genes carried by mobile elements (plasmids, transposons)

  • 25

    Efflux pumps coded by mobile genetic elements

    Species System Family Substrates

    E. coli TetA/B/E MFS Tc, MinE. coli CmlA MFS CmpE. coli Flo MFS Cmp, FloE. coli OqxAB-TolC RND Olaquindox, Cmp

    Tig

    Tc: tetracycline; Min: minocycline; Cmp: chloramphenicol; Flo: florfenicol ; Tig: tigecycline

  • 26

    Efflux pumps of MFS, MATE, SMR, or ABC family

    Species System Family Substrates Genes

    E. coli EmrAB-TolC MFS Nal CE. coli Bcr MFS Tc, Km, Fos CE. coli MdfA MFS Tc, Rif, Cmp, Ery, Neo, Fq... CE. coli MdtG MFS Fos CE. coli MdtH MFS Fq CE. coli MdtL MFS Cmp CE. coli MdtM MFS Cmp, Fq CE. coli NorE MATE Cmp, Fq, Fos, Tmp CE. coli EmrE SMR Tc CE. coli MdtJK SMR Nal, Fos CE. coli MacAB-TolC ABC Ery C

    Nal: nalidixic acid; Tc: tetracycline + glycylcyclines; Km: kanamycin; Fos: fosfomycin; Rif: rifampicin; Cmp: chloramphenicol; Ery: erythromycin; Neo: neomycin; Fq: fluoroquinolones; Tmp: trimethoprim

  • 27

    Efflux pumps of the RND family

    Bacteria System Substrates

    E. coli AcrAB-TolC1 Fq, ß-lactams3, Tc, Cmp, Nov, Ery, Fus, Rif…E. coli AcrEF-TolC2 Fq, ß-lactams3, Tc, Cmp, Nov, Ery, Fus, Rif…E. coli AcrD2-AcrA-TolC AGs, Ery, PolyBE. coli CusAB-?2 FosE. coli MdtABC-TolC2 FqE. coli MdtEF-TolC2 Ery

    P. aeruginosa MexAB-OprM1 Fq, ß-lactams1, Tc, Cmp, Nov, Ery, Fus, Tm...N. gonorrhoeae MtrCDE1 Tc, Cmp, ß-lactams1, Ery, Fus, Rif...

    Fq: (fluoro)quinolones; Tc: tetracycline; Cmp: chloramphenicol; Nov: novobiocin; Ery: erythromycin; Fus:fusidic acid; Rif: rifampicin; AGs: aminoglycosides; PolyB: polymyxin B; Fos: fosfomycin; Tmp: trimethoprim;3rdGC: cefepime, cefpirome. 1 expressed constitutively in wild type cells, 2 inducible expression, 3 except imipenem.

  • 28

    Overexpression of acrAB and mtrCDE operons

    acrRacrRacrBacrBacrAacrA

    --

    mutations mdrmutations mdr

    MtrAMtrA

    ++

    ++MarAMarA

    mtrDmtrDmtrCmtrC mtrEmtrEmtrRmtrR

    --

    MarRMarR__ (MppA)

    SoxSSoxS SoxRSoxR__

    E. coli

    N. gonorrhoeae

  • 29

    System AcrAB-TolC in E. coli

    Antibiotics wild type AcrAB++ AcrAB-

    Nalidixic acid 4 - 6 8.5 - 32 0.6Norfloxacin 0.025 - 0.1 0.3 - 1.25 ndOfloxacin 0.06 - 0.07 0.25 - 0.3 ndCiprofloxacin 0.02 0.15 nd

    Ampicillin 2 - 4 5 - 6 0.6 - 2Erythromycin 128 - 256 > 512 < 2 - 8Tetracycline 1.25 - 3 5 - 16 0.25 - 0.3Chloramphenicol 4 - 7.5 10 - 28 0.6

    contribution to intrinsic resistance : CMI x 2-64

    acquired resistance : CMI x 2-12(CMI mg/l)

  • 30

    Efflux/target double mutants of E. coli

    Genotype/Phenotype Oflo Cipro

    wild type AG100 0.03 ≤0.015

    AcrAB++ 0.125 0.06

    gyrA (Asp87->Gly) 0.25 0.25

    gyrA (Asp87->Gly; Ser83->Leu) 4 2

    gyrA (Asp87->Gly), AcrAB++ 8 4

    gyrA (Asp87->Gly), AcrAB- 0.06 0.03

    Oethinger et al. Antimicrob. Agents Chemother. 2000, 44: 10-13

  • 31

    Induction of acrAB-tolC expression

    tetracyclinechloramphenicol(acetyl)salicylate

    benzoatestress...

    marROABRob bile salts

    SoxSR oxidative stress

    Mar regulon :∇ Porin OmpFPorin OmpF

    ΔΔ TolC TolCΔ AcrABAcrABΔ EmrAB

    Δ∇Other proteins

  • 32

    Systems MtrCDE and FarAB in N. gonorrhoeae

    Antibiotics wild type CDE++ CDE- FarAB-

    Penicillin G 0.008 0.032 0.008 nd

    Erythromycin 0.25 1 - 2 0.06 0.25

    Tetracycline 0.25 0.5 nd nd

    Rifampicin 0.06 0.25 0.015 nd

    Linoleic acid 1600 nd 25 - 50 50

    Palmitic acid 100 nd 12.5 12.5

    contribution to intrinsic resistance : CMI x 4-64

    acquired resistance : CMI x 4-8

    (CMI mg/l)

  • 33

    RND efflux systems in P. aeruginosa

    System Operon Substrates

    MexAB-OprM mexAB,oprM FQ, ß-lactam, Tmp, Cmp, Tet, Nov, Ery...

    MexXY (OprM) mexXY FQ, AG, Fep, Cpo, Tet, Ery...

    MexCD-OprJ mexCD,oprJ FQ, Cpo ,Fep, Tmp, Cmp, Tet, Ery...

    MexEF-OprN mexEF,oprN FQ, (Ipm), Tmp, Cmp...

    MexGHI-OpmD mexGHI,opmD FQ...

    MexJK (OprM) mexJK Tet, Ery...

    MexVW (OprM) mexVW FQ, Cmp, Tet, Ery...

    Fq: fluoroquinolones; ß-lactam (except imipenem); Tmp: trimethoprime; Cmp: chloramphenicol; Tet: tetracycline;Nov: novobiocin; Ery: erythromycin; AG: aminoglycosides; Fep: cefepime; Cpo: cefpirome; Ipm: imipenem.

  • 34

    Contribution to intrinsic resistance in P. aeruginosa

    Antibiotcs Wild type MexAB/M- MexXY/M-

    Norfloxacin 0.125 - 1 0.05 - 0.25 -Ciprofloxacin 0.03 - 0.25 0.012 - 0.03 -

    Carbenicillin 12.5 - 64 0.4 - 1 -Ceftazidime 0.4 - 2 0.2 - 0.4 -Cefepime 0.8 - 2 0.1 - 0.5 -Meropenem 0.2 - 0.5 0.1 - 0.2 -

    Tetracycline 6.25 - 16 2 2 - 4Chloramphenicol 12.5 - 32 0.8 - 2 -Erythromycin 256 64 - 128 32 - 64

    Tobramycin 0.5 - 0.125Amikacin 2 - 0.5

    (CMI mg/l)CMI x 2-64

    CMI x 2-8

  • 35

    Acquired resistance in P. aeruginosa

    Antibiotics Wild type MexAB/M MexCD/J MexEF/N MexXY/M

    Carbenicillin 8 - 32 64 - 256Aztreonam 2 - 4 12.5 - 32Ceftazidime 0.4 - 2 1.6 - 8Cefepime 1 3 - 4 12.5 8Cefpirom 1 - 2 4 - 8 8 - 16Imipenem 0.8 - 1 6.25 - 8Meropenem 0.2 - 0.5 0.8 - 2Ciprofloxacin 0.03 - 0.125 0.4 - 1 0.8 - 1.6 0.8 - 1.6 0.5 - 1Amikacin 2 4 - 16Tobramycin 0.25 - 0.5 1 - 2

    (CMI mg/l)

  • Genetic events leading to increased efflux

    mexZ mexYmexX

    mexR mexBmexA oprM

    -

    -

    _PA3720 PA3719PA3721

    nalC

    -

    mdr mutations

    nalB

    agrZMexXY

    MexAB-OprM

    nalD

    PA3574

    -

    IS

    C. Vogne et al. Antimicrob. Agents Chemother. 2004, 48: 1676C. Llanes et al. Antimicrob. Agents Chemother. 2004, 48: 1797

    _PA5471

    + agrW

  • MexXY-mediated adaptive resistance to AGs

    Stain ATCC 27853 exposed to 1 MIC amikacin for 2h every 8h (Karlowsky 1994) MIC of amikacin; Bacterial killing in log10

    _____________________

    ____

    10

    20

    30

    40

    50M

    IC (

    mg

    / L)

    _

    _

    _

    _

    _

    2.5

    2

    1.5

    1

    0.5 Ino

    culu

    m (

    log1

    0 C

    FU)

    D. Hocquet et al. Antimicrob. Agents Chemother. 2003, 47: 1371

  • 38

    Target/efflux double mutants in P. aeruginosa MIC levofloxacin (mg/L)

    Target mutations Wild-type MexAB++ MexAB+++ inh. 10 mg/l

    Aucune 0.25 2 0.03

    gyrA (Thr83->Ile) 2 8 0.5

    gyrA (Thr83->Ile) + parC (Ser87->Leu) 4 32 2

    gyrA (Thr83->Ile + Asp87->Tyr) + parC (Ser87->Leu) 16 128 8

    Lomovskaya et al. Antimicrob. Agents Chemother. 1999, 43: 1340Lomovskaya et al. ICAAC Toronto 1999, abstract F-1264

  • 39

    Therapeutic implications of efflux systems

    Resistance levels conferred by intrinsic pumps– Low to moderate drug resistance (MIC x 2 - 16)– Clinical significance

    ♦ Lack of clinical data !♦ Poor response to treatment when the concentrations of

    antibiotics are low at the infection site (insufficient dosage,inappropriate drug, abcess...)

    ♦ Increased emergence of target mutants ?

    Emergence of efflux mutants under treatment– Cross resistance to structurally unrelated molecules– Role of fluoroquinolones

  • 40

    How to characterize efflux mechanisms

    Plasmid or transposon encoded efflux systems– Multiresistance phenotype– Detection of efflux gene(s): PCR, nucleic probes

    Upregulation of intrinsic efflux systems– Protein levels

    ♦ Western blotting of membrane extracts with specific antibodies– mRNA levels

    ♦ Northern blot, MacroArray, MicroArray♦ Real Time RT-PCR (Light Cycler, Taq Man, I Cycler…)

    – Intracellular accumulation of antibiotics♦ [3H] ou [14C] radiolabeled or fluorescent compounds (BET,

    acriflavine…)– Sequencing of regulatory genes

  • 41

    Efflux inhibitors

    Phenyl-Arginyl ß N-naphtylamide