Robotics Project 000

33
Robotics Project Prepared by : Naifar Slim Sonya Bradai Hbiri Imen MSPR3: Introduction to Robotics: Kinematics, Dynamics, Control and Vision (Part 1) PUMA 762 ACADEMIC YEAR 2011/2012 1

Transcript of Robotics Project 000

Page 1: Robotics Project 000

1

Robotics Project

Prepared by :

Naifar Slim

Sonya Bradai

Hbiri Imen

MSPR3: Introduction to Robotics:Kinematics, Dynamics, Control and Vision (Part 1)

PUMA 762

ACADEMIC YEAR 2011/2012

Page 2: Robotics Project 000

2

Outline

1. Introduction

2. Problem definition

3. Puma Robot Presentation

4. The forward kinematics

5. The inverse kinematics

6. The Jacobian of the manipulator and its singularities

7. Dynamical equations

8. PD control with simulations and animation

9. Conclusion

Page 3: Robotics Project 000

3

Introduction

A robot is a manipulator which can modify its environment.

This Figure shows a serial link manipulator (left) and a parallel link manipulator (right). A parallel robot, by definition, contains two or more independent serial link chains.

We will focus our discussion on serial link manipulators with revolute or prismatic joints.

Page 4: Robotics Project 000

4

Problem definition

In our Project we deal with the Kinematics , Dynamics and Control of

an industrial serial robot.

We select the Puma 762

Page 5: Robotics Project 000

5

Puma Robot Presentation

High-precision material handling

Machine loading Inspection

Testing Joining Assembly in medium and heavier weight applications

Page 6: Robotics Project 000

6

Puma Robot Presentation

Robot Arm Joint Identification and Axes of Rotation

Robot Arm Joint Axes and Ranges of Rotation

Page 7: Robotics Project 000

7

Puma Robot Presentation

Joint 1 2 3 4 5 6

Software Movement Limits (deg) 320 220 270 532 200 600

Robot Arm Joint Axes and Ranges of Rotation

Page 8: Robotics Project 000

8

Puma Robot Presentation

Dimensions of Robot Arm

Weight 590 kg (1298 lb)

Static Load 20 kg (44. 1 Ib)

Page 9: Robotics Project 000

9

Puma Robot Presentation

Page 10: Robotics Project 000

10

The forward kinematics

D-H Convention

Page 11: Robotics Project 000

11

Z0

Z2

Z3

Z4

Z5, Z6

X5

X4

X3X2

X1

X0

O0

O1

O2

O3

O4=O5 O6

Z1

The forward kinematics

D-H Convention

Page 12: Robotics Project 000

12

The forward kinematics

Link ai (mm) di (mm) αi θi

1 0 1120 -90 θ1

2 650 263 0 θ2

3 0 73 90 θ3

4 0 600 -90 θ4

5 0 0 90 θ5

6 0 125 0 θ6

Mechanism parameters of the Puma 762 robot

D-H Convention

Page 13: Robotics Project 000

13

The forward kinematics

1 1

1 11

cos( ) 0 sin( ) 0

sin( ) 0 cos( ) 0A

0 1 0 1120

0 0 0 1

2 2 2

2 2 22

cos( ) sin( ) 0 650cos( )

sin( ) cos( ) 0 650sin( )A

0 0 1 0

0 0 0 1

3 3

3 33

cos( ) 0 sin( ) 0

sin( ) 0 cos( ) 0A

0 1 0 165

0 0 0 1

4 4

4 44

cos( ) 0 sin( ) 0

sin( ) 0 cos( ) 0A

0 1 0 500

0 0 0 1

5 5

5 55

cos( ) 0 sin( ) 0

sin( ) 0 cos( ) 0A

0 1 0 0

0 0 0 1

6 6

6 66

cos( ) sin( ) 0 0

sin( ) cos( ) 0 0A

0 0 1 125

0 0 0 1

6 1 2 3 4 5 6T = A .A .A .A .A .A

The forward kinematic equations are therefore given by

D-H Convention

Page 14: Robotics Project 000

14

The inverse kinematics

Objective: Find the joint variables in terms of the end-effector position

and orientation.

X = 837.66

Y = 996.60

Z = 1451.25

Page 15: Robotics Project 000

15

The Jacobian of the manipulator and its singularities

Objective: Relate the linear and angular velocity of the end-effector to

the vector of joint velocities .

0 6 0 1 6 1 2 6 2 3 6 3 4 6 4 5 6 5

0 1 2 3 4 5

( ) ( ) ( ) ( ) ( ) ( )Z O O Z O O Z O O Z O O Z O O Z O OJ

Z Z Z Z Z Z

The Manipulator Jacobian or Jacobian J for short is given by

DERIVATION OF THE JACOBIAN

Page 16: Robotics Project 000

16

The Jacobian of the manipulator and its singularities

DERIVATION OF THE JACOBIAN

1 0 6 0( )

25. 1(26. 2 (24 5. 5). 23 5. 23. 4. 5) 1(336 125. 4. 5)

25. 1(26. 2 (24 5. 5). 23 5. 23. 4. 5) 1(336 125. 4. 5)

0

Jv Z O O

s c c s c c s c s s

c c c s c c s s s s

2 1 6 1( )

25. 1( 23.(24 5. 5) 26. 2 5. 4. 23. 5)

25. 1( 23.(24 5. 5) 26. 2 5. 4. 23. 5)

25( 2(26 (24 5. 5). 3 5. 3. 4. 5) 2( 3(24 5. 5) 5. 4. 2. 5))

Jv Z O O

c c c s c s s

s c c s c s s

c c s c c s s c c c s s

3 2 6 2( )

25. 1( 23.(24 5. 5) 5. 4. 23. 5)

25. 1( 23.(24 5. 5) 5. 4. 23. 5)

25( 3((24 5. 5). 2 5. 2. 4. 5) 3( 2(24 5. 5) 5. 4. 2. 5))

Jv Z O O

c c c c s s

s c c c s s

c c s c c s s c c c s s

4 3 6 3( )

125( 4. 1 1. 23. 4). 5

125( 1. 4 23. 1. 4). 5

125. 23. 4. 5

Jv Z O O

c s c s s s

c c c s s s

s s s

5 4 6 4( )

125( 5. 1. 4 1( 2( 4. 5. 3 3. 5) 2( 3. 4. 5 3. 5)))

125( 5. 1. 4. 2. 3 1. 5. 4 3. 1. 2. 5 2. 1( 3. 4. 5 3 5))

125( 3( 4. 5. 2 2. 5) 3.( 2. 4. 5 2. 5))

Jv Z O O

c s s c s c c s c s s c c c s s

c s c s s c c s c s s s c s c c c s s

c c c s c s s c c c s s

6 5 6 5

0

( ) 0

0

Jv Z O O

Page 17: Robotics Project 000

17

A robot is defined to be in a singular configuration when the determinant of the Jacobian is equal to 0.

The Jacobian of the manipulator and its singularities

SINGULARITIES

3 2 3 1 3 1 2 3 3

1 3 2 3 2 3 1 2 3 1 2 3

1 2 3 1 2 3

Det Jt 2437500cos( )cos( ) 10 26cos ( ) 26cos( 2 ) 52cos( )

26cos( ) 10cos(2( )) 52cos(2 ) 26cos( 2 ) 5cos( 2( ))

5cos( 2( )) 48sin( ) 48sin(2( )) 24s

1 2 3 1 2 3in( 2( )) 24sin( 2( ) )

Det Jt 0

Page 18: Robotics Project 000

18

The Jacobian of the manipulator and its singularities

SINGULARITIES

Forearm boundary singularity of Puma 762 robot

3cos( ) 0

The elbow is fully extended.

Page 19: Robotics Project 000

19

The Jacobian of the manipulator and its singularities

SINGULARITIES

Forearm interior singularity of Puma 762 robot

2 3cos( ) 0

For this second singularity , the wrist center intersects the axis of the base rotation

Page 20: Robotics Project 000

20

1 3 1 2 3 3 1 3 2 3

2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

10 26cos ( ) 26cos( 2 ) 52cos( ) 26cos( ) 10cos(2( ))

52cos(2 ) 26cos( 2 ) 5cos( 2( )) 5cos( 2( ))

48sin( ) 48sin(2( )) 24sin( 2( )) 24sin( 2(

3)) 0

The Jacobian of the manipulator and its singularities

SINGULARITIES

The interpretation of this term is complicated.

Page 21: Robotics Project 000

21

Dynamical equations

The equation of motion of the robot is given by

.. . .

( ) ( , ) ( ) D q q C q q q g q

Where:D(q) : Inertia matrixC: Centrifugal and Coriolis matrixg(q): Gravity vector

Page 22: Robotics Project 000

22

DETERMINATION OF THE INERTIA MATRIX

Dynamical equations

( . . . . . . )1

vci vci wi wi

n t t tD m J J J JR I Ri i iii

1[ ( - ) ]0 jJ z O Ovcij ci

Where [ ]1 2 3[ ( - ) 0 0]1 0 1 0[ ( - ) ( - ) 0]2 0 2 0 0 2 1[ ( - ) ( - ) ( - )]3 0 3 0 0 3 1 0 3 2[ ( - ) ( - ) ( - )]4 0 4 0 0 4 1 0 4 2

56 4

J J J Jvc vc vc vcJ z O Ovc cJ z O O z O Ovc c cJ z O O z O O z O Ovc c c cJ z O O z O O z O Ovc c c cJ J Jvcvc vc

Page 23: Robotics Project 000

23

Dynamical equations

[ 0 0]1 0[ 0]2 0 1[ ]3 0 1 2

56 4 3

J zwJ z zwJ z z zwJ J J Jww w w

( . . . . . . )1

vci vci wi wi

n t t tD m J J J JR I Ri i iii

1 2 3 2 3 3

2 3 2 3 3

3 3 3

I I I I I I

I I I I I I

I I I

Page 24: Robotics Project 000

24

. .1( )

21 1

d ddn n kj ijkic c q q qkj ijk q q qi i i j k

( )

k

Vg q

q

322 2 3 2 2 3 2 3. . .sin( ) . . .sin( ) . . .sin( )

2 2

ddV m g m d g m g

Dynamical equations

DETERMINATION OF CORIOLIS AND CENTRIFUGAL TERM AND THE GRAVITY TERM

Page 25: Robotics Project 000

25

PD control with simulations and animation

~ .

( )P DK q K q q

.. . .

( ) ( , ) ( ) D q q C q q q g q.. . . ~ .

( ) ( , ) P DD q q C q q q K q K q

Page 26: Robotics Project 000

26

PD control with simulations and animation

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

Time

posi

tion

q1(t), q2(t) q3(t)

q1(t)

Page 27: Robotics Project 000

27

PD control with simulations and animation

0 5 10 15 20 25 30 35 40 45 50-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

posi

tion

q1(t), q2(t) q3(t)

q2(t)

Page 28: Robotics Project 000

28

PD control with simulations and animation

0 5 10 15 20 25 30 35 40 45 50-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

posi

tion

q1(t), q2(t) q3(t)

q3(t)

Page 29: Robotics Project 000

29

PD control with simulations and animation

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

Time

position

q1(t), q2(t) q3(t)

q1(t)

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

Time

position

q1(t), q2(t) q3(t)

q1(t)

0 5 10 15 20 25 30 35 40 45 50-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

position

q1(t), q2(t) q3(t)

q3(t)

Page 30: Robotics Project 000

30

PD control with simulations and animation

Page 31: Robotics Project 000

31

Conclusion

We have study Puma Robot six links.

We have deriving the forward kinematics’ equation and

studying the problem of inverse kinematics.

Then, we have determinated the Jacobian matrix and discuss the

singularities.

After that, we have computed the dynamical equation of motion

of the manipulator.

Finally, we have studied the control of the robot.

Page 32: Robotics Project 000

Robotics Project PUMA 762

Slim Naifar & Sonya Bradai & Imen Hbiri

Thank You For Your Attention

Page 33: Robotics Project 000

33

D-2C Skew Symmetric??

Symmetric??D